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ABSTRACT

Non-pathogenic bacteria can substantially contribute to plant
health by mobilizing and supplying nutrients, providing protection
against pathogens, and alleviating abiotic stresses. However, the
number of genome-wide association studies reporting the
genetic architecture of the response to individual members of
the beneficial microbiota remains limited. In this study, we
established a genome-wide association study under field
conditions to estimate the level of genetic variation and the
underlying genetic architecture among 162 accessions of
Arabidopsis thaliana originating from 54 natural populations in
the southwest of France in response to 13 strains of seven of the
most abundant and prevalent non-pathogenic bacterial species
isolated from the leaf compartment of A. thaliana in the same
geographical region. Using a high-throughput phenotyping
methodology to score vegetative growth-related traits, extensive
genetic variation was detected among A. thaliana accessions in
response to these leaf bacteria, at both the species and strain

levels. The presence of crossing reaction norms between each
strain and the mock treatment indicates that declaring a strain as
a plant growth-promoting bacterium is highly dependent on the
host genotype tested. In line with the strong genotype-by-
genotype interactions, we detected a complex and highly flexible
genetic architecture between the 13 strains. Finally, the
candidate genes underlying the quantitative trait loci revealed
significant enrichment in several biological pathways, including
cell, secondary metabolism, signaling, and transport. Altogether,
plant innate immunity appears as a significant source of natural
genetic variation in plant–microbiota interactions and opens new
avenues for better understanding the ecologically relevant
molecular dialog during plant–microbiota interactions.

Keywords: association genetics, microbiota, natural populations,
plant growth-promoting bacteria, plant immunity

Both wild plant species and crops are consistently challenged
by pathogens, making infectious disease often the major selec-
tive agent in nature (Burdon and Zhan 2020; Jeger 2022). In wild
species, pathogen attacks can significantly decrease the number of
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offspring, which in turn affects the population growth rate of the
host (Roux and Frachon 2022; Zhan et al. 2022). Yield losses re-
sulting from pathogen attacks can reach several tens of percent in
crops (Savary et al. 2019), thereby threatening global food secu-
rity (Ristaino et al. 2021; Savary et al. 2019). A major challenge in
ecological genomics and plant breeding is therefore to character-
ize the genetic architecture of response to pathogen attacks (Bartoli
and Roux 2017). Identifying the genetic and molecular bases for
natural variation in response to pathogen attacks might lead to fun-
damental insights in the prediction of evolutionary trajectories of
natural populations (Burdon et al. 2006; Karasov et al. 2014) and
have enormous practical implications by increasing crop yield and
quality (Deng et al. 2020).

Over the last decade, whole-genome sequencing made possible
through the development of cutting-edge next-generation sequenc-
ing technologies, combined with the development of increasingly
sophisticated statistical methods in quantitative genetics (Bergelson
and Roux 2010), has led to a burst in the number of genome-wide
association studies (GWASs) in both wild and cultivated plants
(Demirjian et al. 2023b). This allowed for the detection of genomic
regions associated with natural variation of response to experimen-
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tal inoculation with, in most cases, individual pathogenic strains
(Bartoli and Roux 2017; Gupta et al. 2019). GWASs revealed that
the genetic architecture of plant response to pathogen attacks was
highly polygenic (Bartoli and Roux 2017), highly dependent on
the abiotic environment (Aoun et al. 2017, 2020), and dynamic
along the infection stages (Aoun et al. 2020; Demirjian et al. 2022,
2023a). In addition, the functional validation of a few quantitative
trait loci (QTLs) combined with transcriptomic analyses revealed
the involvement of a broad range of rarely considered molecular
functions in plant immunity (Badet et al. 2017; Debieu et al. 2016;
Roux et al. 2014) and new defense pathways (Delplace et al. 2020).

However, the entire set of microbial pathogens—also called
pathobiota—represents only a small fraction of the entire set of
microbes inhabiting plants, the so-called plant microbiota. For
instance, in the leaf compartment of 163 natural populations of
Arabidopsis thaliana in the southwest of France and characterized
for bacterial communities using a metabarcoding approach allowing
for distinguishing pathogenic bacteria from other bacterial species
(Bartoli et al. 2018), the relative abundance of pathobiota in mi-
crobiota was on average 1.6% in asymptomatic plants and 4.5%
in plants with visible disease symptoms (Bartoli et al. 2018). Fur-
thermore, microbiota can substantially contribute to plant health by
(i) providing direct (e.g., production of antimicrobial components,
niche competition) or indirect (e.g., triggering of immune defenses)
protection against pathogens, (ii) mobilizing and provisioning nu-
trients to the plants, and (iii) alleviating abiotic stresses (such as
drought) (Bai et al. 2022; Naitam et al. 2021; Trivedi et al. 2020).
However, the number of GWASs reporting the genetic architecture
of the response to experimental inoculation with individual mem-
bers of the beneficial microbiota remains limited in comparison with
the number of GWASs on the response to pathogens (Duflos et al.
2024). In addition, even though the phyllosphere represents 60% of
the total biomass on Earth and concentrates 1026 bacteria (Vorholt
2012), most GWASs on the response to non-pathogenic bacte-
ria focused on symbiotic bacteria or non-symbiotic plant growth-
promoting bacteria (PGPBs) isolated from the belowground level
and were conducted in laboratory controlled conditions (Cotta et al.
2020; Curtin et al. 2017; Stanton-Geddes et al. 2013; Torkamaneh
et al. 2020; Vidotti et al. 2019; Wintermans et al. 2016).

In this study, we established a GWAS in field conditions to
estimate the level of genetic variation and the underlying ge-
netic architecture among 162 whole-genome sequenced accessions
of A. thaliana originating from 54 natural populations in the
southwest of France in response to 13 strains of seven of the most
abundant and prevalent bacterial species isolated from the leaf com-
partment of A. thaliana in the same geographical region (Ramírez-
Sánchez et al. 2022). We first developed a high-throughput phe-
notyping methodology to score vegetative growth-related traits on
tens of thousands of plants. We then combined genome-wide as-
sociation (GWA) mapping derived from a Bayesian hierarchical
model with a local score approach to fine-map QTLs down to the
gene level. We finally identified the main biological pathways as-
sociated with all the candidate genes and discuss the function of the
main candidate genes that appear to matter in ecologically realistic
conditions.

MATERIALS AND METHODS

Plant material. A total of 54 populations (each represented by
three accessions randomly selected among, on average, 15 acces-
sions per population) were chosen to represent both the genomic
and ecological diversity identified among a set of 168 natural pop-
ulations of A. thaliana located in the southwest of France (Bartoli
et al. 2018; Frachon et al. 2018, 2019) (Supplementary Table S1).

Seeds from maternal plants sampled in natural populations were
collected in June 2016. Differences in the maternal effects among
the 162 seed lots (54 populations × 3 accessions) were reduced by
growing one plant of each accession for one generation (Supple-
mentary Text).

Bacterial material. We considered two strains of 7 (i.e., OTU2,
OTU3, OTU4, OTU5, OTU6, OTU13, and OTU29) out of the 12
most abundant and prevalent non-pathogenic leaf bacterial oper-
ational taxonomic units (OTUs) identified across 163 of the 168
natural populations of A. thaliana (Bartoli et al. 2018), except for
OTU4, for which only one strain was available (Ramírez-Sánchez
et al. 2022). These 12 OTUs were chosen according two criteria:
(i) presence in more than 5% of 821 rosettes (n>41) collected in situ
in autumn 2014 and spring 2015 in the 163 natural populations of
A. thaliana and characterized for bacterial communities by a
metabarcoding approach based on a portion of the gyrB gene, which
allows for a deeper taxonomic classification than the 16S rRNA
gene (Bartoli et al. 2018), and (ii) OTUs with a mean relative abun-
dance across all rosettes above 0.7% (Ramírez-Sánchez et al. 2022).
Despite the use of two complementary approaches (i.e., community-
based culture approach and information-driven approach), the use
of several growth media, and the design of specific gyrB-based
primers, we successfully isolated strains for only 7 of the 12 OTUs
(Ramírez-Sánchez et al. 2022).

By combining de novo whole-genome sequencing of the 13 se-
lected strains using the long-read sequencing PacBio technology
and average nucleotide identity-based genomic taxonomic classi-
fication (Ramírez-Sánchez et al. 2022), OTU2, OTU5, and OTU6
were taxonomically classified at the species level as Paraburkholde-
ria fungorum, Pseudomonas moraviensis, and Pseudomonas silig-
inis, respectively (Ramírez-Sánchez et al. 2022). OTU13 was tax-
onomically classified at the genus level as a Methylobacterium sp.,
whereas OTU3, OTU4, and OTU29 were taxonomically classified
at the family level as an Oxalobacteraceae bacterium, Comamon-
adaceae bacterium, and Sphingomonadaceae bacterium, respec-
tively (Ramírez-Sánchez et al. 2022). The 13 bacterial strains con-
sidered in this study were stored in a 20% glycerol solution at –80°C.

For the purpose of another study, we also included the strain
JACO-CL of the bacterial pathogen Pseudomonas viridiflava
(OTU8) (Bartoli et al. 2024), which is the second most abundant
and prevalent bacterial pathogen across the 163 natural populations
of A. thaliana (Bartoli et al. 2018).

Experimental design and growth conditions. A field exper-
iment was set up at the INRAE center of Auzeville-Tolosane
using a split-plot design arranged as a randomized complete
block design with 16 treatments nested within six experimental
blocks (Supplementary Fig. S1). The 16 treatments correspond to
two mock treatments and the individual inoculation of 14 bacte-
rial strains, namely OTU2_Pfu_1, OTU2_Pfu_2, OTU3a_Oxa_1,
OTU3a_Oxa_2, OTU4_Com_1, OTU5_Pmo_1, OTU5_Pmo_2,
OTU6_Psi_1, OTU6_Psi_2, OTU13_Msp_1, OTU13_Msp_2,
OTU29_Sph_1, OTU29_Sph_2, and OTU8_JACO-CL. Each block
was represented by 48 trays of 54 individual bottom-pierced wells
(Ø4.7 cm, vol. ∼70 cm²) (SOPARCO, reference 4920) filled with
the potting soil PROVEEN Semi-Bouturage 2. In each block, each
treatment corresponded to three trays stuck to each other and con-
taining 162 plants, with one replicate per accession (54 populations
× 3 accessions). In total, our experiment consisted of 15,552 plants
(6 blocks × 16 treatments × 162 plants per block).

Randomization of accessions was kept identical among treat-
ments within a block but differed among the six blocks. Random-
ization of the 16 treatments differed between the six blocks, except
for the two mock treatments that were kept at the same position
(Supplementary Fig. S1).
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All seeds were sown on 18 March 2021, with several seeds sown
in each well. Two weeks after sowing, seedlings were thinned to
one per well, keeping the seedling the closest to the center of the
well. During the entire growing period, the plants were watered as
needed (i.e., no watering on rainy days and manual watering with
a water mist spray gun every morning and every evening on hot
and dry days until the potting soil was saturated with water). The
amount of water applied strongly varied according to the weather.
A molluscicide (Algoflash Naturasol) was regularly applied around
the trays.

Inoculation procedure. Bacterial strains were grown on solid
medium in Petri dishes (TSA for OTU5, OTU6, and OTU8; TSB
for OTU2; R2A for OTU3, OTU4, OTU13, and OTU29). On the
day of inoculation, bacterial colonies were resuspended in sterile
deionized water, and bacterial solutions were diluted to reach an
OD600 nm of 0.01. To facilitate the penetration of bacteria cells into
plant organs, the Tween 20 surfactant was added to each bacterial so-
lution at a final concentration of 0.01%. Inoculation was performed
27 days after sowing (14 Apri 2021), when most plants reached the
five- to six-leaf stage. Using a Multipette multi-dispenser pipette
with a 50-ml Combitips advanced dispenser tip, a volume of 1 ml
of inoculum was dispensed on each rosette. A volume of 1 ml of
sterile water with a Tween concentration of 0.01% was dispensed
on each rosette of the plants of the two mock treatments. To increase
relative humidity, plants were watered with a water mist spray gun
for 7 days following the inoculation.

Phenotyping. Following Roux et al. (2016), a nondestructive
imaging approach (Supplementary Fig. S2) was used to measure
each plant for nine traits related to vegetative growth (Supplemen-
tary Data Set 1): projected rosette surface area measured at 1 day
before inoculation (dbi) (area-1dbi), 5 days after inoculation (dai)
(area-5dai), and 9 dai (area-9dai); rosette perimeter measured at
1 dbi (perimeter-1dbi), 5 dai (perimeter-5dai), and 9 dai (perimeter-
9dai); and maximal rosette diameter measured at 1 dbi (diameter-
1dbi), 5 dai (diameter-5dai), and 9 dai (diameter-9dai). To estimate
plant growth relative to size, three relative growth rates (RGRs)
were estimated based on the rosette surface area: RGR between
5 dai and 1 dbi (RGR-5dai-1dbi), RGR between 9 and 5 dai (RGR-
9dai-5dai), and RGR between 9 dai and 1 dbi (RGR-9dai-1dbi).
The procedure and methodologies (including a high-throughput
imaging-based phenotyping methodology) are detailed in the Sup-
plementary Text.

Analysis of the extent of natural genetic variation. For the
purpose of this study, the strain JACO-CL (OTU8, P. viridiflava)
was not considered in any data analysis.

To test for the homogeneity of plant growth across the field trial
and the presence of genetic variation for the three vegetative growth-
related traits measured before inoculation, data from the two mock
treatments were pooled, and the following mixed model (PROC
MIXED procedure in SAS v. 9.4, SAS Institute, Cary, NC, U.S.A.)
was used:

Yi jklmn = μtrait + Blocki + Treatment j + Blocki × Treatment j

+ Populat ionk + Populat ionk × Treatment j

+ Linel (Trayn) + Columnm (Trayn) + εi jklmn (Model 1)

where Y is one of the three phenotypic traits measured before inoc-
ulation (i.e., area-1dbi, perimeter-1dbi, and diameter-1dbi), µ is the
overall mean of the phenotypic data, Block accounts for differences
in micro-environmental conditions among blocks, Line(Tray) and
Column(Tray) account for differences in micro-environmental con-
ditions within 54-well trays, Treatment tests for differences among
the 14 treatments (i.e., mock treatment and 13 treatments with non-
pathogenic bacterial strains), Population corresponds to the genetic

differences among the 54 populations, Population × Treatment tests
whether the rank among the 54 populations differs among the 14
treatments, and ε is the residual term.

Whereas the terms Treatment and Population × Treatment were
not significant for the three traits scored at 1 dbi, we detected
a highly significant Population effect (Supplementary Table S2),
thereby indicating that the level of significant genetic variation ob-
served among the 54 populations was homogeneous across the field
trial before inoculation.

To estimate the natural genetic variation of the response of the 162
accessions nested within 54 populations to the 13 non-pathogenic
bacterial strains, the following mixed model (PROC MIXED pro-
cedure in SAS v. 9.4, SAS Institute) was used for each of the 14
treatments:

Yi jklm = μtrait + Blocki + Populat ion j + Accessionk

(
Populat ion j

)

+ Linel (Trayn) + Columnm (Trayn) + εi jklmn (Model 2)

where Y corresponds to one of the nine traits (area-5dai, area-
9dai, perimeter-5dai, perimeter-9dai, diameter-5dai, diameter-9dai,
RGR-5dai-1dbi, RGR-9dai-5dai, and RGR-9dai-1dbi). All the
terms were identical to the ones described in Model 1, except for
the Accession term, which accounts for mean genetic differences
among the three accessions within populations.

For each of the 126 phenotypic trait and treatment combinations
(i.e., 9 traits × 14 treatments), genotypic values of the 54 popula-
tions were estimated by calculating least-squares mean values of
the Population term in the following linear model (function lm of
the library lme4 under the R environment):

Yi jkl = μtrait + Blocki + Populat ion j + Linek (Traym )

+Columnl (Traym ) + εi jklm (Model 3)

We then applied the function lsmeans (library lsmeans under the
R environment) to Model 3. For each of the nine phenotypic traits,
the estimated genotypic values (Supplementary Data Set 2) were
then used to (i) compare phenotypic variation among the 14 treat-
ments, (ii) estimate the level of Population × Treatment interactions
by calculating pairwise non-linear correlation coefficients (Spear-
man’s rho) among the 14 treatments, and (iii) run GWA analyses
(see below).

In Models 1, 2, and 3, all factors were treated as fixed effects.
For calculating F values, terms were tested over their appropriate
denominators. A correction for the number of tests was performed
to control for the false discovery rate at a nominal level of 5%.

To estimate broad-sense heritability values (H²) for each of the
126 phenotypic trait and treatment combinations, we first ran the
following linear mixed model (function lmer of the library lme4
under the R environment):

Yi jkl = μtrait + Blocki + Accession j + Linek (Traym )

+Columnl (Traym ) + εi jklm (Model 4)

with the Block and Accession factors treated as random effects.
The percentage of phenotypic variance explained by the Block and
Accession terms was then estimated by applying the function var-
corr (library lme4 under the R environment) to Model 4. Following
Huard-Chauveau et al. (2013), H² values were estimated using the
following formula:

H2
Trait = V F

V F + V R
N

where VF corresponds to the genetic variance among the 162
accessions, VR is the residual variance, and N is the mean number
of biological replicates per accession (N = 6 in this study).
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Combining GWA mapping with a local score approach. Us-
ing a Pool-seq approach based on the individual DNA extrac-
tion of on average 15 plants per population, a representative
picture of within-population genetic variation was previously
obtained for the 168 natural populations of A. thaliana located
in the southwest of France (Frachon et al. 2018), leading to the
estimation of standardized allele frequencies corrected for the ef-
fect of population structure within each population for 1,638,649
single-nucleotide polymorphisms (SNPs) across the genome
(Frachon et al. 2018). For this study, standardized population
allele frequencies were retrieved for the 54 populations. Then, fol-
lowing Ramírez-Sánchez et al. (2023), for each of the 126 phe-
notypic trait and treatment combinations, a genome scan was first
launched by estimating for each SNP Spearman’s rho and associ-
ated P values between standardized allele frequencies and popu-
lation genotypic values. Thereafter, to increase (i) the resolution
in fine mapping genomic regions associated with genetic varia-
tion in response to bacterial strains and (ii) the identification of
QTLs with small effects, we followed Aoun et al. (2020), Demirjian
et al. (2022), and Ramírez-Sánchez et al. (2023) by implementing
a local score approach (with a tuning parameter ξ = 2) on these
P values. Finally, significant SNP-phenotype associations were
identified by estimating a chromosome-wide significance thresh-
old for each chromosome (Bonhomme et al. 2019).

Enrichment in biological processes. A custom script written
under the R environment was used to retrieve the candidate genes
underlying detected QTLs for each of the 126 phenotypic trait and
treatment combinations. For each of the 14 treatments, we merged
the lists of candidate genes of the nine phenotypic traits and removed
duplicates. For each of the 13 treatments with a non-pathogenic
bacterial strain, only candidate genes not found in the mock treat-
ment were kept. To identify biological pathways significantly over-
represented (P < 0.01), each of the 14 resulting lists of unique
candidate genes was submitted to the classification SuperViewer
tool on the University of Toronto website (https://bar.utoronto.
ca/ntools/cgi-bin/ntools_classification_superviewer.cgi) using the
MAPMAN classification.

RESULTS

Genetic variation of A. thaliana in response to non-pathogenic
bacterial strains in field conditions. In agreement with previous
experiments conducted under in vitro conditions (Ramírez-Sánchez
et al. 2022), no disease symptoms were observed in response to
the 13 non-pathogenic strains in our field conditions. For each of
the 14 treatments (mock treatment and 13 treatments with a non-
pathogenic bacterial strain), highly significant genetic variation was
detected among the 54 populations (Fig. 1; Supplementary Fig. S3;
Supplementary Table S3) for each of the nine phenotypic traits.
Across the 126 phenotypic trait and treatment combinations, the
mean broad-sense heritability (H²) estimate was 0.49 (median =
0.56, quantile 5% = 0.16, quantile 95% = 0.70), indicating that a
nonnegligible fraction of phenotypic variance was explained by ge-
netic variation among populations and accessions (Supplementary
Table S4).

Significant phenotypic variation was observed among the 14
treatments for each phenotypic trait (Fig. 1; Supplementary Fig.
S3). However, significant differences between the mock treat-
ment and the response to any bacterial strain were only ob-
served for three traits (i.e., area-9dai, diameter-9dai, and RGR-5dai-
1dbi) (Fig. 1; Supplementary Fig. S3). For instance, the rosette
area at 9 dai was on average bigger and smaller in response to
OTU2_Pfu_1/OTU3a_Oxa_2 and OTU29_Sph_2 than in the mock
treatment, respectively (Fig. 1A). The relative growth rate between
5 dai and 1 dbi was significantly higher in response to OTU5_Pmo_2
than in seven treatments, including the mock treatment (Fig. 1B).

More importantly, for each phenotypic trait, we observed a
strong genetic variation among the 54 populations of A. thaliana
in their response to each of the 13 non-pathogenic bacterial strains
(Fig. 2; Supplementary Fig. S4), with (i) values of genetic correla-
tions between the mock treatment and each treatment with a bac-
terial strain greatly deviating from 1 (Fig. 2; Supplementary Fig.
S4) and (ii) the observation of strong crossing reaction norms be-
tween the mock treatment and each treatment with a bacterial strain
(Fig. 3). In addition, the response of the 54 populations strongly

Fig. 1. Phenotypic variation of the response to the mock treatment and the 13 bacterial strains in field conditions. A, Boxplots illustrating the variation
among the 14 treatments for the trait ‘area-9dai’. B, Boxplots illustrating the variation among the 14 treatments for the trait ‘RGR-5dai-1dbi’. For each
treatment, each dot corresponds to the genotypic value of one of the 54 populations of Arabidopsis thaliana. For each trait, different letters indicate
different groups according to the treatments after a Ryan-Einot-Gabriel-Welsh (REGWQ) multiple-range test at P = 0.05. dai: days after inoculation;
dbi: days before inoculation; RGR: relative growth rate.

4 Phytobiomes Journal

https://bar.utoronto.ca/ntools/cgi-bin/ntools_classification_superviewer.cgi


varied among the 13 bacterial strains, even between two strains be-
longing to the same bacterial species (Fig. 2; Supplementary Fig.
S4). For instance, the direction and/or the strength of the response
of a given population of A. thaliana could differ widely between the
two OTU13_Msp strains, as illustrated by the FERR-A and LUZE-
B populations (Fig. 3).

A genomic map of the response of A. thaliana to prevalent
and/or abundant leaf bacterial species. Based on the allele fre-
quencies of 1,638,649 SNPs obtained by a Pool-seq approach for
each of the 54 populations (Frachon et al. 2018), a GWA mapping
analysis combining a Bayesian hierarchical model with a local score
approach was conducted to characterize the genetic architecture of
the response to the 13 non-pathogenic bacterial strains. In line with
the short linkage disequilibrium observed in natural populations of
A. thaliana in France (Frachon et al. 2017), we detected 2,064 QTLs

across the 126 phenotypic trait and treatment combinations, with
a mean length of QTL interval equal to about 837 bp (quantile
5% ∼ 38 bp, quantile 95% = 3.12 kb) (Supplementary Data Set
3). The number of QTLs per phenotypic trait and treatment com-
bination ranged from 6 to 34 (mean = 16.4), suggesting a poly-
genic architecture for the response of A. thaliana to members of the
most prevalent and/or abundant non-pathogenic bacterial species
of the leaf compartment of A. thaliana in the southwest of France
(Fig. 4A).

In agreement with the level of genetic correlations observed
among the 14 treatments and the presence of crossing reaction
norms (Figs. 2 and 3; Supplementary Fig. S4), the genetic archi-
tecture was highly flexible (i) between the mock treatment and the
treatments with a bacterial strain and (ii) among treatments with
a bacterial strain at both the interspecific and intraspecific levels

Fig. 2. Genetic variation of 54 natural populations of Arabidopsis thaliana in response to the 13 bacterial strains in field conditions. A, Boxplots
illustrating the range of genetic correlations between each treatment with a bacterial strain and the remaining 13 treatments for the traits ‘area-
5dai’ and ‘area-9dai’. B, Boxplots illustrating the range of genetic correlations between each treatment with a bacterial strain and the remaining
13 treatments for the traits ‘RGR-5dai-1dbi’ and ‘RGR-9dai-1dbi’. Red triangle: genetic correlation with the mock treatment; black dots: genetic
correlations with other treatments with a bacterial strain. dai: days after inoculation; dbi: days before inoculation; RGR: relative growth rate. Treatments
are ranked according to their mean genetic correlation with other treatments.
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(Fig. 5). Most candidate genes underlying detected QTLs and not
shared with the mock treatment were specific to a given treatment
with a bacterial strain, in particular at 9 dai (Fig. 4B; Supplementary
Fig. S5; Supplementary Data Set 4). For instance, for the maximal
rosette diameter, whereas the percentage of candidate genes spe-
cific to a given treatment with a bacterial strain ranged from 57.7
to 86.1% (mean = 75.2%) at 9 dai, it ranged from 26.9 to 81.1%
(mean = 46.0%) at 5 dai (Supplementary Fig. S5).

Identification of enriched biological processes and candidate
genes associated with the response to prevalent and abundant
leaf bacterial species. The first approach to identify relevant can-
didate genes involved in the response to the 13 non-pathogenic
bacterial species was to focus on candidate genes underlying the
most pleiotropic QTLs. Here, we focused on QTLs detected for
the response to more than six bacterial strains but not detected for
the mock treatment. We identified seven such pleiotropic QTLs en-
compassing 17 candidate genes (Fig. 6; Supplementary Data Set
5), among which eight genes have functions in relation to plant de-
velopment and organ growth: At2g40650 (Watanabe et al. 2019),
At2g40670 (Yang et al. 2020), At2g44710 (Zhang et al. 2022),
At2g47190 (Guo et al. 2022), At4g14713 (White 2022), At4g14716
(Friedman et al. 2011), At4g14720 (Baekelandt et al. 2018), and
At5g42360 (Franciosini et al. 2013). Interestingly, three genes have
a link with plant immunity: MEMB12 (At5g50440), which is si-
lenced by a microRNA during Pseudomonas syringae bacterial
infection (Chung et al. 2018); ARR16 (At2g40670), which is re-
pressed by Botrytis cinerea fungal infection (Li et al. 2021); and
TIFY4B/ PEAPOD2 (At4g14720), which interacts with the bego-
movirus AL2 transcriptional activator protein, an inhibitor of plant
basal defense (Chung and Sunter 2014).

Based on the lists of unique candidate genes identified for each
treatment and the list of unique candidate genes identified across
the 13 treatments with a bacterial strain, the second approach was

to identify biological processes significantly overrepresented in fre-
quency compared with the overall class frequency in the A. thaliana
MapMan annotation. When considering both the 14 treatments in-
dividually and the 13 treatments with a bacterial strain altogether,
we identified 19 significantly enriched classes, among which five
were enriched in the mock treatment (i.e., ‘development’, ‘hor-
mone metabolism’, ‘lipid metabolism’, ‘protein’, and ‘RNA’) (Fig.
7A; Supplementary Data Set 5). Amongst the 14 overrepresented
classes not detected in the mock treatment, most of them were highly
dependent on the identity of the bacterial strain, suggesting the in-
volvement of diverse pathways in response to representative mem-
bers of the non-pathogenic microbiota, down to the intraspecific
level (Fig. 7A). We nonetheless identified four classes that were
significantly overrepresented for at least three treatments with a
bacterial strain and when considering the 13 treatments with a bac-
terial strain altogether: ‘cell’, ‘secondary metabolism’, ‘signaling’,
and ‘transport’ (Fig. 7A). Interestingly, in the set of the 99 ‘sig-
naling’ genes, we identified, among others, 54 kinase-related genes
(including 24 leucine-rich repeat kinases, 8 cysteine-rich receptor-
like kinases [CRKs], and 6 mitogen-activated protein kinases) and
23 genes associated with calcium signaling (Fig. 7B).

DISCUSSION

Extensive genetic variation within a regional set of A. thaliana
accessions in response to non-pathogenic leaf bacteria at the
species and strain levels. Extensive genetic variation was previ-
ously observed in two worldwide collections of A. thaliana, each
challenged at the root level under in vitro conditions with a single
PGPB strain isolated from a plant species other than A. thaliana
(i.e., the strain Pseudomonas simiae WCS417r isolated from the
rhizosphere of wheat [Wintermans et al. 2016] and the strain Bacil-
lus pumilus TUAT-1 isolated from rice roots [Cotta et al. 2020]).

Fig. 3. Interaction plots illustrating the reaction norms observed at the population level between the mock treatment and the treatment with
OTU13_Msp_1 (left panel) and OTU13_Msp_2 (right panel). Each dot corresponds to the genotypic value of one of the 54 populations of
Arabidopsis thaliana. Each line corresponds to the response of one of the 54 populations to the inoculation with either OTU13_Msp strain. The blue
and red lines correspond to two populations, FERR-A and LUZE-B, respectively, with an opposite response to the strain OTU13_Msp_2. Pictures
illustrate representative plants of the two populations highlighted in blue and red for the mock treatment and the treatment with either OTU13_Msp
strain.
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In this study, the ecological realism of plant–microbiota interac-
tions was increased by phenotyping in field conditions the rosette
growth response of A. thaliana accessions collected in the south-
west of France to non-pathogenic bacterial strains isolated from the
leaf compartment of A. thaliana in the same geographical region.

In agreement with previous observations with bacterial pathogens
(Bartoli and Roux 2017; Demirjian et al. 2023b; Wang et al. 2018),

the extent of genetic variation in response to non-pathogenic bacte-
rial strains was more dependent on the identity of the bacterial strain
than the identity of the bacterial species. In addition, the presence of
crossing reaction norms indicates that declaring a strain as a PGPB
is highly dependent on the host genotype tested. Whether the host
genotype-dependent plant growth-promoting effect of a particular
strain on aboveground vegetative growth is also observed at the

Fig. 4. Genetic architecture of the
response of 54 natural populations
of Arabidopsis thaliana to the 13
bacterial strains in field conditions.
A, Number of quantitative trait loci
(QTLs) per treatment for each of
the nine phenotypic traits. B, An
UpSet plot illustrating the flexibility
of genetic architecture among the
13 treatments with bacterial strains
for the trait ‘area-9dai’. ‘Number of
genes’: Total number of candidate
genes underlying detected QTLs and
not shared with the mock treatment.
A single dot indicates the number of
candidate genes specific to a given
treatment. Candidate genes shared
between two or more treatments are
represented by a line connecting two
or more dots. dai: days after inocula-
tion.
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belowground level would deserve investigation, for instance, by es-
timating root growth and root/shoot biomass ratios (Mantelin and
Touraine 2004).

Interestingly, whereas genetic variation in response to bacterial
strains was observed within a few days after inoculation in field
conditions, such a genetic variation was mainly observed after sev-
eral weeks under in vitro conditions (Ramírez-Sánchez et al. 2022).
Because the bacterial strains used in this study were isolated from
complex microbiota in the native habitats of A. thaliana, the ef-
fect of the bacterial strains may require the presence of additional

microbiota members in the plant, a prerequisite not achieved in
germ-free plants under in vitro conditions (Ramírez-Sánchez et al.
2022, 2023).

A complex and highly flexible genetic architecture under-
lies native plant–microbiota interactions. So far, the very few
GWASs (Bergelson et al. 2021) and the single genome-environment
association study (Roux et al. 2023) conducted on the leaf compart-
ment and using bacterial community descriptors as phenotypic traits
revealed a polygenic architecture controlling microbiota assembly,
which is in line with the small percentage of variance explained
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Fig. 5. Manhattan plots of
the Lindley process for the
trait ‘area_9dai’ for the mock
treatment and the treatments
with the bacterial strains
OTU13_Msp_2, OTU5_Pmo_1,
and OTU5_Pmo_2. The x axis
corresponds to the physical
position of 1,638,649 single-
nucleotide polymorphisms on the
five chromosomes of A. thaliana.
The dashed lines indicate the
minimum and maximum of the
five chromosome-wide signifi-
cance thresholds.
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by the phenotyping of individual mutant lines (Bergelson et al.
2021). In agreement with these association genetic studies and the
three GWASs conducted on A. thaliana in response to a PGPB
strain (Cotta et al. 2020; Ramírez-Sánchez et al. 2023; Wintermans
et al. 2016), we identified a complex genetic architecture for the
response of A. thaliana to 13 non-pathogenic bacterial strains. In
addition, this polygenic architecture was highly flexible among the
13 bacterial strains, with the detection of a small number of highly
pleiotropic QTLs. Similar results were observed in recent GWASs
conducted in both crops and wild species in response to experi-
mental inoculation with individual pathogenic bacterial strains. For
instance, challenging 130 natural accessions of A. thaliana with 22
strains of the bacterial pathogen Xanthomonas arboricola revealed a
clear host-strain specificity in quantitative disease resistance (Wang
et al. 2018). The complex genetic interactions observed between
A. thaliana and the main members of its leaf microbiota should
maintain a high level of diversity at the candidate genes, as
previously observed in plant pathosystems (Karasov et al. 2014).

Plant innate immunity is a significant source of natural ge-
netic variation in native plant–microbiota interactions. The
candidate genes underlying the most pleiotropic QTLs have func-
tions mainly related to plant development and/or stresses (biotic or
abiotic stresses). Nevertheless, a more global approach identified
four biological processes that were significantly and specifically
overrepresented in response for at least three bacterial strains but
not for the mock treatment (i.e., ‘cell’, ‘secondary metabolism’,
‘signaling’, and ‘transport’) (Fig. 7A). These four classes were also
overrepresented in a genome-environment association study per-
formed on 163 natural populations of A. thaliana located in the
southwest of France (including the 54 populations considered in
this study) (Roux et al. 2023) and characterized in situ for bacterial
communities in the leaf and root compartments using a metabar-
coding approach (Bartoli et al. 2018), thereby strengthening the
importance of these four classes in mediating host response to the
13 bacterial strains tested here.

Strikingly, we found a strong enrichment for signaling genes un-
derlying QTLs in response to the 13 bacterial strains tested in this
study. Signaling genes have been extensively described as being
involved in plant–microbe interactions. Of particular note, we iden-
tified eight genes belonging to the CRK family, which represents
one of the largest groups of receptor-like kinases, with 44 mem-
bers in A. thaliana (Bourdais et al. 2015). Some CRKs are involved
in the regulation of plant developmental processes, whereas others
are involved in stress and pathogen response (Bourdais et al. 2015).
Interestingly, by assessing host transcriptional and metabolic adap-
tations to 39 bacterial strains in the leaf compartment of A. thaliana,
a core set of 24 genes consistently induced by the presence of most
strains was identified and thereby referred to as a molecular process
called general non-self-response (Maier et al. 2021). Importantly,
one gene of this core set (CRK6) was also identified as a candi-
date gene in our GWAs, reinforcing the importance of CRKs in
plant–microbiota interactions.

In addition, we detected many candidate genes related to pattern-
triggered immunity (PTI), including receptor-like kinases and
receptor-like proteins. PTI relies on the perception of specific
molecular patterns, such as microbe-associated molecular patterns
(Macho and Zipfel 2014). In particular, we identified a main ac-
tor of PTI, the FLS2 gene encoding a leucine-rich repeat receptor-
like kinase protein that acts as a receptor for the flg22 bacterial
pathogen-associated molecular pattern (Macho and Zipfel 2014),
as a candidate gene in response to the two strains of OTU6 and one
strain of OTU13 (Supplementary Data Set 6), which is in line with
two recent studies that dissected the interplay between FLS2 and
diverse flg22 variants from the bacterial microbiota of A. thaliana
(Colaianni et al. 2021; Parys et al. 2021). Interestingly, PTI can be
modulated by a physical association between FLS2 and CRK6 (Yeh
et al. 2015). PTI response is also characterized by the production
of reactive oxygen species and by the activation of the mitogen-
activated protein kinase cascade (Monaghan and Zipfel 2012). In
our study, we identified four NADPH oxidase RBOH genes, among

Fig. 6. List of pleiotropic candidate genes associated with more than six treatments with a bacterial strain but not detected in the mock treatment.
Colored squares indicate the strains for which the candidate genes were identified. The different colors correspond to the seven quantitative trait loci
(QTLs) in which the pleiotropic QTLs are located.
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Fig. 7. Enriched biological processes
in response to the 13 bacterial strains
in field conditions. A, Enriched bio-
logical processes for the list of unique
candidate genes for each of the 14
treatments and for the list of unique
candidate genes from the combined
13 bacterial strains (‘All strains’), ob-
tained with the MapMan classification
SuperViewer tool. The color of the dots
corresponds to the level of significance.
B, Number of candidate genes belong-
ing to the different subcategories of
the enriched ‘signaling’ biological pro-
cess for each treatment with a bacterial
strain. LRR: leucine-rich repeat; CRK:
cysteine-rich receptor-like kinase; MAP:
mitogen-activated protein.
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them the gene RBOHD that is required for microbiota homeostasis
in leaves (Pfeilmeier et al. 2021). Another candidate gene is MPK4,
a main actor of PTI signaling (Bazin et al. 2020). Even if few mutant
lines related to signaling and PTI have been tested for their effect on
microbiota assembly (Bergelson et al. 2021), our results strengthen
the need for a deeper investigation of some of our most promising
candidate genes in relationship with the 13 strains used in this study.
Importantly, the de novo whole-genome sequences of the 13 strains
tested in this study have been recently obtained with long-read se-
quencing technology (Ramírez-Sánchez et al. 2022). Comparative
genomics, notably for their pathogen-associated molecular pattern
sequences (i.e., flagellin, EF-TU), may bring very informative data
on their potential recognition by A. thaliana, thereby making an
ecologically relevant link between microbiota recognition and plant
innate immunity in the leaf compartment.

Data availability statement. Raw phenotypic data are available
in Supplementary Data Set 1.
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