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A B S T R A C T

Although standardized, food processing is subject to many sources of variability resulting from compositional 
and structural variabilities of raw materials and/or ingredients, human perception and intervention in the 
process, capabilities of processing tools and their wear and tear, etc. Altogether, they affect the reproducibility of 
final product characteristics representing deviations to standard, the production yield impacting the economic 
performance of the food manufacturing process, and many other performance indicators. They are grossly 
classified as economic, quality and environmental indicators and their simultaneous consideration can be used to 
define the overall performance of a manufacturing process. Optimizing the overall performance of food pro
cessing requires the use of multi-objective optimization methods. Multi-objective optimization methods include 
five steps: defining the objectives, modelling performance indicators, formulating the problem and constraints, 
solving the multi-objective problem, and finally identifying an ideal solution. The integration of data-driven 
approach, particularly machine learning, into the multi-objective optimization offers new perspectives for 
optimizing and controlling food processes. The potential of this approach is still underestimated by the food 
industry sector.

1. Introduction: industrial performance in the food industry

By 2050, the world’s population is projected to reach approximately 
9.7 billion inhabitants, posing a sustainability challenge for the food 
industry which needs to optimize the use of agriculture raw materials, as 
well as water and energy while maintaining an absolute priority for food 
safety and food quality (Erdogdu, 2023; Karunakaran et al., 2021). 
Globally, the food industry generates several social and economic ben
efits for society but also causes significant environmental impacts 
(greenhouse gas emission, energy consumption, etc.). Given the pro
jected population growth, food demand should continue to rise, conse
quently leading to even more adverse effects on the environment if the 
way food is produced remains unchanged.

For these reasons, it is necessary to redefine the overall performance 
of industries to address current societal and industrial challenges. Eco
nomic, environmental, and product quality dimensions can be consid
ered altogether as key when considering the overall performance of 
industry (Drofenik et al., 2023; Madoumier et al., 2019). The successful 
integration of these three dimensions will not only enhance the 
competitiveness of companies in the sector but will also contribute to 

their long-term sustainability. The challenge lies in integrating all these 
performance dimensions in an overall performance function using 
appropriate indicators. Fig. 1 illustrates these performance dimensions 
and some examples of associated indicators. The definition of this 
overall performance cannot be limited to a single dimension. Indeed, 
considering only one aspect of performance or neglecting the other as
pects potentially compromise the scope of the optimization. A holistic 
view of performance would enable finding a balance between these 
aspects.

Moreover, in the food industry, performance objectives are often 
contradictory, and their simultaneous optimization seems difficult to 
achieve (for example, increasing product shelf-life while reducing the 
heat load for microbial destruction or the amounts of chemical additives 
and preservatives). The integration of multiple performance aspects to 
steer and optimize food processes is a real challenge for the future 
(Drofenik et al., 2023; Feil et al., 2023; Feliciano et al., 2022). In this 
context, optimizing a single performance objective while neglecting the 
others seems inappropriate and less relevant. Finding a compromise 
between conflicting objectives is not a straightforward task, and the 
implementation of these optimization methods requires precise process 
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knowledge. Recently, multi-objective optimization has gained popu
larity due to its capacity to evaluate problems from diverse perspectives 
by concurrently addressing multiple objectives (Cerda-Flores et al., 
2022; Wari & Zhu, 2016). Multi-objective optimization is a mathemat
ical approach used to solve problems involving multiple objectives that 
need to be achieved simultaneously. Multi-objective problems are 
numerous and can be found in various areas of human life. Along with 
this, there are many methods in solving the multi-objective optimization 
problem. The choice of the appropriate method depends on the nature of 
the problem to be solved (Ehrgott, 2005; Gunantara, 2018). In the 
chemical industry, multi-objective optimization method is widely used 
to optimize processes. The implementation of this method has improved 
the industries performance objectives (Wang et al., 2022; Xu et al., 
2024). Despite significant advances in the application of virtualization 
and process optimization in many technological sectors, the food in
dustry has not fully exploited the advantages of these methods that 
remain largely underutilized. Multi-objective optimization tools and 
methods slowly entered the field of food processes (Li & Wu, 2022; 
Madoumier et al., 2019; Wang et al., 2022) whereas food industry can 
benefit from these advantages thanks to the large amount of measure
ments collected all along the process. The advent of Industry 4.0 and the 
abundance of sensors that measure process parameters for providing 
more precise monitoring constitutes a powerful lever for optimizing 
real-time food production (Ding et al., 2023). Despite extensive data 
collection, their analysis remains often imperfect and incomplete up to 
now.

Based on these observations, it seems that the transposition of this 
systemic methodology, which encompasses the whole process and 
associated collected data, could be very beneficial and offers a holistic 
asset to the food industry sector.

2. Methodology for implementing the multi-objective approach

An optimization problem can be defined as the search for a minimum 
or maximum of a given function within a predefined space. A distinction 
can be made between single-objective optimization and multi-objective 
optimization. The goal of mono-objective optimizations is to search for 
the optimal value of the objective function (Li & Wu, 2022). However, it 
is well known that the majority of real optimization problems have 
several objectives and requiring the calculation of more than one 
optimal solution (Abakarov et al., 2009). Consequently, the aim of 
multi-objective optimization is to optimize several objectives simulta
neously, even if they appear conflicting. This multi-objective method 
aims to identify the best compromise between these contradictory 

objectives and to obtain a set of acceptable solutions called Pareto 
optimal solutions (Alaya et al., 2007; Houam, 2013; Konak et al., 2006).

The multi-objective approach can be divided into five steps as sum
marized in Fig. 2.

Step 1: definition of objectives

The first step involves the definition of the performance objectives 
that describe the industry’s overall performance. Their definition re
quires collaboration with experts of the manufacturing process in order 
to gather various perspectives, identify needs and collect convictions. 
These objectives are characterized by key indicators measured all along 
the manufacturing process and must be in the form of minimising or 
maximising indicators. For example, the objective could be “minimiza
tion of production cost” with the indicator “production cost”.

Step 2: modelling objectives

The second step involves modelling performance indicators with the 
measured process parameters. Three types of models can be distin
guished: knowledge-driven models, data-driven models and hybrid 
models (Madoumier et al., 2019). Knowledge-driven models, also 
known as mechanistic models, are based on the knowledge of one or 
more mathematical equations that simulate the performance indicators 
using data representative of the process. Data-driven models are 
empirical and based on experimental data. The concept is to learn from 
the data and establish relationships between them. This approach makes 
it possible to model complex systems that do not have known mathe
matical equations. Finally, hybrid models combine the two previous 
approaches; they combine one or more mechanistic and data-driven 
models in one hybrid model (Erdogdu, 2023; Madoumier et al., 2019). 
Hybrid models enable the integration of all available information about 
a process, encompassing both collected data and known equations. The 
aim is to compile all the knowledge available on a system and create 
synergies to improve the accuracy of the final model’s predictions 
(Sansana et al., 2021; Zhou et al., 2023)

This step will produce predictive models for each performance in
dicator. These models will then be used in the optimization step. The 
quality of the models and their prediction are therefore important.

Step 3: formulation of the multi-objective problem and constraints

The third step formulates the multi-objective problem, considering 
the indicator modelling and process constraints. The formulation step of 
the multi-objective problem is crucial to carry out the optimization and 
obtain realistic results. It involves identifying the problem’s search space 
by defining all the constraints associated with the process. After defining 
the constraints, the decision-maker (person who will use the results after 
optimization) chooses the optimization strategy he/she wants to pursue. 
Multi-objective optimization methods can be classified into three cate
gories. A priori optimization: the decision-maker intervenes upstream of 
the optimization process. He can assign a weight to each objective, 
transforming the multi-objective problem into a single-objective prob
lem. Interactive optimization: the decision-maker expresses his prefer
ences during the optimization problem-solving process. Integrating 
these preferences guides the search for optimal solutions through 
alternating calculation phases and dialogues with the decision-maker. 
This approach allows for a more dynamic and adaptable decision- 
making. A posteriori optimization: the decision-maker does not articu
late preferences before optimization, and there is no distinction between 
objectives. The decision-maker will select his “best” solution from the set 
of optimal solutions. This method provides flexibility in decision-making 
but may require more effort in post-processing to make the final choice 
(Alaya et al., 2007; Konak et al., 2006).

Step 4: solving the multi-objective problem

Fig. 1. Example of indicators defining the three dimensions of performance.
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The fourth step is dedicated to the solving of the multi-objective 
problem. Multi-objective optimization, unlike single-objective optimi
zation, returns a set of acceptable solutions that meet the defined ob
jectives. This set is also known as the Pareto front (Abakarov et al., 
2009). There are two resolution methods for multi-objective optimiza
tion: approximate method and exact method. Approximate methods 
enable good quality solutions to be obtained in a reasonable amount of 
computing time, but without any guarantee of optimality. Exact 
methods, on the other hand, guarantee optimal solutions for problems of 
reasonable size, but generally run into difficulties with more compli
cated applications. When the problem becomes more complex 
(increased number of objectives, variable dependency, etc), approximate 
methods are recommended to speed up the resolution process (Ehrgott & 
Gandibleux, 2000). The set of acceptable solutions obtained after 
running the resolution algorithm is derived from the notion of domi
nance among solutions (Belna et al., 2022). This notion means that 
optimal solutions, for which it is impossible to improve one objective 
without degrading at least one other (Boix et al., 2012), will be retained. 
The other solutions are dominated. Only the non-dominated solutions 
(optimal solutions) are used to constitute the Pareto front (Abakarov 
et al., 2009). The set of optimal solutions or Pareto front is often 
preferred over singular solutions because the decision-maker can choose 
from among all acceptable solutions (Konak et al., 2006).

Step 5: identification of the ideal solution

The fifth step consists in identifying, from the set of optimal solu
tions, the ideal solution based on the decision-maker’s preferences 
(Wang et al., 2022). To select an ideal solution on the Pareto front, 
several multicriteria decision-making methods are available. These 
methods formalize the decision-maker’s preferences to identify an ideal 
solution within the set of optimal solution returned by the resolution 
algorithm. The goal of multi-objective optimization is to identify a set of 
acceptable solutions, in contrast to the objective of multicriteria 
decision-making methods, which is to rank acceptable solutions and 
recommend one for potential implementation in the factory (Belna et al., 
2022; Wang et al., 2022).

3. The multi-objective data-driven approach in the food industry

This section will detail the main challenges in implementing multi- 
objective optimization in the food industry. In the food sector, most 
multi-objective optimizations focus on specific processing step, such as 
thermal treatments, but few address the overall manufacturing process 
(Abakarov et al., 2009; Belna et al., 2022). The limited development of 
global multi-objective optimization methods can be explained by the 
complexity of the food processes (interactions between various param
eters, interrelated sub-problems or steps, and non-comparable, contra
dictory objectives)(Wiecek & Gardenghi, 2009). The definition of the 
objectives, the modelling and the formulation of the multi-objective 
problem all depend on the field of application and the given problem 
(for example, making cheese is different from making crisps or canned 
soups). The implementation of steps 1, 2 and 3 given below is also 
challenging because of the consideration of variable raw materials, 

process constraints and the set of available data. Note that these latter 
must be of high quality in order to achieve a robust multi-objective 
optimization. The quality of the registered data can be checked using 
control charts, which ensure the manufacturing condition are stable. 
Automated sensors are preferred to human registration because of the 
risk of data reporting errors. When outliers are identified, thanks to 
mainly statistical methods and expert evaluation, they must be removed 
from the dataset before any other analysis. When data depend on human 
skills, the quality of the data is usually improved when staff is well 
trained and properly supervised and when the equipment is regularly 
checked and calibrated. These elements are generally part of quality 
management procedures.

3.1. Step 1: identifying indicators defining industrial performance

To determine the overall performance of the industry, it is essential 
to identify objectives that cover various performance dimensions. The 
challenge lies in simultaneously integrating all performance dimensions. 
To date, environmental indicators such as water or energy consumption 
are often included in performance targets, as factories may be regulated 
on these indicators. Their assessment and integration in optimization 
strategy have become major issues (Younsi & Louhab, 2017). The ob
jectives covering all performance dimensions are subsequently defined 
by industry-measured indicators. For example, Drofenik et al. (2023)
present the use of a process system engineering approach to improve the 
efficiency of the entire food supply chain at a national level, considering 
the three main criteria of sustainability, i.e. economic, environmental, 
and social criteria. For each criterion, the selected indicators are total 
profit as economic indicator; greenhouse gas emissions, food losses and 
waste, and amount of fertilizer used as environmental indicators; food 
self-sufficiency rate, percentage of land used for food and amount of 
kilocalories produced as social indicators. In their study, a compromise 
between the three performance aspects has been found through a 
multi-objective optimization method, integrating environmental in
dicators into performance considerations. Wang et al. (2022) propose a 
data-driven and multi-objective optimization approach to optimize 
complex processes in the chemical industry. For a combustion process in 
a power plant, turbine energy yield and total emissions of harmful 
pollutants were the two indicators to be optimized. Multi-objective 
optimization provides a set of solutions for increasing energy yield 
and reducing pollution.

While defining the full set of objectives is essential, it should be noted 
that a large number of objectives increases the complexity of the multi- 
objective problem, and consequently the time of resolving it. Optimi
zation algorithms used to solve multi-objective problems evaluate a 
large number of plausible solutions, which can increase computation 
times if the number of objectives rises (Ehrgott & Gandibleux, 2000; 
Wari & Zhu, 2016).

To identify a representative subset of objectives that reflects the 
overall performance of the industry, a compromise among all these 
objectives is necessary. To define this performance, all industry stake
holders must engage in discussions to articulate their various needs and 
perspectives. Indeed, since stakeholders may hold differing opinions, 
gathering these views is crucial for establishing a comprehensive 

Fig. 2. Summary of the steps involved in multi-objective optimization.
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understanding of what performance is in each food industry.
In this step, multi-objective optimization in the food industry is 

challenging due to the necessity of simultaneously addressing multiple 
performance dimensions, to handle conflicting objectives and to select 
representative indicators defining performance objectives.

3.2. Step 2: modelling performance indicators with data-driven approach

Implementing an optimization strategy invariably requires a 
modelling step to define the relationships between manufacturing pa
rameters and performance indicators (Madoumier et al., 2019). For 
systems such as food processing, it is challenging to define a mathe
matical equation describing all manufacturing steps (Belna et al., 2022; 
Li & Wu, 2022). There are some analytical equations to define some food 
transformation phenomena (heat transfer in heat exchangers, mass and 
heat transfers during drying, etc.) (Abakarov et al., 2009; Jeantet, 
Delaplace, & Brulé, 2011) but for most food processes there is no 
mechanistic model allowing its entire description. Thanks to the advent 
of Industry 4.0, data-driven modelling methods have emerged in the 
food industry offering unprecedented prospects (Shankarrao Patange & 
Bharatkumar Pandya, 2022). Most statistical methods rely on the 
assumption of linear relationships between variables and responses, 
which contrasts with the nonlinear relationships often observed in the 
real world (Ma et al., 2020). To overcome this limitation, some 
data-driven methods, like Machine Learning methods, have the ability to 
establish complex and non-linear relationships between measured pa
rameters throughout the processes without the obligation to have an 
equation defining this process (Garre et al., 2020). Machine Learning 
enables the prediction of future or unobservable data by obtaining in
formation on potential interactions between input and output parame
ters (Wan et al., 2022). However, Machine Learning models are often 
considered as "black-box" methods (Ma et al., 2020). These methods 
have strong predictive power, but their understanding and interpreta
tion are tricky and limited (Münch et al., 2023). Moreover, the use of 
Machine Learning models requires optimization of hyperparameters to 
calibrate models, at the risk of obtaining non-exploitable results. 
Hyperparameters are settings in a Machine Learning model that are set 
before the training process and control the model’s learning behavior 
and performance. This step is necessary for obtaining a realistic 
modelling but can be computationally expensive (Wan et al., 2022).

In this step, implementing multi-objective optimization in the food 
industry is challenging due to the need to establish complex relation
ships between process parameters and performance indicators, while 
also considering the available datasets.

3.3. Step 3: formulation of constraints on the overall process

The constraint formulation step aims at restricting the algorithm’s 
search space by considering the constraints of the process in order to 
facilitate the identification of feasible solutions. The feasible solutions 
are all the solutions calculated by the algorithm which respect the 
constraints, being optimal or not. Formulating constraints within the 
food industry represents a real challenge, primarily due to the need to 
accommodate variability in raw materials and accounts for human fac
tors throughout the production process, etc. Raw materials in the food 
industry can vary significantly in quality, availability, and properties, 
requiring adaptive and flexible process management. Additionally, 
human factors such as operator skills, decision-making, and lab facilities 
play a crucial role in food production management. These elements, 
among others, make it essential to develop a robust set of constraints 
that can address the conditions of the food manufacturing environment. 
All these constraints must be identified and considered before beginning 
the optimization step.

The complete list of constraints associated with the process step 
should be compiled in collaboration with the industrial experts. It de
rives from practical knowledge about the specific conditions and 

limitations of the production environment that are critical for accurately 
defining the optimization space for the algorithm. Without this exper
tise, the optimization space cannot be restricted and computation times 
increase considerably during optimization. The quality of definition of 
the optimization space is decisive for the algorithms to return relevant 
results. A well-defined optimization space allows algorithms to operate 
more efficiently, navigating through the optimization space with pre
cision and returning results that are both relevant and directly appli
cable to the process under study.

In this step, multi-objective optimization in the food industry pre
sents some challenges, as it requires precise and realistic formulation of 
the problem with the definition of the constraints, considering the 
process and raw material variabilities.

Implementing a multi-objective approach in the food industry to 
optimize overall performance could be a real asset in understanding the 
origin of deviations from performance objectives and improving 
manufacturing processes. Its use would also provide industries with a 
powerful decision support tool.

4. Conclusion and perspectives

The implementation of a multi-objective and data-driven approach 
appears as an appropriate way for optimizing the overall performance of 
food industries. Indeed, the food processing is a complex system due to 
the lack of available equations describing the overall process, the vari
ability of raw materials and equipment, the various relationships be
tween manufacturing parameters and the performance objectives that 
are often conflicting and specific. Such complexity requires the use of 
appropriate methods, and for this, the multi-objective approach would 
be ideal as it integrates the diversity of industrial objectives and is able 
to find compromise between conflicting objectives. By providing an 
optimized response to the set of objectives, this approach offers a stra
tegic response to the sector’s challenges while paving the way for 
innovative and sustainable solutions.

The modelling of objectives is an essential step in the multi-objective 
approach. The emergence of data-driven modelling methods helps 
overcome the lack of mathematical equations defining the overall pro
cess. Data-driven modelling with Machine Learning methods provides a 
more reliable representation of complex systems, thus enabling more 
realistic optimizations.

Hence, this article highlights the relevance of the multi-objective 
approach coupled with data-driven modelling in a context where the 
complexity of food systems requires new adapted methods. By empha
sizing the challenges of this approach in food industry, the article calls 
for a broader adoption of these methodologies in the food industry. The 
implementation of this approach promises not only a more efficient and 
balanced optimization of industrial performances and processes but also 
a significant contribution to the overall competitiveness and sustain
ability of the food sector.
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