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ABSTRACT

Regular patterns of vegetation are considered widespread
landscapes, although their global extent has never been es-
timated. Among them, spotted landscapes are of particular
interest in the context of climate change. Indeed, regularly
spaced vegetation spots in semi-arid shrublands result from
extreme resource depletion and prefigure catastrophic shift
of the ecosystem to a homogeneous desert, while termite
mounds also producing spotted landscapes were shown to
increase robustness to climate change. Yet, their identifica-
tion at large scale calls for automatic methods, for instance
using the popular deep learning framework, able to cope with
a vast amount of remote sensing data, e.g., optical satellite
imagery. In this paper, we tackle this problem and benchmark
some state-of-the-art deep networks on several landscapes
and geographical areas. Despite the promising results we
obtained, we found that more research is needed to be able to
map automatically these earth mounds from space.

Index Terms— Earth mounds, spotted landscapes, raised
fields, termite mounds, deep learning

1. INTRODUCTION

Regular patterns of vegetation are considered widespread
landscapes, although their global extent has never been es-
timated. They show a great diversity of shapes, including
labyrinths, strips, gaps and spots, the formation of which can
be explained by scale-dependent feedbacks between organ-
isms and limiting resources. Water as a limiting resource has
received particular attention in cases studied to date [1, 2, 3].
Territorial competition between colonies of social-insect
ecosystem engineers (termites in particular) has also been
shown to be another mechanism underlying the formation
of vegetation spots and gaps [4], with a distinct theoretical
framework [5]. Both mechanisms are not mutually exclusive.

Among the diversity of shapes observed in patterned
landscapes, spotted landscapes are the most frequent and
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widespread, and are also the best studied. Regularly spaced
vegetation spots in semi-arid shrublands result from extreme
resource depletion and prefigure catastrophic shift of the
ecosystem to a homogeneous desert [2, 6]. In addition, ter-
mite mounds producing spotted landscapes were shown to
increase robustness to climate change [7]. Thus, spotted
landscapes are of particular interest not only to foresee po-
tential consequences of climate change, but also to buffer the
effects of climate change by delaying catastrophic shift.

Although spotted landscapes have been studied mostly
in dry environments, they are also widespread in seasonally
flooded savannas. Both environments have in common a
strong constraint on ecosystem engineers: water is limited
in dry environments, well-aerated soil is limited in flooded
environments, and low soil fertility often characterizes both.
Similar processes may thus drive landscape patterns in both
environments and the aforementioned theoretical frameworks
may similarly apply. Spotted landscapes are often associated
with microtopographic heterogeneity: spots are earthmounds,
typically ranging from 1 to 30 m in diameter and 0.2 to 4 m in
height. Although present in dry environments, earthmounds
are of particular importance in flooded environments, where
even slight differences in elevation lead to highly contrasted
levels of the constraining resource (well-aerated soils). Thus,
understanding the drivers of microtopographic heterogene-
ity should help to account for the dynamics of most spotted
landscapes, in both semi-arid and seasonally flooded land-
scapes. Various origins have been proposed for the formation
of earthmounds, e.g., differential erosion, eolian deposition
of sediment, burrowing activity of mammals, nest construc-
tion by termites, past or current human agency (raised-field
agriculture), leading to a variety of regional names of these
landscapes in the literature, e.g., Heuweltjies, Nabkha, Mima
mounds, Murundus, termite savannas, raised fields [8]. In
many cases, several mechanisms may have been in play
successively, or may be in play simultaneously, making it
difficult to identify the original cause.

Whatever their origin, earthmound landscapes share com-
mon properties that enhance ecosystem functioning and thus
make them of particular interest for researchers in ecology in
the context of current global changes. The first property is
that each mound works as a fertility island [9, 10, 11, 12, 13].
Various mechanisms, not mutually exclusive, may account for



fertility islands. Feedback loops between short-range facilita-
tion and long-range competition for resources between indi-
vidual plants result in resource concentration under clumps of
vegetation [14]. Central-place foragers such as social insects
bring food to their nest, leading to the concentration of or-
ganic matter in or close to the nest. As a consequence, large
termite nests in termite savannas, for instance, have higher
contents of soil nutrients than the surrounding savanna soil,
with cascading effects on biodiversity and productivity [10,
15]. Raised-field agriculture is a current practice in some
parts of Africa, consisting in piling up topsoil and organic
matter to locally increase nutrient availability to crop, the con-
sequence of which is increased yield [16, 17]. Raised-field
agriculture has been extensively practiced in South America
by pre-Columbian civilizations [18]. Although this practice
has been abandoned for several hundred years in the Neotrop-
ics, vestiges of raised fields are still visible because the to-
pographic heterogeneity initiated by humans has been ben-
eficial to ecosystem engineers (termites, ants, earthworms,
plants) that have maintained resource concentration (and the
mounds themselves) through feedbacks ever since the fields
were abandoned [19, 12]. Earthmounds, as fertility islands,
increase biodiversity and productivity of the ecosystem. The
second property common to earthmound landscapes is the
regular spacing between earthmounds [10, 20, 21, 22]. The
effect of regular spacing on ecosystem functioning has been
little investigated, but it was shown that regular spacing of
termite mounds increased ecosystem productivity compared
to random spacing because it optimizes mound density [10].

The increasing ease of access to satellite images at reso-
lutions high enough to detect meter-scale landscape features
opens unprecedented opportunities to study regular patterns
of vegetation, and in particular spatial patterns of earthmound
landscapes, at the global scale. However, images have to
be visually checked and mounds individually labeled for ap-
plying point pattern analysis. Thus, characterizing spatial
patterns of earthmound landscapes at a global scale requires
labor-intensive manual processing. Automatic image process-
ing is thus needed in ecology to reduce manual labor and pro-
duce large sets of reliable data, in particular from remote sens-
ing sources. To do so, deep learning has become the refer-
ence methodology for identifying patterns in images (includ-
ing ecological patterns [23]), following the general trend in
computer vision and various application fields. Yet, applying
deep learning in environmental remote sensing raises some
challenges [24], especially the need for large training sets,
that can be countered with various strategies [25, 26].

The problem of extracting earth mounds from remote
sensing using deep neural networks has been already tackled
by a few studies. In [23], termite mounds are identified with a
simple CNN as circular shapes clearly visible in a DEM gen-
erated from LiDAR data. In [27], the problem is expressed
as an object detection task solved with RetinaNet using data
acquired with a GoPro camera. More closely related to our

Fig. 1. Sites in South America and Africa from which satel-
lite images were extracted, with illustration of the four cate-
gories of spotted landscapes. Images are samples from Maxar
WorldView-3 extracted from Microsoft Bing Maps.

work, [28, 29] process very high resolution satellite imagery
through CNNs, but no details have been provided on the
model and the experimental settings. The problem of auto-
matic earth mound identification from space using optical
imagery and deep learning remains still largely unexplored.

We aim here to fill this gap through assessing several
state-of-the-art deep networks for this purpose, considering
several kinds of landscapes and geographical areas. We show
that the problem is complex and requires further research.

2. MATERIAL AND METHODS

2.1. Study sites

The spotted landscapes we studied were located in South
America and Africa and were of four commonly recognized
categories (Fig. 1).

2.1.1. Termite savannas

Termite savannas feature large termite mounds (about 20 m in
diameter and 2 m high) that are regularly spaced and support
distinct vegetation compared to the surrounding area. Each
mound houses a single termite colony, with the nearest neigh-
bor over 50 m away. We selected sites in Bolivia (28), Brazil
(2), South Africa (8), and Zimbabwe (11). Another type of
termite savanna, recently discovered in Brazil, spans an area
nearly the size of Great Britain [30, 31]. Here, mounds are
closer together and result from millennia of soil excavation
from underground tunnels. Unlike typical termite nests, these
mounds lack a network of tunnels and chambers. We selected
29 sites from this unique landscape. Due to their distinct char-



Fig. 2. Examples of satellite images of a termite savanna in
Brazil illustrating the two levels of detection difficulty (easy
on the left image, difficult on the right image). Same scale
for both images. Satellite samples have been taken from Mi-
crosoft Bing Maps (Maxar WorldView-3 data).

acteristics, we classified them separately as “supercolony.”
Fig. 2 illustrates the size variations of termite mounds across
Brazil, leading to various levels of difficulty for the detection
task. Our study also highlights the significant differences in
termite mound structures across continents.

2.1.2. Heuweltjies

Although the origin of Heuweltjies is still debated (eolian de-
position of sediments or termite mounds), this type of land-
scape shares similarities with termite savannas (size and spac-
ing of the mounds in particular) [21]. This landscape type is
only known from south-western Africa. We selected sites in
South Africa (32) and Namibia (5).

2.1.3. Fairy circles

This landscape type looks like a negative of termite savan-
nas: spots are depressions of bare soil surrounded by vegeta-
tion. As for Heuweltjies, their origin is debated. The two best
supported hypotheses suggest that fairy circles result either
from vegetation-water feedbacks [32] or from the activity of
subterranean termite nests [33]. They are known from south-
western Africa and Australia. We selected sites in Namibia
(3) and Angola (2).

2.1.4. Archaeological vestiges of raised fields

Raised fields constructed by pre-Columbian civilizations in
South America took various forms [18], one of which is cir-
cular mounds. The vestiges of circular raised fields have a
spatial organization strikingly different from that of termite
savannas: mounds are less than a few meters in diameter and
usually (today) less than 0.5 m high; the nearest neighbor is
within a few meters and in addition to showing regular spac-
ing; they are often oriented in square grids [20]. We selected
93 sites in Bolivia following the map of Rodrigues et al. [34].

For each study site, we extracted a square area of c.
0.58 km2 using Microsoft Bing Maps at the highest resolution
(corresponding to Maxar WorldView-3 imagery). Following
visual assessment of the study sites, we considered only a
subset of the selected sites, ignoring images for which the
annotation was questionable.

2.2. Automatic image analysis workflow

2.2.1. Data preparation

We split our data in two parts following the nature of the
mounds, i.e. due to human factors or not. The first dataset,
called Raised fields dataset in the sequel, includes 67 images
with a spatial extent of 2560×2560 pixels. The mounds are
small and densely packed, making individual annotation ex-
tremely time-consuming. Therefore, we resorted to annotat-
ing the group of mounds as a single entity/instance.

The second dataset, called the Termites dataset, contains
76 images featuring four classes: termite savannas (contain-
ing only single termite colonies), supercolonies (a more com-
plex kind of termite savannas), fairy circles, and Heuweltjies.
Conversely to the first dataset, we annotated each mound in-
dividually, given the sparse nature of the mounds.

To prevent memory issues, we resized the images in the
Raised fields dataset to 1024×1024 pixels. For the Termites
dataset, we split the images into 640×640 tiles. The annota-
tions of the mounds in all the images were carried out using
Make-Sense.ai annotation tool [35].

2.2.2. Deep learning architectures

We aim to assess the performance of well-established deep ar-
chitectures for object detection in our specific context. We se-
lected one of the most recent models from the YOLO familly
[36], namely YOLOv8 [37] (with the original model, medium
size), as well as Faster R-CNN [38], using two different back-
bones: ResNet50 [39] and MobileNet [40].

The choice of the two backbones was done in order to as-
sess the efficiency of the models in a practical scenario, where
both accuracy and deployment time are significant. Let us
recall that YOLOv8 comes under the category of one-stage
detector models, where the images are processed in a single
pass, and the class probability prediction and bounding box
estimation happened simultaneously. Such a strategy leads to
faster deployment, but the model struggles with highly accu-
rate detection, especially for small objects. On the other hand,
we are considering Faster R-CNN, a two-stage detector. In
the first stage, the region proposals are generated, while in the
second stage, these proposals are fine-tuned and classified.
This makes the model highly accurate and more robust for
small object detection, but it comes at a higher computational
cost and thus a lower processing speed.



Fig. 3. Visual illustration of results obtained on the Raised
fields dataset: (a) Groundtruth, and detection maps generated
with (b) Faster R-CNN and (c) YOLOv8.

Fig. 4. Visual illustration of results obtained on the Termites
dataset (Heuweltjies class): (a) Groundtruth, and detection
maps generated with (b) Faster R-CNN and (c) YOLOv8.

2.2.3. Training protocols and evaluation

We rely on a standard evaluation protocol, and split our
dataset into a training set (80%) and a testing set (20%). All
the models are trained using AdamW [41] optimizer, with a
learning rate of 0.001. During training, the batch size has
been set to 16. The performance of the models is evaluated
using average precision and mean average precision at 0.5
IoU threshold (mAP50).

3. RESULTS AND DISCUSSION

Tables 1 and 2 respectively showcase the detection perfor-
mance on the Raised fields and Termites datasets. The high-
est reported values are boldened. Also, for both datasets, the
performance of YOLOv8 model is reported with and with-
out augmentation (as YOLOv8 was used as an off-the-shelf
method and the code supported automatic data augmentation).

It is observed that in case of the raised fields dataset, the
best performance is achieved with Faster R-CNN with the
ResNet50 backbone. While older, this method surpasses the
YOLOv8 model, even with augmentation. The reason could
be that the mounds in the images are relatively small (within a
bounding box), and YOLOv8 does not particularly specialises
in detecting small objects. On the contrary, YOLOv8 sur-
passes Faster R-CNN on the Termites dataset, probably due
to large size of mounds and lighter architecture.

We also report some qualitative results on the two datasets
in Figures 3 and 4. We can see that for the Raised fields
dataset, YOLOv8 tended to overpredict the number of mound

Table 1. Quantitative evaluation on the Raised fields dataset.
Faster R-CNN Faster R-CNN YOLOv8 YOLOv8

(ResNet) (MobileNet) (No Aug) (with Aug)
Overall mAP 51.4 44.3 28.8 42.8

Table 2. Quantitative evaluation on the Termites dataset.

Classes
Faster R-CNN Faster R-CNN YOLOv8 YOLOv8

(ResNet) (MobileNet) (No Aug) (with Aug)
Fairy Circles 16.7 29.3 78.8 85.7
Heuweltjies 54.8 55.1 37.4 37.6
Supercolony 12.5 25.7 23.5 58.9

Savannas 43.3 33.0 24.6 50.4
Overall mAP 31.8 35.8 42.9 58.2

Table 3. Ablation study to assess the impact of the number of
samples on the performance of YOLOv8 with augmentation.

Classes 40 Samples 50 Samples 60 Samples
Fairy Circles 77.2 88.7 85.7
Heuweltjies 20.5 36.9 37.6
Supercolony 10.9 20.8 58.9

Savannas 31.2 50.2 50.4
Overall mAP 34.9 49.1 58.2

areas w.r.t. Faster R-CNN, thus generating a lot of false pos-
itives. This could be due to difficulty in learning the smaller
size of mounds and confusing the ‘non-mound’ area with
those of mounds. For the Termites dataset, we see that both
models robustly localise the mounds for the Heuweltjies
class, though some smaller mound still go unnoticed. Deep
models dedicated to small objects [42, 43] should be consid-
ered for such specific settings.

Moreover, we also conducted an ablation study to assess
the performance when the number of training samples are de-
creased. To do so, we considered YOLOv8 model since it
is a more efficient model. As observed in Tab. 3, the accu-
racy decreases for some classes when the number of samples
is reduced from 60 to 50. The degradation of the results is
more noticeable when the number of training samples is fur-
ther reduced to 40. But even with only 40 samples, YOLOv8
is competing Faster R-CNN (see Tab. 2).

4. CONCLUSION

In this paper, we aim at detecting mounds from high-resolution
remote sensing satellite imagery. We distinguish between
artificial farming mounds (a.k.a. raised fields) and natural
ones. Using two popular models, namely Faster R-CNN and
YOLOv8, we found that YOLOv8 performed better for natu-
ral mounds, while Faster R-CNN was superior for the Raised
fields. Despite their effectiveness, geographical, spectral, and
spatial variability still poses challenges for perfect localiza-
tion. Future research will explore advanced deep learning
techniques and domain-invariant learning to improve model
transferability across different geographical locations.
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