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Transient colonizing microbes promote
gut dysbiosis and functional impairment
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Sunjae Lee1,2, Victoria Meslier 3, Gholamreza Bidkhori1, Fernando Garcia-Guevara1,4,
Lucie Etienne-Mesmin 5, Frederick Clasen1, Junseok Park 6, Florian Plaza Oñate 3, Haizhuang Cai1,
Emmanuelle Le Chatelier 3, Nicolas Pons3, Marcela Pereira7, Maike Seifert7, Fredrik Boulund 7,
Lars Engstrand7, Doheon Lee 6, Gordon Proctor 1, Adil Mardinoglu 1,4, Stéphanie Blanquet-Diot 5,
David Moyes 1, Mathieu Almeida 3, S. Dusko Ehrlich3, Mathias Uhlen 4 & Saeed Shoaie 1,4

Species compositionof thehealthy adult gutmicrobiota tends tobe stable over time.Destabilization of
the gut microbiome under the influence of different factors is themain driver of themicrobial dysbiosis
and subsequent impacts on host physiology. Here, we used metagenomics data from a Swedish
longitudinal cohort, to determine the stability of the gut microbiome and uncovered two distinct
microbial species groups; persistent colonizing species (PCS) and transient colonizing species (TCS).
We validated the continuation of this grouping, generating gut metagenomics data for additional time
points from the same Swedish cohort. We evaluated the existence of PCS/TCS across different
geographical regions and observed they are globally conserved features. To characterize PCS/TCS
phenotypes, we performed bioreactor fermentation with faecal samples and metabolic modeling.
Finally, using chronic disease gut metagenome and other multi-omics data, we identified roles of TCS
in microbial dysbiosis and link with abnormal changes to host physiology.

Thehumangutmicrobiota is amicrobial communitycontinuously colonizing
the host from early life. It is established over the lifespan of the host and
changes over time. Stability of the gutmicrobial ecosystem is associatedwith a
highdegreeofmicrobial richnessandaconsecutivediverse functionality.This,
in turn, confers a highdegree ofmetabolic plasticity allowing for themicrobial
production of a wide range of fermented metabolites with various beneficial
effects on the host1,2. Although the healthy adult gutmicrobiome composition
is stable and resilient, it can experience periodic or continuous perturbations
driven by external factors that shift the microbial colonization profile to a
transient state that can either undergo reversion to the initial profile or pro-
gression to a new stable community. In doing so, there may be changes in
functional redundancy and transition to alternative, possibly dysbiotic com-
munities which can then result in changes in host physiology3.

Understanding this transition and the impacts on the host requires
longitudinal sampling of gut microbiota of large populations together with
observations of changes in host physiology. Previously, several studies have
investigated gutmicrobial taxa andcompositional adaptations in early life and
childhood4–8. Although gut microbiome longitudinal studies have revealed

changes in the metagenome taxa over time and associated functional shifts9,
the ecological destabilization of the core gut microbiota, notably the under-
lying species and their functions, has been far less investigated. This might
provide a new perspective of understanding key community structure of
human gut microbiome, which cannot be captured by the core microbiota
defined by the sample frequency of cross-sectional study.

Here, we modeled microbial persistence in the human gut microbiota
using data from a longitudinal cohort from the healthy Swedish population
over a one-year period, identifying two distinct microbial populations –
persistent colonizing species (PCS) and transient colonizing species (TCS).
Interestingly, we found that PCS fostered richness, whereas TCS destabilized
the microbial community, such destabilization, known as Anna Karenina
Principle (AKP) effect10, likely leading to dysbiotic microbiome. We further
validated this species classification by expanding the longitudinal data by
including twoadditional timepoints over sixmonths andcomparing this data
set with two independent longitudinal gut microbiome published data sets
from different geographical regions. These analyses revealed that TCS rarely
growwell in the host, but they increase in disease populations and/or where a
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dysbioticmicrobiome is developing.An in-depth functional studyof PCS and
TCS will therefore uncover new physiological roles of human gut microbiota
inhealthanddisease, identifyingpotential pathologicalmechanisms for future
therapeutic intervention.

Results
Two distinct microbial populations with varying microbial per-
sistence identified using probabilistic model
In order to explore the stability of the human gut microbiome, we set out to
investigate the temporal changes in thehumangutmicrobiota compositionof
86 healthy Swedish individuals (Supplementary Table 1), at four time points

over a one-year period, sampling every three months (Fig. 1A). To this end,
we generated whole-genome deep sequenced shotgunmetagenomics data of
participants’ stool samples (30 million reads on average) (Methods). The
non-redundant integrated gene catalog for human gut microbiome (IGC2)11

was used to generate the gene countswith rarefactionof the aligned reads into
10 million reads to correct the biases of different sequencing depths (Meth-
ods). Using metagenomic species (MGS) as a reference to identify the gene
clusters representingmicrobial species, we profiled themicrobial populations
of these samples at the MGS level detecting 1413 microbial species (out of a
possible total of 1989 MGS in the catalog) in our longitudinal cohort
(Methods).
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Fig. 1 | Persistent and transient colonizing species determine the stability of the
gutmicrobiota. ACharacterization of the temporal changes in the gutmicrobiota in
86 Swedish healthy individuals (Swedish wellness cohort, S3WP) over the course of a
year (total of 344 samples) with an estimation of the proportion of persistent species
over the time points. B Species retention probability estimated by Kaplan–Meier
statistics. Based on the presence/absence events of a given species among the four
sampling points, we estimated the retention probability from Kaplan–Meier esti-
mators. As examples, we show Kaplan–Meier plots of four different species with
varying retention probabilities (e.g.,Veillonella infantium, Bacteroides vulgatus, and
Prevotella copri).CModeling the temporal changes of species, referred to here as the
microbial flux, by Markov chain models (MCMs). Based on the models, the species
transition probabilities of consecutive sample points from absence to presence
(inflow) or vice versa (outflow) were estimated (left top); dotted lines with a cross
and gold arrows represent failure and success in detecting a species, respectively (left
bottom). Next, inflow vs outflow score plot (right panel) identifies persistence
colonizing species (PCS) (species with higher inflow (>0.3) and lower outflow (<0.3);
e.g., Agathobaculum butyriciproducens and Blautia obeum), transient colonizing
species (TCS) (species with lower inflow (<0.3) and higher outflow ( > 0.3); e.g.,
Veillonella parvula and Hungatella effluvia) or species that colonizes stochastically

(e.g., Escherichia coli and Streptococcus salivarius). D Inflow and outflow scores of
PCS and TCS species, together with taxon (those with unclassified taxa not shown).
E Negative correlation of abundance changes between persistent colonizing species
(ΔPCS) and transient colonizing species (ΔTCS) between consecutive sample points
(spearman’s ρ =−0.334, p-value < 0.05). F Co-abundance network analysis identi-
fied negative correlations of abundances between PCS and TCS microbes (blue and
red edges represented negative and positive Spearman’s correlation coefficients,
respectively). G Decreased intra-individual Jaccard similarity of TCS-enriched
individuals. We identified TCS-enriched individuals among 86 healthy individuals
based on scaled total abundance of TCS species by Z-score (Zt andZt+1) and itsmean
between sample points (µTCS = ½ × (Zt+ Zt+1) > 2). TCS-enriched individuals were
less similar between visits than TCS-depleted individuals (Student’s t test p-
value < 0.01). H Abundance changes of TCS species between consecutive sample
points (ΔTCS) over themean value (μTCS). Unlike PCS species, the abundance of TCS
species substantially changed between consecutive sample points (|ΔTCS|< 2)
according to the increase in mean values (μTCS). I Correlation between changes in
PCS species abundance (ΔPCS) and richness changes (spearman’s ρ = 0.206, p-
value < 0.05). For boxplots, Q1, median, and Q3 quantiles of given boxes were
denoted, together with outliers shown as dots.
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We compared the number of detectedMGS for individuals at different
time points, demonstrating around 86% of species were found to be shared
between consecutive visits (Fig. 1A). In addition, across all 86 individuals,we
traced the retention periods of individual MGS using Kaplan–Meier esti-
mates, referred to here as the species retention probability (Fig. 1B and
Methods). Interestingly, we observed different ranges of retention prob-
ability among detected MGS. For example, Bacteroides vulgatus and Pre-
votella copri, well-known gut commensals, had the highest retention
probability, whereas some pathobionts or microbes more usually derived
from different origins than the gut such as oral cavity (e.g., Veillonella
infantium) had reduced retention probabilities. These species retention
probabilities were correlated with speciesmean abundance (Supplementary
Fig. 1A, B), but associations did not appear significant for any individual
species based on Cox regression (p-values > 0.1, Supplementary Fig. 1C)
(For more detailed information of longitudinal metagenome data – Sup-
plementary Fig. 5).

Next, we investigated themicrobial persistence turnover of the human
gastrointestinal (GI) tract (referred to hereafter as the microbial flux) by
applying Markov chain models (MCMs) to the MGSs identified in our
current cohort (Methods).This analysis enabledus to estimate the transition
probability of individual species from presence to absence (outflow prob-
ability) and vice versa (inflow probability) across different sampling times.
We identified two groups of species preferably transiting from presence to
absence or from absence to presence, thereby transient or persistent colo-
nizing in theGI tract; for brevity, we term them “transient colonizing species
(TCS)” and “persistent colonizing species (PCS)”, respectively (Fig. 1C, D
and Supplementary Table 2). Clearly, declaring a species absent or present
depends on the detection threshold, which is in turn determined by
sequencing depth. We performed the analysis at three sequencing depth
levels of 5, 10, and 15million reads, and observed largely concordant results
(Supplementary Fig. 2). For instance, 35 PCS (90%)were detected at both10
and 15 million reads levels, whilst 4 and 6 species were detected only at
former and latter, respectively. Similar results were observed for TCS: 447
(88%) were detected at both levels, while 62 and 27 species were detected at
10 and 15million reads only. Overall, both PCS and TCS probabilities were
highly correlated at the three different depth levels, with a slight reduction
for TCS at 5 million reads (Supplementary Table 2). To better confirm our
findings of absence or presence of given species, we checked strain-
resolution profiles for some representative species to check if PCS and TCS
species retained similar strain also.Weestimatedrelative abundanceprofiles
ofDorea formicigenerans (PCS species) andRaoultella ornithinolytica (TCS
species), which has substantial number of known strain reference genomes.
Based on most closely related strain genomes of those two species, we
checked strain abundance profiles by StrainGE tool12, which deconvolves
strain mixtures using single nucleotide variant information, and found that
Dorea formicigenerans, PCS species, shared similar strain profiles between
consecutive visits, assuring high persistence of PCS species (Supplementary
Fig. 3). However, TCS species did not share similar strain profiles, implying
that TCS species tried spontaneous colonization, but failed to keep same
strains to be colonized between consecutive visits.

It is important to know whether there is any link between these two
groups of microbial species, so next we set out to determine whether there
were any correlations between TCS and PCS populations. Interestingly, we
observed that the changes of total TCS abundances by time among 86
individuals (ΔTCS) were inversely correlated with those of total PCS (ΔPCS),
implying possible negative inter-bacterial interactions between PCS and
TCS populations (Spearman’s correlation =−0.334, p-value = 4.6 × 10−8;
Fig. 1E).Wealso confirmed this negative correlations betweenTCSandPCS
populations using cross-sectional datasets from current Swedish wellness
cohort, UK twin cohort13 (Project ID: PRJEB9584), andGermany colorectal
cancer cohort14 (Project ID: PRJEB27928) (R ≤−0.193, p-values ≤ 0.005)
(Supplementary Fig. 4). Further, co-abundance network analysis showed
that microbial abundances of individual PCSs and TCSs were inversely
correlatedwith each other, and clustered into their owndistinct groups (Fig.
1F). Notably, however, there were a few exceptional cases where some PCS

microbes, such as Blautia obeum, Ruthenibacterium lactatiformans, Oscil-
libacter sp. KLE 1728, andRomboutsia timonensis, were positively correlated
with TCS microbes. Importantly, these particular PCS microbes formed a
distinct cluster independent of the primary PCS cluster.

We next stratified individuals into TCS-enriched (μTCS > 2;N = 31) and
-depleted (μTCS <−2; N = 37) groups and traced their microbiome changes
between consecutive visits (Fig. 1G,H). There was a decrease in the similarity
of the gut microbiome species composition between sampling timepoints in
theTCS-enriched group (Wilcoxonone-sided test p-value = 0.0034; Fig. 1G),
indicating a destabilization of the structure of the gut microbiome associated
with increased numbers of TCSmicrobes. This tendency was increased with
higher mean values of TCS abundances as their abundance shifts by visits
(|Δ| > 2) were increased (Fig. 1H). However, PCS-enriched individuals
(μPCS > 2)maintained their gutmicrobial compositionbetweendifferent time
points (Supplementary Fig. 5G). Notably, increasing abundance of PCS was
correlated with increasing gene richness of given gut microbiota, which is
known to be related to more stable microbial communities, and thus
commensal conditions. This suggests that PCS may be beneficial to host
health (Spearman’s correlation = 0.206, p-value = 9.0 × 10−4; Fig. 1I and
Supplementary Fig. 5H).

Functional and phenotype features increased the survival of
persistent colonizing species within the host niche
To better understand the mechanism underlying PCS and TCS survival
within the host niche, we performed functional mapping of all detected
species, including KEGG orthologs, PFAM protein domain, CAZyme,
antiSMASH, and JGI GOLD phenotypes, and associated annotated func-
tions to PCS and TCS species (Methods). Our functional analysis indicated
that PCS were enriched in core metabolic processes, essential for energy
homeostasis and for biosynthesis of macromolecules (i.e., amino acids,
carbohydrates, and fatty acids; Fig. 2A, Supplementary Fig. 6 and Supple-
mentary Tables 3, 4, Methods). They were also enriched in: (i) processes
associated with increased survival, such as sporulation, cobalamin bio-
synthesis (CobS), and sirohydrochlorin cobaltochelatase (CbiK); (ii) sec-
ondary metabolites (bacteriocins); (iii) proteins related to starch and plant-
based fiber use (CAZymes GT5, GH13, GH51); and (iv) anaerobic phe-
notypes (Supplementary Table 3). By contrast, TCS were enriched in
accessory metabolism, such as biodegradation of xenobiotics (benzene,
toluene, ethylbenzene, and xylenes - BTEX), paralleled by that of ABC
transporters, possibly involved in the import of xenobiotics, suggesting that
exposure to pollutants may promote their appearance (Fig. 2B and Sup-
plementary Table 3). They were also enriched in (i) active sugar transport
(i.e., phosphotransferase system (PTS); (ii) virulence factors (VFs) and
trigger factors; (iii) putative competence protein ComGF and type IV
secretion systems, the latter twobeing importantmechanisms for horizontal
gene transfer (Fig. 2A, B and Supplementary Fig. 6C, D)15. Therefore, PCS
are equipped with functions associated with energymetabolism that benefit
both the host and interactions with other PCS microbes, whereas TCS are
equipped with functions that hijack or disturb host or neighboring com-
mensal microbes.

As for the key differences in the functional and phenotypic differences
betweenPCS andTCS,wehypothesized that PCS andTCSmay differ in their
growth rates in thehost niche, the formeroutgrowing the latter.We tested this
hypothesis in three ways. First, we estimated species growth rates from
metagenomic samples by Growth Rate InDex (GRiD) analysis16 (Methods).
For this, we stratified individuals into groups, enriched in PCS or TCS and
found that in both groups GRiD scores of PCS were higher than TCS; they
were thehighest amongPCS-enrichedgroup (Fig. 2C,D). Second,weassessed
species growth rates in bioreactors inoculated with healthy human stool
samples, viaGRiDanalysis (Fig. 2E,F,Methods).Weobserved that thegrowth
of PCS increased significantly over 24 h, whereas that of TCS did not change,
demonstrating thatPCScouldoutgrowtheTCS.Third,weusedgenome-scale
metabolic modeling (GEM) to simulate species growth rates17–20 on four
different common diets (high fiber and high protein for plant- and animal-
based diets) for 34 or 30 highly prevalent TCS and PCS, respectively
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(see Methods). The predicted growth rates of the selected PCS were sig-
nificantly higher than of TCS (Fig. 2G, H and Supplementary Table 5).
Furthermore, reaction essentiality analysis indicated that the GEMs of TCS
were significantly more dependent on the substrate, often displaying amino
acid auxotrophy (Supplementary Figs. 7 and 8). We hypothesize that the
differences in growth rates and substrate dependence between PCS and TCS
could underlie the directionality of the gut microbiome dynamics we report.

Consistentobservationsof inflowandoutflowprobability inother
independent longitudinal cohorts from different geographical
regions
To test whether the PCS and TCS assignments of species deduced from the
analysis of the four time points in our discovery cohort persist over time, we
collected and analyzed two additional time points with six months intervals
from the 67 individuals of the same cohort (validation cohort) (Fig. 3A, B).
Furthermore, to examine whether the assignments defined from a Swedish
study are also found in other, geographically different regions, we analyzed
two publicly available longitudinal cohorts, from Italy and USA21,22 (Fig.
3C–F). We generated the MGS profiles using the same gene catalog and
downsizing threshold of 10 million reads for unbiased comparison. In all
cases, for both TCS and PCS tendency (i.e., inflow and outflow) were sig-
nificantly correlated with those found for the first four time points of our
longitudinal cohort (Spearman’s correlation coefficients >0.56 for all com-
parisons). We conclude that PCS and TCS microbes are largely conserved
and are thus a global feature of the human gut microbiome.

Transient colonizing species are the biotic driver of themicrobial
dysbiosis in chronic diseases
In healthy individuals and stable conditions, it is likely that indivi-
duals’ gut microbiome would be populated with PCS and lacking in
TCS, as we observed from representative physiological and functional

properties, including growth rates and metabolic capacities. There-
fore, we then questioned how PCS and TCS could shape the gut
microbiome in dysbiotic conditions and drive the gut ecosystem to a
low fitness composition. We first investigated acute changes in the gut
microbiome driven by antibiotic treatment3. Based on shotgun
metagenomics of 24 samples from 12 individual before antibiotic
administration (meropenem, gentamicin, and vancomycin) and
following 7 days administration, we identified enriched and depleted
species (Fig. 4A) (Wilcoxon rank sum two-sided tests, p-values
< 0.05). We found significant depletion of several species following
antibiotic administration, leading to low diversity in antibiotic-
treated individuals. Interestingly, we found that after 7 days of anti-
biotic treatment, host gut microbiomes were significantly enriched in
TCS (hypergeometric test, p-value = 0.046), whereas there was a
parallel depletion of 79% of PCS species in the same communities
(hypergeometric test, p-value < 10−15) (Fig. 4A, D). Therefore, we
identified that acute perturbations of the gut flora can significantly
impact on the microbial flux of TCS microbes. We therefore hypo-
thesize that the prolonged transition state of microbial flux in TCS
microbes could be a basis for the initiation or transition to a dysbiotic
state in chronic diseases.

To test this hypothesis, we profiled shotgun metagenomic cohorts of
diseases associated with gut dysbiosis, including cardiovascular disease,
type-2 diabetes, liver cirrhosis and colorectal cancer14,23–25 (Supplementary
Table 6). Intriguingly, we found all the microbial species enriched in dis-
eased conditions (Wilcoxon rank sum two-sided tests, p-values < 0.01)
showed significant overlap with TCS microbes identified here (Chi-square
tests, p-values < 0.01) (Fig. 4B, C, E–H). In summary, we found that all the
enriched species in both acute and chronic conditions of dysbiosis were
likelyTCS, thusbeingpotential initiators anddrivers of disease pathogenesis
(Fig. 4).

Fig. 2 | Functional and phenotype characteristics differ between persistent
colonizing and transient colonizing species. Radar plots showing the fraction of
biological functions or pathways enriched in either (A) core metabolism, virulence,
or mobile genetic elements (MGEs) or (B) accessory metabolism, tested by linear
mixed-effects models (adjusted p-value < 10−3). Persistent colonizing species (PCS)
were enriched in core metabolism whilst transient colonizing species (TCS) were
enriched in accessory metabolism (e.g., BTEX contaminants). We estimated phy-
siological properties of PCS and TCS by growth rate estimations using GRiD scores
(C–F) and genome-scale metabolic modeling (G,H). We estimated GRiD scores of

PCS andTCS from (C) individuals withmicrobiomes highly enriched in PCS species
and (D) individuals with microbiomes highly enriched in TCS and observed higher
GRiD scores for PCS. In additional experiments investigating bioreactor fermen-
tation of human faecal samples, we observed higher GRiD scores for (E) PCS after
24 h, compared to original faecal samples, whereas (F) TCS GRiD scores remained
unchanged at 24 h.We also predicted (G) the growth rates and (H) their variance for
PCS and TCS using the representative genome-scale metabolic models and found
higher growth rates and less growth variances of PCS. For boxplots, Q1, median, and
Q3 quantiles of given boxes were denoted, together with outliers shown as dots.
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Transient colonizing species were strongly associated with
abnormal changes of host physiology
Aswe observed the potential role of TCS enrichment in short term and long
termdysbiotic gutmicrobial communities, we then questioned the potential
implication of changes in TCS abundance on the physiological changes that
could lead to disease pathology in dysbiotic conditions. To get a hint, we
used previously generated serum proteomics and metabolomics data,
together with clinical biochemistry and hematology data, from the same
Swedish longitudinal cohort used earlier to identify the PCS/TCS clusters26.
Here we performed an association study with PCS and TCS populations
using linearmixed-effectmodels (Methods) (Fig. 5A–Cand Supplementary
Tables 7–9). First, we observed that PCS-enriched individuals were likely to
have better exercise capacity (muscle mass), whereas those enriched TCS
species were likely to have higher risks of heart failure (BNP marker), car-
diovascular diseases (ApoA1), and immune disorders (Erythrocyte counts)
(Fig. 5A and Supplementary Table 7). Next, we investigated serum pro-
teomics associations with PCS and TCS population changes (Fig. 5B and
SupplementaryTable 8). In linewithfindings from the clinical biochemistry
data set, we found that immune-related proteins, such as MSR1, CDCP1,
MCP1, and GZMA, were decreased in individuals with higher TCS popu-
lations (Fig. 5B). Interestingly, individuals with higher PCS populations
were enriched in ITM2A protein, a chondro-osteogenic differentiation
marker27,28, as well as playing a role in T cell activation and myocyte
differentiation29,30, thereby suggesting systemic changes in host physiology
and immunity.

In addition, we investigated serummetabolites associatedwith changes
of PCS and TCS populations (Fig. 5C and Supplementary Table 9). As
expected from the functional and phenotypic analysis, the individuals with
higher PCS populations were enriched with energy metabolites that fuel
biosynthetic pathways, such as glutamine and succinic acid. These indivi-
duals also showed decreased levels of toxic compounds, such as hippuric
acid (HA) and indoleacetic acid (IAA). Notably, these compounds have
been predicted to penetrate the blood-brain barrier31 and affect neurological
disorders32. In contrast, individuals with higher TCS populations were
enriched in toxic compounds, including pelargonic acid (herbicide pre-
cursor), phosphoric acid (respiratory irritant), and O-cresol (uremic toxin).
In addition, TCS species had metabolic pathways catalyzing toxic com-
poundsmore prevalently, such asHA and IAA, as compared to PCS species
(Fig. 5D). Therefore, TCS microbes that have the ability to catalyze toxic

compounds potentially producing systemic toxins, thereby driving and
potentially even initiating disease pathology in multiple tissues.

Discussion
Over the last 15 years, changes and shifts in the composition of the gut
microbiome have been associated with an ever-increasing number of dis-
eases at almost all body sites. These changes and shifts include everything
from the dominance of an individual pathogenic species to loss ofmicrobial
diversity or substantive alterations in the species composition of these
communities33. However, although different environmental factors that
could influence these shifts have been identified, less is known about the
kinetics and dynamics of these shifts. In this study, we have used long-
itudinal metagenomic data from healthy individuals to analyze the shifts in
microbial communities, identifying species, events and microbial functions
that potentially play a key role in movement between different community
profiles.

Previous studies reported the temporal stability of gut microbiome
composition in an individual22,34,35. Given the known fluctuations in gut
microbiome composition resulting from environmental factors, this implies
oscillations in species composition around an average value. The integrative
analyses of temporalmicrobiome changes in a longitudinal study of healthy
individuals thatwehaveperformed in this studyhave shown the existence of
directionality in these compositional variations: species canbe clustered into
two populations with a tendency to either increase/maintain or decrease in
abundance over time, termed persistent or transient colonizing species,
respectively. As such, PCS-dominated microbiomes are associated with a
stable microbial community with minimal changes, whilst TCS-dominated
microbiomes are associated with changing communities that show little
evidence of equilibrium. Given these features, microbial communities rich
in TCS are likely to be either inherently unstable or in a state of transition
between two different climax communities, whereas those rich in PCS are
likely to be stable climax communities. This observation is in line with AKP
that explains microbiome in normal condition tends to be resilient and
perturbations can causenewequilibriumstatus, and likely leads todysbiosis.
Moreover, our findings could provide a distinguish between the key species
drive the destabilization of the gut microbial community.

Importantly, transient colonizing species include most of the known
gut-associated pathobionts, while persistent colonizing species are essen-
tially devoid of these species. In linewith this, the function-based analysiswe

Fig. 3 | Consistent observations of TCS and PCS
based on correlation of inflow/outflow prob-
abilities in different sample times and cohorts
across different countries. Inflow (A, C, E) and
outflow (B, D, F) scores estimated from Swedish
wellness (S3WP) discovery cohort of four visits were
further validated by comparison with those from
(A, B) two additional time points from the same
S3WP cohort (validation cohort), C, D the Amer-
ican HPFS cohort and E, F the Italian DINAMIC
cohort. We compared inflow scores and outflow
scores between different datasets and found sig-
nificant correlations with each other (Spearman’s
correlation coefficients >0.56 and p-values < 10−15

for all comparisons).
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carried out indicates that transient colonizing species potentially have a
general negative impact on host physiology, as they have enriched accessory
metabolism and secretion of virulence factors. Most interestingly, transient
colonizing species tend to be enriched in different diseaseswhile, in contrast,
persistent colonizing species tend to be enriched in healthy individuals. We
suggest that the tendency for the former todecrease and the latter to increase
in healthy individuals is a previously unrecognized facet of the gut micro-
biome homeostasis.

The transient colonizing species tend to be facultative anaerobes with
an oral origin (e.g., Streptococcus spp36.). This observation suggests that the
highmicrobial flux seen in some dysbiotic communities and disease states is
due to an increase in oralmicrobial transmission to the gut, possibly due to a
decrease in gut microbiome resilience. This decreased resilience could be
due to a number of different events, including sudden environmental
changes or antibiotic treatments. Under these circumstances, the gut
microbiome is repopulated with species transiting from the oral cavity.
However, due to the significantly different environment in the gut, these
species will have a lower competitive fitness than more normal gut tenants,
meaning that their residency is transient in nature, unless other factors (i.e.,
host genetics/responses/treatments etc) have an impact. Notably, enrich-
ment of oral species in the gut has been observed in several diseases37–39, and
we suggest that increased mouth to gut microbial flow could be one of the
global features of dysbiosis. However, it is also notable that some transient
colonizers of gut origins also showed to be facultative anaerobic (e.g.
Enterococcus spp.)40 and autotrophic (e.g.Clostridium spp.), which could be
the reason on the lower rate of colonization in normal condition.

We have described the temporal dynamics of the gut microbiome
through the discovery of transient colonizing and persistent colonizing
species. The enrichment of persistent colonizing species in healthy popu-
lations is potentially due to their involvement in the degradation of storage
carbohydrates, such as starch and fiber, which may account for their higher
persistence. Similarly, these processes are also likely to lead to higher levels of

short chain fatty acids and vitamins41, all of which have previously been
shown to be of benefit to the host, providing both nutrition as well as
regulating inflammation42. Thus, those communities dominated by PCS
generally are commensalism,whilst thosedepleted inPCSanddominatedby
TCS aremore generally associatedwith dysbiosis communities and diseases.

However, even though we associated PCS species with health benefits,
abnormal increases of PCS species can be associated with disease patho-
genesis. For examples, thereweremany short-chain fatty acids (SCFAs) and
lactate-producers among PCS species, including Ruthenibacterium lactati-
formans, but excessive production of lactate and SCFAs has been associated
with many different diseases, including lactic acidosis, small intestinal
bacterial overgrowth (SIBO) and neurodegenerative diseases like Parkin-
son’s diseases43–45. Therefore, investigation of PCS species with health
benefits should be cautiously conducted.

In this study, we considered two mechanisms of TCS species enrich-
ment in disease. First, the TCS species were enriched in competence
mechanisms, facilitating import of genetic elements such as AMR, possibly
conferring selective advantage in the gut through acquisition of genes via
horizontal gene transfer. Enrichment of drug efflux mechanisms in TCS
species might also confer resistance to antibiotics and other medications
used in disease treatments, as well as to otherwise toxicmetabolites. Further
duplication of genes via these mechanisms would lead to overexpression of
other genes, resulting in increases in otherwise tightly regulated factors or
virulence genes. Second, the TCS species may plunder nutrients from the
host, for example by utilizing simple monosaccharides to increase their
abundance, and thereby depleting these metabolites for the host and other
PCS microbes.

The significance of these findings in the human host can be seen when
we look at the balance of PCS andTCS species in the diseased individual. The
increased abundance of TCS species and their related metabolites are
reflectiveof amoreunstablemicrobiome that ispotentially transitioning from
a healthy to a diseased pathobiome. Whether the increase in TCS microbes
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of dysbiotic microbiome with the blooming of TCS microbes. D–H we showed
significant TCS overlaps with enriched MGSs in dysbiotic conditions, compared to
the depletedMGSs -D antibiotics,E cardiovascular disease,F type-2 diabetes,G liver
cirrhosis, and H colon cancer (Chi-square tests p-values < 0.01).
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represents a transitional state, or whether they represent a permanent
pathological community is the key question. Given the lack of longitudinal
data in diseased individuals, it is not possible to say from this study whether
the increased numbers of TCS species is a transient event in amove to a new,
dysbiotic but stable community, or whether it represents a new, unstable
community itself. Given the association of disease-linked metabolites with
TCSmicrobes, it is likely that a combinationof the two is likely; the increasing
abundance of TCS microbes likely represents an ongoing move from a
eubiotic, balanced and healthy pathobiome to a progressively worsening,
disease associated pathobiome. Thus, instead of looking for specificmicrobes
or looking at a cross-sectional, blanket change in microbial diversity, this
study indicates thatbydeterminingchanges in the relativeproportionofPCS/
TCSmicrobes, it would be potentially possible to not only predict disease, but
also to track disease progression in chronic diseases, assessing the efficacy of
treatments, and predicting the rate of progression or any potential dete-
rioration in status. However, we need to carefully consider the possibility that
many unknown microbes were not captured due to the limitations of gene
catalog references,which canbedetermined in eitherPCSorTCSmicrobes in
other cohorts. In addition, bioreactor fermentation experiments of PCS and
TCSgrowths should be replicated formanydonors,whichwould increase the
understanding of inherent property of PCS and TCS species, such as growth
and fermentationproducts.Otherwise, further in vitro experiments of growth
rates of specific PCS and TCS species needs to be carefully performed to
elucidate their differential characters in growths. We also should note that
there could be possibilities that passenger bacteria, that are not among the
TCS or PCS, and can be associated with disease pathogenesis when they are
depleted and requires more in-depth investigation.

Methods
Swedish wellness study population, sample collection, extrac-
tion, library prep and sequencing
The Swedish wellness study (S3WP) is an ongoing prospective cohort
study based on the Swedish CArdioPulmonary bioImage Study

(SCAPIS) with 30,154 individuals enrolled at ages between 50 and
64 years recruited from random sampling of the general Swedish
population. A total of 86 healthy individuals were recruited in the study
and followed longitudinally for two years. Examinations in SCAPIS
include imaging to assess coronary and carotid atherosclerosis, clinical
chemistry, anthropometry, and extensive questionnaires, as previously
described46. All participants provided written informed consent. The
study protocol conforms to the ethical guidelines of the 1975
Declaration of Helsinki.

For the time points 5 and 6 of microbiome data for the Swedish
Wellness study, samples from 67 individuals were collected. Total genomic
DNA was extracted with the MagPure Stool DNA LQ kit from Magen
Biotechnology Co, Ltd. To each tube were 600 ul ATP/PVP, 600 ul PCI and
MagPure bead added. The samples were bead beated in a FastPrep 96 at
1600 rpm for 1min. The samples were incubated at 65 °C for 20min and
thereafter centrifuged for 3min at 14,000 × g. 340 ul of the upper phase of
each samplewere transferred to a deep-well plate andplaced in a SP960.The
following reagent plate were prepared and placed in a SP960, RNaseA 10 ul
/well (15mg/ml), Reagent mix 640 ul/well (MagPure Particles N 30 ul,
Proteinase K (20mg/ml) 20 ul and Buffer MLE 590 ul), GW1 (650 ul/well),
75% Ethanol (1,1ml/well) and EB buffer (100 ul/well). Sequencing was
performed by the MGI DNBSEQ-T7 and the MGI DNBSEQ-G400 and
checked sequencing depths (>10 million reads) for further metagenome
analysis.

Quality control/normalization of gene counts and species abun-
dance profiling
We filtered out human reads and then mapped metagenomic data on the
human gut gene IGC2 catalog by using the METEOR suite47. Based on the
aligned reads, we estimated the abundance of each reference gene of the
catalog, normalizing multiple mapped reads by their numbers and sum-
ming up normalized counts for a given gene. Reducing the variability by
sequencing depths, gene count values were downsized into 10million reads
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per sample; and any samples less than 10 million mapped reads were
excluded from our dataset. Normalized gene counts were used for the
quantification of metagenomic species (MGS) abundance using IGC2
defined species48 (https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.
15454/FLANUP) and R momr (MetaOMineR) package49. MGS abun-
dances were estimated by the mean abundance of their 100 ‘marker’ genes
(that is, the genes that correlate the most altogether). If less than 10% of the
‘marker’ genes were seen in a sample, the abundance of the MSPs was
set to 0.

Functional annotations of the human gut microbiome gene
catalog
Based on blastp alignment (e-value = 10−5), the IGC2 catalog was annotated
for the Antibiotic Resistant Determinants (ARD) of Mustard database (v1.0)
(http://www.mgps.eu/Mustard/)50. Carbohydrate-active enzymes (CAZymes)
family of the IGC2 catalog was annotated with Hidden Markov Models
(HMMs) built from each CAZy family51, following a procedure previously
described for other metagenomics analysis52. KEGG orthology terms of
IGC2 proteins were annotated using Diamond53 against KEGG database
(version 82). Virulent proteins of PATRIC54,55 were annotated with blastp
against IGC211. Phenotypes of MGS were manually checked based on
JGI-GOLD phenotype of annotated taxa (organism metadata)56. Standalone
anti-SMASH program (ver. 5) was used to identify biosynthetic gene clusters
(BGCs) of MGSs57.

Modeling temporal changes of normal gut microbiota
during a year
First, we chose samples with sequential visits of given subjects and counted
the presence/absence of all detected MGSs. To decide the detection limit
here, we fitted all non-zero abundance of MGSs into gamma distribution
after per-million scaling and log2-transformation using R fitdistrplus
package. Based on estimated shape and rate parameters from fitted gamma
distribution, we counted species presence only when its abundance excee-
ded a percentile (>1%) based on the gamma distribution. Presence/absence
profiles were fitted into a two-state Markov chain model (i.e. states of pre-
sence and absence) to estimate state transition probabilities between pre-
sence and absence (Rmarkovchain package). We did not include species of
0%and100%prevalence (i.e.,Blautiawexlerae,msp_0076) toMarkov chain
model.Herewe estimated inflowprobability of state transition fromabsence
to presence, and outflow probability of state transition from presence to
absence. For the estimation of species-retaining probabilities, we modeled
presence/absence profiles as “events” and estimated the retaining prob-
ability from the survival rates of Kaplan–Meier estimates using R survival
and survminer packages.

For the validation of inflow and outflow from the same Swedish
wellness cohort, we additionally followed two supplementary visits
(by every three months) and processed metagenomics data of
67 subjects (134 samples) after excluding subjects with either missing
visits or low sequencing depth (less than 10 million mapped reads).
For the validation of inflow and outflow from independent cohorts, we
processed metagenomics data from Italy (DINAMIC cohort
PRJEB33500)58 and USA (HPFS cohort PRJNA354235)22 after
excluding subjects with missing visits or low sequencing depth. In
HPFS cohort, we only took six-months interval samples of individuals,
excluding one-day interval samples.We counted the presence/absence
of MGSs from the abundance profiles in a similar way of calculation in
Swedish wellness cohort, and calculated state transition probabilities
between presence and absence (i.e., inflow and outflow) after fitting
presence/absence profiles into a two-state Markov chain model.

Transient and Persistent Colonizing Species (PCS and TCS)
definition
Basedon estimated inflowandoutflowprobabilities,we identifiedpersistent
colonizing species (PCS) (Pinflow > 0.3, and Poutflow < 0.3) and transient
colonizing species (TCS) (Poutflow > 0.3 and Pinflow < 0.3) and calculated

scaled abundance of PCS (ZPCS) and TCS (ZTCS) like below (1, 2).

zij ¼
Aij � μi

σ i
ð1Þ

ZPCS or ZTCSðjÞ ¼
1
ffiffiffi

n
p

X

n

i

zij ð2Þ

where i is a given MGS belonging to PCS or TCS, Ai is the abundance of
species i, ui is mean abundance of species i over all wellness cohort samples
(344 samples), σi is the standarddeviationof species iover allwellness cohort
samples, j is a given sample of wellness cohort, and n is the total number of
PCS or TCS. Based on scaled abundance of single MGS (zij), we calculated
the aggregated z-score of all PCS species and TCS species (ZPCS and ZTCS,
respectively) by summing scaledMGSabundances forn species, whereZPCS
and ZTCS follows standard normal distribution, independent of n value59.

Microbial functions associated with persistent or transient
colonizing species
Inflow/outflow scores of MGSs were tested for their associations with
function/phenotype annotations of given MGSs (i.e., presence/absence of
functions) using univariate linear regressions to identify PCS-enriched
functions (i.e., functions enriched according to inflow scores of givenMGS)
or TCS-enriched functions (i.e., functions enriched according to outflow
scores of given MGS). Significant associations of microbial functions to
inflow/outflow scores were selected using adjusted p-values of predictor
variables (i.e., microbial functions) <10−3 and regression coefficients >0.

Associations between MGS abundance profiles and clinical
metadata, proteomics and metabolomics
ScaledabundanceofPCSandTCSspeciespopulations together (ZPCSandZTCS,
respectively) were tested for their associations with clinical parameters, pro-
teomics, andmetabolomics considering random effects of individuals by linear
mixed-effect models using R lme4 packages (p-values < 0.05) like below (3):

Yi ¼ ZPCSβPCS þ ZTCSβTCS þ ui þ ϵ ð3Þ

where Y is clinical parameter, protein or metabolite, βPCS and βTCS are
coefficients of fixed effect variables, ZPCS and ZTCS, respectively, ui is a
random intercept for subject i, and ϵ is residual.

In addition, we tested associations of single MGS with clinical para-
meters, proteins or metabolites of given samples of wellness cohorts by
linear mixed-effect models like below (4):

Yij ¼ Aiβi þ uj þ ϵ; i 2 PCS or TCS;Ai ¼ species abundance ð4Þ

where Y is clinical parameter, protein or metabolite, βi is coefficient of fixed
effect variable,Ai, uj is a random intercept for subject j, and ϵ is residual.We
identified significant associations between MGS abundance and clinical
parameters, proteins or metabolites, based on explained variance of fixed
effect calculated using RMuMIn package (explained variance >10%).

Faecal fermentation in ARCOL bioreactor
M-ARCOL is a one-stage fermentation system run under semi-continuous
conditions that simulates the main physicochemical and microbial condi-
tions encountered in the human colonic ecosystem60. It consists of pH and
temperature controlled, stirred (400 rpm), airtight glass vessels inoculated
with faecal samples from human volunteers and maintained under anae-
robic conditions by the sole activity of residentmicrobiota. The set-up in this
study consisted in a main bioreactor containing the luminal-associated
microbiota and a connected glass compartment with mucin beads to
simulate the mucus-associated microbiota. The system was operated to
simulate the colonic conditions of healthy human adults as described earlier
(temperature 37 °C, pH 6.3, retention time 24 h)60,61. The experiments were
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conducted in duplicate with faecal samples from two donors (onemale and
one female, ranging in age from 24 to 50 years, with no history of antibiotic
or probiotic treatment 3 months prior the beginning of the study)60. Fol-
lowing faecal inoculation of the bioreactor, fermentations were conducted
for a total duration of 9 days, including 1 day under fed batch and the
following 8days under semi-continuousmode. Sampleswere collecteddaily
in the bioreactor60,61.

In situ metagenomic measurement of growth rate by Growth
Rate Index (GRiD) scores
The GRiD software (v1.3)16 was used to calculate the growth rate index
from the metagenomic samples from Swedish wellness cohort and fecal
samples inoculated into bioreactor and fermented for 24 h. Briefly, this
software calculates a proxy of growth rate by mapping the metage-
nomics reads to microbial genomes and measuring the coverage ratio
between the origin and terminus of replication. Since GRiD is sensitive
to the representativeness and quality of the genome used, we created a
GRiD custom database representative to the gut microbiota, using only
high-quality draft genomes from the MGnify database62. First, we
matched the MGS gene clusters to the MGnify genomes using a
BLASTN procedure, with a 95% identity threshold. Then we kept only
the MGnify genomes passing these criteria: (1) ≥95% gene completion,
≤5% contamination, (3) ≤100 contigs. This resulted in a GRiD database
of 36 PCS microbial genomes (92% of all PCS species) and 194 TCS
microbial genomes (38% of all TCS species). Finally, the GRiD growth
rate values were considered only when: (1) the genome displayed at least
1X coverage in the metagenome (using the –c 1.0 parameter), (2) the
genome displayed a species heterogeneity less than 0.3 (as recom-
mended by the authors), in order to remove spurious growth rate
index16,62.

Reconstruction of Genome Scale metabolic Model (GEM) and
constrained based modeling for inflow/outflowMGSs
We reconstructed the GEMs of 30 PCS species and 34 TCS species with
high prevalence (≥10%) and taxonomy annotated at species-level
(i.e., excluding unclassified MGSs) using the KEGG orthology (KO)
annotation of the gut catalog. The KO profile of eachMGSwere mapped
into KBase metabolic model63 as reference model to provide reaction
profiles. Regarding the reaction profiles the context specific GEMs were
reconstructed and the functionality of the models was checked based on
the provided biomass objective function and the gap filling was done
using the COBRA toolbox and the reference model. To investigate the
response of the PCS and TCS microbes to environmental changes and
calculate the perturbations, we used four different diets i.e., high protein-
and fiber- plant based diets and high-protein and fiber omnivorous diets.
The composition of the diet was converted to mmol/gDW*hour for the
simulation in anaerobic situation and the growth rate for each model
were predicted for each diet using constraint-based modeling. To check
the dependence of the PCS and TCS species to the compounds as input
or medium and autotrophy, we performed an essentiality analysis in
which the inability of each MGS to synthesize the metabolites was
simulated by closing the corresponding exchange reactions; decreased
growth rate shows the dependence of the MGS to the metabolites for
growth.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The additional two time points for the 67 individuals from the Swedish
wellness cohort gutmetagenome data sequenced for this study can be found
from the European Nucleotide Archive under the study accession
PRJEB52380. The rest of datasets accession codes used in this study are
available in Supplementary Table 6.

Code availability
The R package used to performmodeling temporal changes of microbiome
for inflow and outflow analysis together can be found at our GitHub
repository link: https://github.com/sysbiomelab/mPackage and for the
metagenomics analysis the pipeline can be found at https://github.com/
sysbiomelab/meteor_pipeline.
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