

Discovery of new endogenous viral elements in campoplegine wasps (Ichneumonidae, Campopleginae, Campoplex) suggests a widespread nudivirus domestication event

Alexandra Cerqueira de Araujo, Matthieu Leobold, Marie Cariou, Bernardo Ferreira dos Santos, Rustem Uzbekov, Renato Ricciardi, Pierluigi Scaramozzino, Andrea Lucchi, Karine Musset, Jean-Michel Drezen, et al.

▶ To cite this version:

Alexandra Cerqueira de Araujo, Matthieu Leobold, Marie Cariou, Bernardo Ferreira dos Santos, Rustem Uzbekov, et al.. Discovery of new endogenous viral elements in campoplegine wasps (Ichneumonidae, Campopleginae, Campoplex) suggests a widespread nudivirus domestication event. 2024. hal-04707336

HAL Id: hal-04707336 https://hal.inrae.fr/hal-04707336v1

Preprint submitted on 24 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

¹ Discovery of new endogenous viral elements in campoplegine

² wasps (Ichneumonidae, Campopleginae, Campoplex) suggests

³ a widespread nudivirus domestication event

4 Alexandra Cerqueira de Araujo^a, Matthieu Leobold^b, Marie Cariou^c, Bernardo Ferreira dos Santos^d, Rustem Uzbekov^{ef}, Renato Ricciardi^g, Pierluigi Scaramozzino^g, Andrea Lucchi^g, Karine 5 Musset^b, Jean-Michel Drezen^b, Thibaut Josse^b, Elisabeth Huguet^b 6 ^aINRAE, Oniris, BIOEPAR, 44300, Nantes, France, ^bInstitut de Recherche sur la Biologie 7 8 de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France, ^cService Analyse de Données, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, 9 Paris, France, ^d Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity 10 Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, 11 Germany, ^eUniversité de Tours, Département des Microscopies, Tours, France, ^fFaculty of 12 Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia, ^gDepartment 13 of Agriculture, Food and Environment (DAFE), University of Pisa, Italy. 14

15 Corresponding author: alexandra.cdea@gmail.com

16

17 Abstract

18	Viral endogenization is a widespread phenomenon that generally results in non-functional
19	viral elements. In parasitoid wasps, nudiviruses have been involved in three independent
20	domestication events and play a key role in parasitism success. In Campopleginae
21	(Ichneumonidae), endogenized ichnovirus presence is widespread, with the exception of
22	Venturia canescens (Ichneumonidae Campopleginae), which is known to harbour an
23	endogenous nudivirus that enables the wasp to produce Virus-Like-Particles (VLPs). So far, in
24	Campopleginae, the nudivirus endogenization event was an isolated case restricted to V.
25	canescens. Using third generation sequencing technologies, microscopy and mass
26	spectrometry, we described new cases of domesticated nudiviruses in campoplegine wasps of
27	the genus Campoplex. We found endogenized viruses in Campoplex genomes which belong to
28	the Alphanudivrius genus and derive from the same endogenization event as the virus found
29	in V. canescens, suggesting that this integration event could be much more widespread in
30	Campopleginae than previously thought. These nudiviruses are organised in highly conserved
31	clusters, but this organisation appears to have changed relatively to free viruses during the
32	domestication process. We showed that Campoplex capitator produces in its ovaries VLPs that
33	are similar morphologically to V. canescens VLPs, with almost the same protein content,
34	except for a strikingly different virulence proteins, a sign of different evolutionary paths taken
35	to respond to distinct evolutive pressure. While ichnovirus remnants have been previously

36 found in V. canescens, no trace of ichnovirus could be detected in Campoplex genomes,

- 37 meaning that the evolutionary history of viral integrations in Campopleginae is more complex
- 38 than previously imagined.
- 39 Keywords: Nudivirus, Viral domestication, Campopleginae, Virus-Like-Particle, Parasitoid
- 40 wasp, Ichnovirus

41

42 Introduction

43 The endogenization of viral sequences within eukaryotic genomes is a common phenomenon in the evolutionary history of eukaryotic organisms (Feschotte & Gilbert, 2012; Holmes, 2011). 44 45 These viral sequences, known as endogenous viral elements (EVEs), involve all virus types likely to integrate into any eukaryotic genome (Ballinger et al., 2014; Bejarano et al., 1996; 46 47 Belyi et al., 2010; Crochu et al., 2004; Delaroque et al., 1999; Feschotte & Gilbert, 2012; Irwin et al., 2021; Katzourakis & Gifford, 2010; H. Liu et al., 2010; Maori et al., 2007). A large 48 49 proportion of EVEs are segmented and non-functional (Arbuckle et al., 2010; Katzourakis & Gifford, 2010; Tarlinton et al., 2006). There are, however, examples of viral integrations 50 providing novel adaptive functions and selective advantage to the eukaryotic organism that 51 carries them. For example, some EVEs can confer protection to their host against genetically 52 53 related viruses (Armezzani et al., 2014; Frank & Feschotte, 2017; Horie & Tomonaga, 2019).

54 Other EVEs are also involved in placentation in mammals (Lavialle et al., 2013; Mangeney et

al., 2007) and synaptic plasticity in animals (Ashley et al., 2018; Campillos et al., 2006).

56

57	In general, for viral endogenization events that provide hosts with novel functions, co-option
58	typically involves individual viral genes rather than entire viral genomes. However, in some
59	parasitoid wasp species, entire portions of large double-stranded DNA (dsDNA) viruses have
60	been integrated and perform crucial functions to the wasp's life cycle. Indeed, the wasps use
61	the virus-derived particles to deliver virulence proteins that suppress the immune response of
62	the wasp's host and spark other physiological changes that ensure successful parasitization by
63	the wasp larva (Bézier, Herbinière, et al., 2009; Burke et al., 2013; JM. Drezen et al., 2017;
64	Strand & Burke, 2012, 2014; Volkoff et al., 2010).
65	At least seven viral endogenization events occurred in independent wasp lineages, each
65 66	At least seven viral endogenization events occurred in independent wasp lineages, each involving the domestication of large dsDNA viruses (Burke, 2019; Burke et al., 2021; Di
65 66 67	At least seven viral endogenization events occurred in independent wasp lineages, each involving the domestication of large dsDNA viruses (Burke, 2019; Burke et al., 2021; Di Giovanni et al., 2020; JM. Drezen et al., 2022; Guinet et al., 2023). These viral endogenization
65 66 67 68	At least seven viral endogenization events occurred in independent wasp lineages, each involving the domestication of large dsDNA viruses (Burke, 2019; Burke et al., 2021; Di Giovanni et al., 2020; JM. Drezen et al., 2022; Guinet et al., 2023). These viral endogenization events can be classified into different categories based on the nature of the virus that has
65 66 67 68 69	At least seven viral endogenization events occurred in independent wasp lineages, each involving the domestication of large dsDNA viruses (Burke, 2019; Burke et al., 2021; Di Giovanni et al., 2020; JM. Drezen et al., 2022; Guinet et al., 2023). These viral endogenization events can be classified into different categories based on the nature of the virus that has been endogenized. The first one involves endogenized nudivirus sequences, leading to the
65 66 67 68 69 70	At least seven viral endogenization events occurred in independent wasp lineages, each involving the domestication of large dsDNA viruses (Burke, 2019; Burke et al., 2021; Di Giovanni et al., 2020; JM. Drezen et al., 2022; Guinet et al., 2023). These viral endogenization events can be classified into different categories based on the nature of the virus that has been endogenized. The first one involves endogenized nudivirus sequences, leading to the production of bracoviruses (BVs) and Virus-Like-Particles (VLPs; particles made of viral

72	2018; Pichon et al., 2015). The second one involves the endogenization of a viral ancestor
73	(characterised by a conserved set of genes) from a still uncharacterized virus family in two
74	distinct Ichneumonidae lineages (Banchinae and Campopleginae), producing Ichnovirus (IV)
75	particles (Béliveau et al., 2015; Gundersen-Rindal et al., 2013; Strand & Burke, 2014; Volkoff
76	et al., 2010; Volkoff & Cusson, 2020). The production of these particles involves the expression
77	of several intronless genes tightly clustered into wasp genome regions called IVSPERs
78	(Ichnovirus Structural Protein Encoding Regions) (Lorenzi et al., 2019; Volkoff et al., 2010,
79	2012). The last viral endogenization category involves filamentous viruses related to
80	hytrosaviruses, probably allowing wasps to produce VLPs (Burke et al., 2021; Di Giovanni et
81	al., 2020; Guinet et al., 2023; Wey et al., 2020).

82

83	So far, three of the seven endogenization events described in parasitoid wasps correspond to
84	the integration of nudivirus sequences. The Nudiviridae family, which diverged 220 MA from
85	the well-known Baculoviridae family, comprises viruses infecting arthropods (Abd-Alla et al.,
86	2008; Jehle et al., 2013; Thézé et al., 2011; Y. Wang et al., 2012). Integration of nudivirus
87	sequences have been described in genome of arthropods including several insects (Bézier et
88	al., 2015; Burand et al., 2012; RL. Cheng et al., 2014, 2020; S. Liu et al., 2020, 2021; Y. Wang
89	et al., 2007; Y. Zhang et al., 2020), but, except in parasitoid wasps, these integrations were not

90 reported as virus domestication since the function of any of the viral sequences has not been91 studied.

The integration of sequences from a deltanudivirus (Petersen et al., 2022) in the ancestor of 92 93 Braconidae Microgastrinae wasps 100 MYA led this lineage, currently comprising at least 46000 species, to produce BV particles, which are composed of a viral envelope enclosing 94 95 capsids containing dsDNA circular molecules harbouring virulence genes (Bézier, Annaheim, et al., 2009; Herniou et al., 2013; Murphy et al., 2008; Thézé et al., 2011). More recently, the 96 97 integration of alphanudivirus sequences was demonstrated in the braconid Fopius arisanus (Burke et al., 2018) and more unexpectedly in the ichneumonid Venturia canescens (Pichon et 98 99 al., 2015). In these parasitoid wasps, the endogenization event led to the production of VLPs 100 (Burke et al., 2018; Burke, 2019; Pichon et al., 2015). Several lines of evidence have suggested 101 that the alphanudivirus integration event in V. canescens was more recent than the 102 deltanudivirus integration event in an ancient braconid wasp (100 MYA) (Murphy et al., 2008; 103 Pichon et al., 2015; Thézé et al., 2011). Indeed, first, the nudivirus integration event has been 104 described up to now in a single campoplegine wasp species. Second, the viral genes integrated 105 in *V. canescens* are less dispersed in the wasp genome than the BV genome in braconid wasps 106 (Bézier, Annaheim, et al., 2009; Burke et al., 2014; Mao et al., 2023; Pichon et al., 2015), 107 possibly because fewer genomic rearrangements had time to occur in Campopleginae. It has 108 also been shown that in VcENV, losses of certain core nudivirus functions (*i.e.*: proteins involved in capsid formation) are due to pseudogenization involving accumulation of
 mutations rather than complete loss of genes or genomic regions (Leobold et al., 2018). The
 fact that pseudogenized nudiviral sequences have been maintained in VcENV and are not
 completely eroded could be an indication that the nudivirus integration is more recent in this
 species (Leobold et al., 2018).

114

115 So far, Venturia canescens was the only described representative of Campopleginae wasps with an integrated alphanudivirus (Burke, 2019; Burke et al., 2021; Pichon et al., 116 2015). Because V. canescens belongs to the subfamily Campopleginae, known to harbour 117 118 ichnoviruses, initially the VLPs were thought to derive from IVSPER expression (Reineke et al., 119 2006). However, sequencing of the wasp's genome identified only a few pseudogenized 120 IVSPER genes, and it was formally demonstrated that the VLPs are in fact of nudiviral origin 121 (Pichon et al., 2015). The alphanudivirus integrated in the Campopleginae wasp V. canescens, named "Venturia canescens Endogenous Nudivirus" (VcENV), allows the production VLPs, 122 which consist of a membrane enveloping virulence proteins that protect the wasp eggs from 123 the lepidopteran host immune system after oviposition (Bedwin, 1979; Feddersen et al., 1986; 124 125 Pichon et al., 2015; Reineke et al., 2006; Rotheram, 1967, 1973; Salt, 1965). Three virulence 126 proteins have been described in VcVLPs: VLP1, VLP2 and VLP3, which are respectively a Rho 127 GTPase activating protein, a phospholipid hydroperoxide glutathione peroxidase and a

128	neprilysin (Asgari et al., 2002; Hellers et al., 1996; Pichon et al., 2015; Reineke et al., 2002;
129	Theopold et al., 1994). Hence, whilst two genera of Nudivirus have been endogenized in
130	different wasp lineages, the evolutionary trajectories they have undertaken since integration
131	have given rise to strikingly different particles but with similar functions (Burke, 2019; JM.
132	Drezen et al., 2017).
133	
134	In Campopleginae, nudiviral integration is only known from V. canescens. Since whole genome
135	data is available only for a few species, it is still unclear whether this event is really restricted
136	to one or a few species or if it is more widespread in campoplegine wasps. To investigate this
137	issue, we selected a genus, Campoplex, that is putatively closely related to V. canescens
138	(Santos et al., 2022).
139	In this study, we obtained the complete genome sequence of two <i>Campoplex</i> species, one of
140	which corresponds to Campoplex capitator, the main parasitoid of the vineyard pest Lobesia
141	botrana (J. Moreau et al., 2010; Papura et al., 2016; Thiéry et al., 2011). These species and

their endogenized nudiviruses offered the opportunity to compare domesticated virus
genomes and the produced particles to better understand the early mechanisms at the basis
of viral domestication and whether these domestication events followed the same
evolutionary trajectories.

146 Results

147 Two new Campopleginae wasp genomes of the *Campoplex* genera

148	To investigate mechanisms involved in nudiviral domestication in Campopleginae wasps, we
149	aimed to obtain genomes of Campoplex species, which are phylogenetically close to V.
150	canescens. For this purpose, we sequenced the genome of C. capitator and Campoplex nolae
151	using long-read and short-read sequencing technologies. The genome assembly generated for
152	C. capitator is 261 Mb long and composed of 630 contigs (generated by PacBio sequencing),
153	while that of <i>C. nolae</i> is 218 Mb long and composed of 4 593 contigs (generated by Illumina
154	and Nanopore sequencing) (see detailed information in supplementary data Table S1). The
155	quality of these genomes, with low levels of fragmentation (N50 = 7,8 Mb for <i>C. capitator</i> and
156	1,8 Mb for C. nolae; see Table S1) and a good genome completeness (96% and 94% of
157	complete hymenopteran BUSCOs for C. capitator and C. nolae respectively; see Table S2)
158	allowed the description of integrated viruses (see next paragraph). Gene models of C.
159	capitator were predicted using transcriptomic data obtained after RNA sequencing of wasp
160	samples. As no transcriptomic data was available for C. nolae, gene models were generated
161	using protein sequences of <i>C. capitator</i> predicted previously. In total, 11 288 and 13 929 genes
162	models have been predicted in C. capitator and C. nolae respectively.

163

164 The endogenized nudivirus genomes within the *Campoplex* genomes

165	We identified 47 genes of viral origin in both wasp genomes (Table1 and Table S3). Out of the
166	32 nudivirus core genes, 23 have been found in the Campoplex genomes (Table 1). Among
167	these genes, some encode key viral functions in baculoviruses such as viral transcription (p47
168	and <i>lef</i> genes), DNA amplification (<i>helicase</i>), envelope composition/infectiosity (<i>Ac81, p33</i> and
169	pif genes) and virion morphogenesis (vlf-1). These 47 genes are grouped into 4 clusters in both
170	genomes (Figure 1 for <i>C. capitator</i> and Figure S1 for <i>C. nolae</i>). These clusters are dense in viral
171	genes and are identical in gene content and order between the two species (Figure1, Figure
172	S1 and Table 2).
173	In V. canescens, remnants of some nudivirus genes, notably those involved in DNA
174	amplification and capsid formation, have been found as pseudogenes (Leobold et al., 2018).
175	Therefore, for each missing nudivirus gene, we searched for remnant sequences in both
176	Campoplex genomes. Several pseudogenes have been identified, some located inside or
177	around the virus clusters (Figure 1 and Figure S1), others such as 38K located outside (Table
178	1). Genes that are typically involved in DNA amplification (<i>integrase, FEN-1</i> and <i>DNApol</i>) and
179	capsid formation (p6.9, 38K and vp39) in baculoviruses have been found pseudogenized in
180	both <i>Campoplex</i> species (Table 2), except for <i>38K</i> which couldn't be found in <i>C. nolae</i> , probably
181	due to the higher fragmentation level of this genome.

182 No traces of Ichnovirus remnants in *Campoplex* genomes

183	As remnants of Ichnovirus were found in <i>V. canescens</i> (Pichon et al., 2015), we also searched
184	for sequences of IVSPER genes in the Campopex genomes. In both Campoplex genomes, no
185	trace of ichnovirus could be found using the IVSPER protein sequences (see material and
186	method for details).

187

188 The endogenized nudiviruses in *Campoplex* correspond to Alphanudiviruses

Viral sequences found in both *Campoplex* genomes share high similarity with nudivirus 189 190 sequences (Table S3). We therefore aimed to place these new endogenized viruses in the 191 context of the phylogeny of Naldaviricetes, a class of virus comprising Baculoviridae, Nudiviridae, Hytrosaviridae and Nimaviridae. Using protein sequences from 34 genes (21 192 baculoviruses core genes and 13 nudivirus core genes, see Table S4 for more details), the 193 phylogenetic analysis places these endogenized viruses inside the Nudivirus family and as 194 195 sister to VcENV, which belongs to the Alphanudivirus genus (Figure 2). Due to their placement in the Nudivirus family, we called these genomes CcapiENV and CnolaENV for Campoplex 196 capitator Endogenous Nudivirus and Campoplex nolae Endogenous Nudivirus respectively. 197 These two new virus genomes are from now on the closest relatives of VcENV. 198

199 Evidence for a single nudivirus endogenization event in Campopleginae wasps

200	Given the phylogenetic position of these integrated alphanudiviruses in <i>Campoplex</i> (Figure 2),
201	we then investigated whether these nudiviruses resulted from the same integration event as
202	the one for VcENV. Wasp genes around the virus clusters were found to be the same in both
203	C. capitator and V. canescens species, indicating that the endogenization event occurred at
204	the same place in both genomes (Figure 3). This observation confirms that these viruses come
205	from the same endogenization event.
206	
207	Evolution of the endogenized nudiviruses in Campopleginae wasps
208	We compared the three endogenized nudivirus genomes in Campopleginae wasps to gain
209	insight on the mechanisms that are operating during the early processes of virus
210	domestication. The gene content in these viruses is almost identical, with only a few
211	differences lying in the gene position, in the number of copies for certain genes and in the
212	identified pseudogene (Table 2). However, while all other genes are present in all genomes,
213	vlf-1 was found only in CcapiENV and CnolaENV, this gene being found in a pseudogenized
214	form in VcENV (Table 2). In baculoviruses, VLF-1 is a nucleocapsid protein that participates in
215	virion maturation, in the integration and excision of the viral genome and in viral transcription
216	(McLachlin & Miller, 1994; Vanarsdall et al., 2006; Yang & Miller, 1998, 1999). Duplicated

217	copies of Ac81 and OrNVorf47-like have been found only in VcENV (Table 2), indicating that
218	those copies could have originated from duplication events occurring after speciation. Copies
219	of <i>pif-5</i> have been found in all genomes, some in similar locations inside the clusters (Table 2
220	and Figure 3), indicating that these copies might come from a duplication event that had
221	happened in the common ancestors of all these wasps. The organisation in clusters is also
222	highly preserved among these endogenized viruses in Campopleginae wasps, with CcapiENV
223	clusters 1 and 2 being almost identical to the VcENV clusters 3 and 2 (Figure 3). CcapiENV
224	cluster 4 and its VcENV equivalent (cluster 4) seems to have endured some genomic shuffling,
225	but not enough to erase syntenies between the two genomes (Figure 3).
226	
227	Impact of endogenization on nudivirus gene organisation
228	Integrated alphanudivirus genomes were compared to free virus genomes in order to evaluate
229	the impact of viral domestication after integration. Gene order among free nudiviruses is fairly
230	well conserved (Figure 4 A), but gene order was globally lost following viral endogenization
231	(Figure 4 B), suggesting that loss of certain syntenic regions might be part of the viral
232	domestication process.
233	We also compared the endogenized alphanudiviruses in Campopleginae wasps to other
234	endogenized alphanudiviruses such as FaENV (Fopius arisanus Endogenous Nudivirus) and

NIENV (Nilaparvata lugens Endogenous Nudivirus). First, as described before, the viral genome structure in Campopleginae wasps is conserved after integration (Figure 4 C). However, for each independent alphanudivirus integration, the genomes seem to have been shuffled differently (Figure 4 C). Viral genome shuffling after integration might be part of a viral domestication process, as developed in Burke and collaborators (Burke et al., 2018; see discussion).

241

242 Selection pressures acting on nudivirus genes

To estimate the selection pressures acting on *C. capitator*, *C. nolae* and *V. canescens* genes, 243 244 dN/dS ratios were calculated for 8 787 cellular genes and the 41 endogenized nudivirus genes. 245 For the vast majority of genes (13152 out of 13351 values), the dN/dS ratio is lower than 1 246 (Figure 5). Nonetheless, dN/dS ratios obtained for nudivirus genes are higher than the ones of cellular genes, with an average dN/dS ratio of 0.17 for cellular genes and 0.73 for nudivirus 247 genes. Focusing on nudivirus gene evolution according to their function, genes putatively 248 249 involved in DNA amplification (*helicase*) and viral transcription (*lefs* and *p47*) have a lower 250 dN/dS ratio than genes putatively involved in infectivity and envelope protein production (*pifs*, 251 vp91, p33 and p74) (Figure 5). Gauthier and colleagues had also found equivalent results on 252 nudiviral genes associated with Braconid wasps (Gauthier et al., 2018, 2021). Furthermore,

253 duplicated nudiviral genes in the three Campopleginae species have a rather high dN/dS ratio,

notably the copies of *OrNVorf41-like* and *pif-5* (Table S5).

255

256 CcapiENV gene expression

257 Virus gene expression activity within the wasps has been investigated through transcriptome 258 analyses performed on *C. capitator* samples of pools of organs from male and female individuals. Because virus genes participate in the production of virus-derived particles in the 259 260 ovaries for several wasp species, notably in V.canescens (J. Drezen et al., 2006; Pichon et al., 261 2015; Stoltz, 1990), we assumed that CcapiENV genes would be mostly expressed in C. capitator ovaries. As expected, all CcapiENV genes are expressed in adult wasp ovaries (Figure 262 S2 and Table S6). Transcripts from some nudivirus genes are also visible in venom glands. The 263 264 head-thorax samples of female wasps appear to be almost free of viral transcripts, with only minute amounts of transcripts being measured. CcapiENV genes are practically not expressed 265 266 in males, neither in testis nor in head-thorax samples, although testis samples show a slightly 267 higher number of transcripts than head-thorax samples (Table S6). The *pif-2* gene appears to be an exception as it is weakly expressed in head-thorax samples of both males and female 268 269 wasps.

270	Regulatory sequences have also been studied in <i>C. capitator</i> in order to understand regulation
271	mechanisms leading to the expression of endogenized nudivirus genes. However, no
272	congruent results could be observed as the type of promoter (baculovirus early, baculovirus
273	late, VcENV late) does not necessarily match the expected expression kinetics of the CcapiENV
274	genes based on the transcription kinetic described for their VcENV orthologs (Cerqueira de
275	Araujo et al., 2022; Table S7).

276

C. capitator produces VLPs that are similar in morphology to those produced by
 V. canescens

After identifying the endogenized nudivirus in the Campoplex genomes, we investigated 279 whether C. capitator produces VLPs as described in V. canescens. Electron microscopy 280 281 revealed the presence of particles in the calyx region of C. capitator ovaries, a specialised portion of the ovaries that produces virus-derived particles in braconid wasps and 282 Ichneumonid wasps (Bézier, Annaheim, et al., 2009; Burke & Strand, 2012; Pichon et al., 2015; 283 Volkoff et al., 2010). These particles in C. capitator are referred to as CcapiVLPs (Figure 6), and 284 are almost morphologically identical to VcVLPs (Pichon et al., 2015). CcapiVLPs are composed 285 286 of a membrane enclosing an electron-dense body (Figure 6E) and are massively present in the lumen (Figure 6 A and B) while only a few are visible in the cytoplasm and cell nuclei (Figure 6 287

288	C). Virogenic stromas, electron-dense masses composed of proteins that form viral particles
289	in other wasps (Bézier, Herbinière, et al., 2009; Pichon et al., 2015), are visible in calyx cell
290	nuclei (Figure 6C), along with VLPs and empty envelopes (Figure 6F). As described for VcVLPs
291	(Pichon et al., 2015), CcapiVLPs appear to be be produced inside the nucleus by virogenic
292	stromas and transit through the nuclear membrane and then through the cytoplasmic
293	membrane by budding to finally end in the calyx lumen (Figure 6 D,E and F).
294	
295	C. capitator and V. canescens VLPs have a similar composition but the virulence
296	protein contents are different
297	We proceeded to determine whether the protein composition of the VLPs and their content
298	were the same between C. capitator and V. canescens. For CcapiVLPs, 28 proteins of nudivirus
299	origin were detected by mass spectrometry (Table S8). In the majority of cases, proteins
300	contained in VcVLPs deriving from VcENV genes were also found in CcapiVLPs. For instance,
301	all the VcVLP proteins involved in envelope formation in baculoviruses were found in purified
302	CcapiVLPs. These include all the PIF proteins, P74, VP91 and P33 proteins. However,
303	OrNvorf46-like and a copy of PIF-5 proteins are present in VcVLPs but not in CcapiVLPs (Table
304	S8). Similarly, OrNVorf18-like, OrNVorf47-like, OrNVorf79-like, OrNVorf90-like and

305 OrNVorf120-like proteins appear to be present in CcapiVLPs but were not detected in VcVLPs306 (Table S8).

A large number of non-viral proteins, which should include virulence proteins, could be 307 308 identified by mass spectrometry within the VLPs (Table S9). Proteins described in VcVLPs were 309 first sought in the CcapiVLP protein dataset to determine whether the same proteins are 310 enveloped in VLPs in both wasp species. The VLP1 (PHGPx), VLP2 (RhoGAP) and VLP3 (Neprilysin) proteins of VcVLPs were not found in CcapiVLPs. Candidate VLP virulence proteins 311 312 were selected according to their peptide abundance (PSM for Peptide-Spectrum Matches) value and only proteins with a PSM value higher than 50 were retained (Table S10). Some 313 314 proteins that have been described in parasitoid wasp venoms (Inwood et al., 2023; S. Moreau 315 & Asgari, 2015; Poirié et al., 2014), such as a serpin, a peroxiredoxin, a calreticulin and an 316 aminopeptidase, have been found in CcapiVLPs. Further investigation on the serpin showed 317 that the gene encoding this protein is a member of a multigenic family, which comprises 15 members in Campoplex spp. and 4 in V. canescens. While the four copies found in V. canescens 318 319 have orthologous sequences in *Campoplex spp.*, the serpin identified in CcapiVLPs is more distant, with only one ortholog found in *C. nolae* (Figure S3). This serpin appears to be specific 320 321 to *Campoplex* species and therefore represents an interesting virulence protein candidate.

322 Discussion

323	The sequencing of two new genomes of Campoplex wasps has provided the opportunity to
324	describe, together with the previous sequencing of the V. canescens wasp genome (Mao et
325	al., 2023; Pichon et al., 2015), the early events involved in the domestication of
326	alphanudiviruses that these wasps have endogenized. Our results convincingly show that the
327	endogenized nudiviruses in the Campoplex species correspond to the same endogenization
328	event as the one first described in V. canescens. The few and compact viral gene clusters,
329	together with the presence of visible traces of pseudogenes, strongly suggest that this
330	endogenization event is more recent than the one described in Microgastrinae braconid
331	wasps. Furthermore, strong synteny is evident between the three endogenized
332	alphanudiviruses, which contrasts with total lack of synteny with the known free nudiviruses
333	for which sequences are available. This result suggests that a very early process required in
334	viral domestication involves major genomic rearrangements, in accordance with similar
335	observations made in the case of FaENV (Burke et al., 2018). Comparisons between the
336	endogenized nudiviruses in Campopleginae wasps reveal not only conserved synteny of genes
337	but also very high gene similarities, suggesting that evolutionary constraints may be acting to
338	conserve gene functions, to enable coordinated expression leading to VLP formation. Finally,
339	VLPs produced by V. canescens and C. capitator wasps are very similar, but genes coding for
340	the VLP proteins involved in infectiosity are undergoing higher selection pressures and the VLP

virulence protein contents are totally different, illustrating that selection pressures exerted by
wasp's host are most probably acting and resulting in tailored-virulence protein contents
within VLPs.

344

345 A recent and unique endogenization event of an alphanudivirus in
346 Campopleginae wasps

347 CcapiENV and CnolaENV, the nudiviruses integrated in C. capitator and C. nolae genomes respectively, are composed of 47 nudiviral genes each. These viruses belong to the Nudivirus 348 349 family, especially to alphanudiviruses, and are the closest known relative of VcENV, the only endogenized nudivirus that had been previously described in Campopleginae wasps (Figure 350 2). Comparing the insertion location of CcapiENV and VcENV, the same wasp genes in the same 351 order have been found around the viral clusters in both species (Figure 3). These observations 352 353 indicate that these two new viruses come from the same endogenization event as the one of 354 VcENV, which occurred in the common ancestor of the wasps harbouring them. The integration of the alphanudivirus in Campopleginae appears to have occurred more 355 recently than the endogenisation of BV in Braconidae. First, the wasp phylogeny indicates that 356 the subfamily Campopleginae is a younger lineage than the microgastroid complex (Burke et 357 358 al., 2021; Murphy et al., 2008; Sharanowski et al., 2021) and not all representatives of the

359	Campopleginae family appear to possess nudivirus (such as wasps of the genus Hyposoter or
360	Dusona) (Burke et al., 2021), indicating that nudivirus integration is not ancestral to the
361	Campopleginae and occurred later in a specific Campopleginae lineage. Furthermore, in both
362	Campoplex species, the distribution of the endogenized virus genes shows that the viral
363	genome is not very dispersed, forming four highly conserved clusters within the wasp
364	genomes (Figure 1). This organisation in clusters has been previously described in VcENV (Mao
365	et al., 2023; Pichon et al., 2015) and in FaENV (Burke et al., 2018), which have five and nine
366	clusters respectively. In bracoviruses, nudivirus clusters have also been characterised but virus
367	genes are more dispersed in the wasp genomes (Bézier, Annaheim, et al., 2009; Burke et al.,
368	2014, 2018; Gauthier et al., 2021). These observations would indicate that alphanudiviruses
369	integrated in parasitoid wasps have undergone fewer rearrangement events than the BV
370	integrated in the Braconidae. Also, it was possible to find pseudogenized nudiviral genes in
371	Campoplex wasps and in V. canescens (Leobold et al., 2018), whereas no pseudogenes were
372	characterised for BVs, which again suggests that the alphanudivirus integration event in
373	Campopleginae wasps is more recent because traces of gene loss are still detectable.

374

375 Genome rearrangement seems to be part of the viral domestication process

376	Genomic rearrangements appear to be a part of the viral domestication process in parasitoid
377	wasps. Indeed, the viral organisation of nudivirus genes of the Alphanudivirus genus is very
378	well conserved among free Alphanudiviruses viruses infecting arthropods (Figure 4 A). While
379	this viral organisation is kept in free viruses, the genomes of endogenized nudiviruses in
380	Campopleginae wasps appear to have lost this well conserved viral organisation, with their
381	genome being rearranged in their host genome (Figure 4 B). This phenomenon of genomic
382	rearrangement after integration is shared by the viruses that have been independently
383	endogenized in different lineages of insects and produce integrated viruses with distinct
384	organisations (Figure 4 C). A similar observation was made in FaENV where the viral genome
385	has been shuffled after endogenization in the wasp genome (Burke et al., 2018). It has been
386	suggested that these early rearrangement events occurring after integration could lead to the
387	deactivation of the virus replication process by scattering the virus genome and could
388	correspond to a founder effect in the process of domestication (Burke et al., 2018).

389

Key viral functions and the organisation in clusters were kept after domestication
CcapiENV, CnolaENV and VcENV share almost exactly the same content in genes (Table 2). The
22 core nudivirus genes found in VcENV were also identified in *Campoplex* endogenized

393	viruses (Table 1). Genes necessary for VLP production were kept in these Campopleginae
394	wasps. It has been shown for example that genes such as <i>lef</i> genes that are involved in viral
395	transcription are particularly well conserved among wasps that have endogenized a nudivirus
396	(Bézier, Annaheim, et al., 2009; Bézier, Herbinière, et al., 2009; Burke, 2019; Burke et al., 2018;
397	Burke & Strand, 2012; JM. Drezen et al., 2022; Pichon et al., 2015; Strand & Burke, 2012).
398	Silencing of these genes leads to the suppression or reduction of particle production in V .
399	canescens and Microplitis demolitor (Burke et al., 2013; Cerqueira de Araujo et al., 2022).
400	Furthermore, in Campopleginae, genes involved in viral transcription (p47 and lef genes) and
401	DNA amplification (helicase) are under strong conservative selection pressures compared to
402	genes typically involved in envelope formation and infectiosity (p33, Ac81 and pif genes)
403	(Figure 5). The same observation was made in braconid wasps harbouring a BV and in
404	Leptopilina wasps harbouring an endogenized filamentous virus (Di Giovanni et al., 2020;
405	Gauthier et al., 2021), showing that the viral transcription function is globally maintained in
406	all these viral domestication events. Genes coding for envelope components (such as pif
407	genes) have also been conserved in BV, FaENV and Campopleginae endogenized nudiviruses,
408	although their sequences differ more than the ones of lef genes for instance (Bézier,
409	Annaheim, et al., 2009; Bézier, Herbinière, et al., 2009; Burke, 2019; Burke et al., 2018; Burke
410	& Strand, 2012; Di Giovanni et al., 2020; JM. Drezen et al., 2022; Gauthier et al., 2021; Pichon
411	et al., 2015; Strand & Burke, 2012). In baculoviruses, PIFs proteins are involved in the entry of

412 viral particles into the cells of the lepidopteran host's digestive tract (Boogaard, 2018; Kikhno et al., 2002; Zheng et al., 2017). As they form the interface between the particle and the host 413 414 cells, these proteins are therefore likely to diverge depending on the host that the particles 415 infect. Regarding the viral genome structure, the endogenized virus genome structure is organised in 416 417 clusters of viral genes in Campopleginae wasps, in which the gene order was preserved after wasp diversification. VcENV, CcapiENV and CnolaENV are all composed of three main 418 conserved nudiviral clusters, with observable syntenies between species (Figure 3, Figure 4). 419 For instance, the composition and gene order of the clusters are the same in both CcapiENV 420 421 and CnolaENV (Figure 1 and Figure S1). Comparing CcapiENV with VcENV, genes of CcapiENV 422 clusters 1 and 2 have exactly the same order as genes in VcENV clusters 3 and 2 (Figure 3). Nonetheless, the order of viral genes between CcapiENV cluster 4 and VcENV clusters 4 and 5 423 is less conserved, indicating that certain recombination events took place after speciation of 424 the parasitoid wasps hosting them (Figure 3). In contrast, pseudogenes identified in 425 426 Campoplex and V. canescens genomes are dispersed compared to functional genes (Table S3)

427 (Leobold et al., 2018; Mao et al., 2023).

428 Loss of genes not essential for VLP production

429	Remnants of the majority of genes that have been pseudogenized in VcENV can be found in
430	CcapiENV and CnolaENV. Some pseudogenes, such as OrNVorf130-like, were not found in
431	CcapiENV or CnolaENV. As pseudogenes can be very degraded, it can sometimes be difficult
432	to detect them, but it is also possible that these genes have been lost by deletion as described
433	in bracoviruses (Bézier, Annaheim, et al., 2009; Burke et al., 2014).
434	Genes involved in capsid formation in baculoviruses have been lost for the most part (see vlf-
435	1 below) in all Campopleginae wasps (Table 2). More specifically, FaENV and BVs have kept
436	genes such as 38K and vp39 (Bézier, Annaheim, et al., 2009; Burke et al., 2014, 2018), genes
437	that are involved in baculoviruses in nucleocapsid assembly and DNA packaging (Danquah et
438	al., 2012; Katsuma & Kokusho, 2017; Lai et al., 2018; Wu et al., 2006), but these genes are
439	pseudogenized in Campoplex wasps and V. canescens (Leobold et al., 2018; present study).
440	Genes involved in DNA packaging such as integrase can be found in BVs but were lost by
441	pseudogenization in Campopleginae wasps producing VLPs, which are devoid of DNA (Burke,
442	2019; Burke et al., 2013, 2018; JM. Drezen et al., 2022; Pichon et al., 2015).

443

444 Specific adaptations of Campopleginae wasps to produce VLPs

445	During virus domestication, the alphanudivirus genome has been well conserved among
446	Campopleginae wasps. Gene content and genome structure are similar between
447	CcapiENV/CnolaENV and VcENV. However, notable differences can be observed between
448	these genomes, probably being hallmarks of different adaptation to the wasp's hosts.

449 *Vlf-1* is present in *Campoplex*, but not in *V. canescens*

One of the major differences between the two new genomes and VcENV is the presence of 450 vlf-1 in CcapiENV and CnolaENV, while this gene has been found pseudogenized in VcENV 451 (Table 2). In baculoviruses, vlf-1 is involved in several processes. The VLF-1 protein is an 452 integrase that binds to specific DNA sites, catalyses DNA rearrangements and participates in 453 454 the integration and excision of the viral genome (McLachlin & Miller, 1994). This protein, which is included in the nucleocapsid (Yang & Miller, 1998), appears to be necessary for virion 455 maturation (Vanarsdall et al., 2006) and is involved in the transcription of genes expressed at 456 very late stages of the viral infection (Yang & Miller, 1999). In CcapiENV, this gene does not 457 458 appear to code for a structural VLP protein (Table 1 and Table S8), but is expressed specifically in wasp ovaries (Figure S2 and Table S6). The *vlf-1* gene may have a function in the 459 transcription of late expressed genes and could possibly explain why we are not able to 460 identify the same promoter sequences in CcapiENV and VcENV. 461

462 Duplication of nudivirus genes

463	In giant viruses—dsDNA viruses which exhibit a high level of gene duplications (Filée, 2018;
464	Legendre et al., 2018) the expansion and reduction of the number of genes seems to be an
465	adaptive process to respond to new constraints imposed by the host (Boyer et al., 2011; Elde
466	et al., 2012). Among nudivirus duplicated genes in Campopleginae wasps (Table 2), Ac81 and
467	OrNVorf47-like have been found duplicated only in VcENV (Mao et al., 2023; Pichon et al.,
468	2015). In addition, two extra copies of <i>pif-5</i> were found in VcENV and an extra copy of
469	OrNVorf41-like was identified in CcapiENV and CnolaENV (Figure 1, Figure S1 and Figure 3).
470	The OrNVorf41-like gene belongs to the 11K gene family, which comprises the Ac145 and
471	Ac150 genes of the Autographa californica nucleopolyhedrovirus (AcMNPV). Ac145 and Ac150
472	appear to be involved in oral infectivity, although they are not essential for infection (JH.
473	Zhang et al., 2004). The action of these genes is host-dependent: the deletion of Ac145
474	reduces the infectivity of AcMNPV in the host Trichoplusia ni, but not in the host Heliothis
475	virescens. The deletion of A150 alone has no effect on either host. By deleting both Ac145 and
476	Ac150, the infectivity of AcMNPV was decreased in both T. ni and H. virescens (Lapointe et al.,
477	2004). It has been proposed that Ac145 is specifically involved in the initiation of primary
478	infection while Ac150 is more involved in the systemic spread of the infection (Beperet et al.,
479	2015). The extra copy of OrNVorf41-like identified in CcapiENV and CnolaENV may therefore
480	enable infection of different wasp's hosts compared to V. canescens.

481 CcapiVLPs and VcVLP do not share the same VLP content

482	Regarding the virulence proteins contained in VLPs, V. canescens produces VLPs containing
483	three virulence proteins: VLP1, VLP2 and VLP3. In C. capitator, no VcVLP virulence protein
484	counterparts, nor protein of similar functions, could be found inside CcapiVLPs. Wasp
485	virulence proteins can be encoded from IV and BV circles or be produced in venom glands
486	(Burke & Strand, 2014; JM. Drezen et al., 2017; Poirié et al., 2009). We therefore searched
487	for virulence protein candidates which have similar functions to virulence proteins from other
488	domesticated viruses or venom proteins. Of these virulence protein candidates, we found a
489	serine protease inhibitor (serpin), which is a protein that has also been detected in venom of
490	several parasitoid wasps and in MdBV (Microplitis demolitor Bracovirus) (Beck & Strand, 2007;
491	Inwood et al., 2023; Moreau & Asgari, 2015; Poirié et al., 2014; Quicke & Butcher, 2021). These
492	proteins have been shown to inhibit the proteolytic cascade leading to the production of
493	phenoloxidase (PO), involved in the melanisation reaction (Beck & Strand, 2007; Colinet et al.,
494	2009).

Other proteins described in wasp venoms have also been identified in the proteomic analysis of CcapiVLP components such as a peroxiredoxin, a calreticulin, and an aminopeptidase. Peroxiredoxin enzymes protect against oxidative stress and have also been identified in the venom of the parasitoid wasp *Anisopteromalus calandrae* (Perkin et al., 2015). In the context of parasitoid wasp-host interactions, this type of enzyme may protect the parasitoid eggs from 500 detrimental reactive oxygen species generated during oviposition and the encapsulation 501 response. Calreticulins have been identified in several parasitoid wasps (Cha et al., 2015; De 502 Graaf et al., 2010; Etebari et al., 2011; Fang et al., 2011; Perkin et al., 2015; L. Wang et al., 503 2013; G. Zhang et al., 2006). Several studies have suggested calreticulin works as an 504 antagonist, competing for binding sites with host calreticulins, thus inhibiting hemocyte encapsulation (Cha et al., 2015; L. Wang et al., 2013; G. Zhang et al., 2006). Aminopeptidase 505 activity or proteins have been detected in the venoms of several parasitoid wasps 506 507 (Becchimanzi et al., 2020; Dani et al., 2005; Inwood et al., 2023; Mathé-Hubert et al., 2016; 508 Teng et al., 2017), although the functions of these enzymes in the interaction are not clear 509 they could be involved in general degradation of host tissues.

510

511 It has often been described that genes encoding virulence proteins are part of multigenic 512 families expanded in species harbouring them. For instance, protein tyrosine phosphatases 513 (PTP) genes have been found largely duplicated in several BVs in which they code for virulence proteins (Serbielle et al., 2012). In parasitoid wasps, some venom proteins are derived from 514 duplicated genes (Casewell et al., 2013; Colinet et al., 2014; Fry et al., 2009; Wong & Belov, 515 516 2012), conferring a selective advantage linked to the diversification of venom proteins. Among all possible candidates (Table S10), we investigated whether these proteins are encoded from 517 518 genes included in expanded gene families in *Campoplex* species, with no obvious counterparts

519	in V. canescens genome. In CcapiVLPs, the serpin is the only protein that meets the criteria
520	described above (see results), establishing it as a major candidate. Thus, it would be
521	interesting to investigate its function using RNA interference to validate its virulence protein
522	function.

523

No support for ichnovirus replacement hypothesis in *Campoplex* species 524

In the study of Pichon et al. (2015), sequences that appeared to correspond to degraded 525 remnants of the ichnovirus replication machinery (IVSPERs) were detected in V. canescens 526 genome; this result, combined with a preliminary phylogeny inferred from 28S rRNA 527 sequences, led the authors to hypothesise that V. canescens may have undergone a process 528 529 of "endogenous virus replacement", in which an ancestrally present ichnovirus was lost following the acquisition of the endogenous alphanudivirus. In the present study, we were 530 unable to corroborate these results (Pichon et al., 2015) as we could not find remnants of a 531 past ichnovirus integration in the *Campoplex* genomes. Similarly, Burke and collaborators 532 533 (Burke et al., 2021) did not find IVSPER sequences in a genome of Dusona sp., one of the closest relative to Campoplex species (Sharanowski et al., 2021). Previous results and our 534 results suggest that the ichnovirus integration might have happened in the Hyposoter -535

536	Campoletis clade, while the Campoplex - Dusona clade have endogenized an alphanudivirus,
537	which had been partially lost in <i>Dusona sp.</i> (see Sharanowski et al. (2021) for phylogeny).
538	
539	

540	To conclude, using third generation sequencing technology, it has been possible to describe
541	new endogenous viruses in parasitoid wasps. The new genomes of two Campopleginae wasps
542	harbour an alphanudivirus which derive from the same endogenization event as the one of
543	VcENV in the common wasp ancestor. The description of these new endogenized nudiviruses
544	sheds light on early evolutionary processes of viral domestication. Comparison with the closely
545	related V. canescens species shows that there are minute differences between the genomes
546	of endogenized nudiviruses in Campopleginae wasps. However, major differences can be
547	seen, such as the virulence protein content of VLP which appears to be strikingly different
548	between C. capitator and V. canescens, showing early adaptation to wasp's hosts in the
549	context of viral domestication.

550 Material and methods

551 Parasitoid model

Campoplex capitator wasps were obtained after emergence from the lepidopteran host *Lobesia botrana*, a vineyard pest that can grow on *Daphne gnidium* (Loni et al., 2016).
Caterpillars of *L. botrana* were sampled from *D. gnidium* shrubs in the natural reserve of Migliarino-San Rossore-Massaciuccoli (Tuscany, Italy). Samplings were carried out in early July of 2019 and 2021, with wasps emerging between June and August (Scaramozzino et al., 2018). *L. botrana* nests were placed individually in test tubes and each tube was monitored every day. Emerging *C. capitator* were used for experiments.

559 To produce enough wasps for our experiments, a C. capitator rearing was maintained as 560 described in (Benelli et al., 2020; Lucchi et al., 2018): L. botrana larvae were kept in plastic 561 boxes (20cm D x 15cm W x 10cm H) with a nutritious substrate (30g of agar, 60g of sugar, 50g of alfalfa, 36g of Brewer yeast, 25g of Wesson salt, 180g of wheat sprout, 80g of casein, 4g of 562 sorbic acide, 15g of Wanderzahnt vitamins, 2.5g of cholesterol, 2.5g of tetracyclin, 5mL of 563 propionic acid (99,5%), 2mL of linoleic acid (95%), 5mL of olive oil and 1.5mL of distilled water). 564 565 After the emergence, adults were kept in the same box for reproduction where the substrate was removed and droplets of honey were added. Once eggs were visible on the box surface, 566 567 adults were removed and nutritious substrate was added to feed the future larvae. Campoplex

568	capitator females and males were meanwhile kept in plexiglass chambers (40cm D x 25cm W
569	x 30cm H) with honey to allow their reproduction. L2 to L4 host larvae were put in the
570	chambers for two hour parasitism periods and then individually reared into small boxes (5cm
571	Ø x 5cm H) with nutritious substrate. These boxes were monitored every day to check for wasp
572	emergence and honey was added when larvae were about to pupate. All insects were kept at
573	25°C and 45% of humidity, with a 16:8 day/night photoperiod.
574	Meanwhile, a female specimen of Campoplex nolae was collected in the wild by active
575	sweeping at Powdermill Nature Reserve, Rector county, Pennsylvania, USA, and kept in liquid
576	nitrogen until the time of DNA isolation.

577

578 DNA extraction and sequencing

For *C. capitator*, DNA was extracted from one haploid male at emergence using the MagAttract[®] HMW DNA Kit (Qiagen). The male wasp tissues were disrupted in a 2 mL tube containing 200 μL of 1X DPBS. 20 μL of proteinase K, 4 μL of RNAse A and 150μL of buffer AL were added to the tube. The tube was then mixed carefully and incubated at 56°C at 900 rpm for 2 hours. The manufacturer's protocol was followed from step 4 to step 16. Total DNA was finally eluted in 100 μL of TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 8.0) and quantified using the QubitTM DNA HS assay kit (Invitrogen) and the Qubit2.0 fluorometer (Invitrogen). DNA quality and contamination were checked by measurement of 260/280 and 260/230 OD ratios
using the Varian Cary[®] 50 Scan spectrophotometer. Total DNA was then stored at 4°C. The
library was prepared and sequenced using the PacBio Sequel II technology by the Gentyane
platform (France).

For C. nolae, extraction was performed using the MagAttract® HMW DNA Kit (Qiagen), 590 591 following the manufacturer's protocol with the whole specimen immersed in extraction buffer and proteinase K overnight. An additional purification step using Agencourt AMPure XP beads 592 593 (Beckman Coulter, Brea, U.S.A.) at 0.5X was used to remove small fragments. Genomic libraries were prepared for parallel sequencing in short-read (Illumina) and long-read 594 595 (Nanopore) platforms: the Illumina library was prepared using the Kapa HyperPrep kit (Kapa 596 Biosystems, Wilmington, MA). A-tailing, end-repair and ligation reactions were performed at a quarter volume relative to the standard protocol, while library amplification was performed 597 598 at full volume. Custom, dual-indexing adapter-primers were used to allow for in silico de-599 multiplexing of each sample (Glenn et al., 2016). Following stub ligation and PCR, adapter-600 dimers were removed by performing a 0.8X bead cleaning using AMPure beads. The library was pooled with other samples at equimolar concentrations and sequenced at 4 nM as single 601 602 lanes on Illumina NovaSeq 6000 S4 platform (2x150; Illumina Inc., San Diego, CA). The library 603 for long-read data was prepared using the Nanopore ligation kit, complemented by reagents 604 from the NEBNext Ultra II library prep kit (New England Biolabs, Ipswich, Massachusetts,

605 U.S.A.), and then sequenced at a MinION platform (Oxford Nanopore Technologies, Oxford,

606 U.K.) using the manufacturer's specifications.

607 For both wasp species, raw data are available in NCBI (accession number of 608 the BioProject: PRJNA936130).

609

610 RNA extraction and sequencing

611 Emerging C. capitator wasps were dissected in order to obtain ovaries where CcapiVLP are produced. Venom glands and head-thorax of female adults and testis and head-thorax of male 612 adults were also dissected in order to investigate expression of CcapiENV genes outside of the 613 calyx region and in males. For all samples, two pools were analysed. Pools were composed of 614 615 5 individuals for head-thorax for both males and females, 21 female venom glands, 5 ovary 616 pairs and 15 male testis pairs. Total RNA was extracted from the 10 pools in total 617 using TRIzol Reagent (Invitrogen) according to the manufacturer's instructions. Only the isopropanol step was replaced by cold absolute ethanol (3 volumes per sample) and total RNA 618 was finally resuspended in 30µL of RNAse free water. RNA quantity of each pool was 619 620 quantified using the Qubit[™] RNA HS assay kit (Invitrogen) designed for the Qubit2.0 fluorometer (Invitrogen). Samples of extracted RNA were then stored at -80°C. 621
622	For genome annotation, total RNA was extracted from two pools of four entire emerging
623	female wasps using the NucleoSpin [®] RNA kit (Macherey-Nagel). Total RNA was finally
624	resuspended in 40 μ L of RNAse free water. RNA quantity of the two pools was quantified using
625	the Qubit [™] RNA HS assay kit (Invitrogen) designed for the Qubit2.0 fluorometer. Samples of
626	extracted RNA were then stored at -80°C.
627	The sequencing of library preparations and the generation of paired-end reads were
628	performed on an Illumina platform by the Novogene company (UK). Raw data are available in
629	NCBI (accession number of the BioProject: PRJNA936130).
630	

631 Genome assembly and annotation

632 For C. capitator, genome and K-mer sizes were estimated beforehand using KmerGenie (Chikhi 633 & Medvedev, 2014). Raw reads were then corrected and trimmed using respectively Canucorrect and Canu-trim modules (Canu software v1.8) (Koren et al., 2017) in order to improve 634 635 the base accuracy and to retrieve high quality sequence portions only. The genome was then assembled using the Canu-assemble module. The newly assembled genome was polished 636 637 using Racon (v1.4.21) with the longest 80X raw reads to further improve the base accuracy using the longest raw reads. In parallel, C. nolae raw reads from Nanopore sequencing were 638 639 filtered using Filtlong (v.0.2.1) before being assembled using Flye (v.2.9-b1768) (Kolmogorov et al., 2020). The produced assembly was then polished with Hypo (v.1.0.3.flye) using the

641	Illumina reads. Scripts for C. nolae genome assembly are available at
642	https://gitlab.in2p3.fr/marie.cariou/campoplex_assembly/.
643	The assembled genome completeness was assessed with BUSCO (Benchmarking Universal
644	Single-Copy Orthologs, v5.4.2) (Manni et al., 2021) using Insecta and Hymenoptera lineage
645	datasets (odb10) and genome contamination was checked with Blobtools (v1.1.1) (Laetsch &
646	Blaxter, 2017) for both genomes.
647	For both genomes, repeated elements were annotated <i>de novo</i> using the TEdenovo pipeline
648	comprised in the REPET pipeline (v2.5) (Flutre et al., 2011). Two rounds of the TEannot pipeline
649	(contained in the REPER pipeline) were then used to annotate repeated elements using
650	existing databases. Repeated elements were then masked using Bedtools (v.2.29.1) (Quinlan
651	& Hall, 2010) before gene prediction. Gene models were generated for C. capitator using
652	BRAKER-2 (v2.1.6) (Bruna et al., 2021) with assembled transcriptomes by spades (v3.15.5)
653	(Bushmanova et al., 2019). Models were then functionally annotated using InterProScan
654	(v5.53-87.0) (Blum et al., 2021) and blastp (NCBIblast+ v2.13.0) with the nr database
655	(downloaded the 14^{th} of April 2023), before being polished by AGAT (v1.0.0) (Dainat et al.,
656	2023). Proteins were extracted from gene models using the agat_sp_extract_sequences.pl
657	tool from AGAT software. Finally, the genome completeness was assessed again using the
658	protein sequences with BUSCO.

659 In total, 44 CcapiENV genes were annotated with the automated annotation process. Using the gene models predicted previously, additional viral genes were then annotated by 660 661 reciprocal blasts: translated sequences from predicted genes were aligned using blast tools on the NCBI nr database filtered for sequences of endogenous and exogenous nudiviruses. 662 663 Aligned sequences were then extracted and realigned on the complete NCBI nr database. The final Blast outputs were filtered to keep only sequences which aligned on sequences of 664 endogenous and exogenous nudiviruses reported in the database. 665 To annotate nudivirus genes on the C. nolae genome, open reading frames were predicted 666

using orfipy (v0.0.4) (Singh & Wurtele, 2021). Nudivirus genes were then annotated by
reciprocal blasts using translated sequences from predicted ORFs. Miniprot (v0.9-0) (H. Li,
2023) was also used to align *C. capitator* proteins on *C. nolae* genome and validate previously
annotated nudivirus genes. Miniprot gene models were also used for gene clustering in the
dN/dS ratio analysis.

Pseudogenized genes were identified by reciprocal blast: tblastn was used first to map nudivirus proteins on the wasp genomes. Hits were then verified by blastx to map potential nudiviral nucleotide sequences on the NCBI nr database. Proteins corresponding to Nucleotide sequences mapping back on nudivirus were kept and incomplete and non-transcribed sequences were considered as pseudogenes.

677	Ichnovirus sequences were searched using a home-made pipeline where genomic IVSPER
678	sequences of Hyposoter dydimator and Glypta fumiferanae were first aligned on Campoplex
679	genome portions (the genomes were segmented into chunks of 500,000 bases). Aligning
680	chunks were then aligned on the NCBI nr database. These hits were filtered to keep only hits
681	aligning on IVSPER proteins that are absent from parasitoid wasps which do not bear an
682	Ichnovirus. These "IVSPER" hits were then aligned back on the nr database and only the first
683	hit per query was retained.

684

685 CO1 and nudivirus gene alignments

Because the endogenized nudivirus genomes were highly similar in both *Campoplex* species, 686 we collected evidences to confirm that the *Campoplex* wasps sequenced for this study are 687 part of different species. To determine if the genomes of *C. capitator* and *C. nolae* come from 688 distinct species, whole genome alignments were performed using D-Genies (v1.4.0) 689 690 (Cabanettes & Klopp, 2018). A CO1 (cytochrome oxydase 1) sequence alignment was also performed in order to measure divergence between the two genomes. CO1 orthologs were 691 searched for in C. capitator and C. nolae genomes by aligning ORFs on CO1 sequence of 692 Campoplex species reported in BOLD database (Ratnasingham & Hebert, 2007). Candidates 693 were then aligned together (C. capitator candidates vs C. nolae candidates) before being 694

aligned on the NCBI database. Endogenized nudivirus were also aligned by blastp in order to
assess the protein divergence between the two species. All results for this part are available
in the supplementary materials.

698

699 Endogenized nudivirus evolution

700 To perform the virus phylogeny, protein sequences of one nimavirus, three hytrosaviruses, 701 sixty-nine baculoviruses and twenty nudiviruses (including CcapiENV and *C. nolae* sequences) 702 were first aligned together in order to find orthologous genes. Results were then manually 703 corrected using the knowledge found in the literature (Bézier, Annaheim, et al., 2009; Bézier 704 et al., 2015; Bézier, Herbinière, et al., 2009; Burand et al., 2012; Burke, 2019; J.-M. Drezen et 705 al., 2022). Protein sequences of orthologous genes were then aligned using mafft (v7.487) 706 (Katoh et al., 2019) with the following parameters: maxiterate=1000 (maximum number of 707 iterations), genafpair (Altschul algorithm (Altschul, 1998)), ep=0 (offset value). Alignments 708 were then trimmed by TrimAL (v1.4.rev15) (Capella-Gutiérrez et al., 2009) with the gap 709 threshold parameter fixed at 0.6. For each gene, a tree was finally generated with IQ-TREE 2 710 (v2.1.4) (Minh et al., 2020) with the following parameters: m=TEST (use the best model found), 711 B=1000 (number of bootstrap iterations), alrt=1000 (number of SH-aLRT replicates). Protein 712 sequences of genes that were not supporting the accepted phylogeny (at the family level)

713	were removed from the further analysis. Finally, 21 baculovirus core genes and 13
714	alphanudivirus core genes were kept for the virus tree construction. Protein sequences of
715	these genes were aligned and trimmed as described previously. Sequences were then
716	concatenated using FASconCAT-G (v1.0) (Kück & Longo, 2014) and a tree was constructed with
717	iqtree2 with the same parameters as previously described. The tree image was then built using
718	ape (v5.7-1), treeio (v1.24.0) (LG. Wang et al., 2020) and ggtree (v3.8.0) (Yu et al., 2017)
719	packages with R (v4.2.1).
720	A whole genome synteny analysis was performed between V. canescens, C. capitator and C.
721	nolae using D-Genies. The cluster synteny figure (Figure 3) between C. capitator and V.
722	canescens was built using R and parity plots (Figure 4) showing syntenies among nudiviruses
723	were generated with Excel (Microsoft v16).
724	To estimate the evolutionary constraint occurring on groups of genes according to their
725	function, protein sequences of C. capitator, V. canescens and C. nolae were first clustered
726	using OrthoMCL (v2.0.9) (L. Li et al., 2003) and scripts written by Arun Seetharam
727	(https://github.com/ISUgenomics/common scripts). Clustered protein sequences were then
728	aligned using ClustalOmega (v1.2.4) and aligned sequences were converted into codon
729	alignement using PAL2NAL (v14.1) (Suyama et al., 2006). Phylip trees were generated using
730	IQ-TREE 2 with the following parameters: -m JTT (Jones-Taylor-Thornton model (Jones et al.,
731	1992)). Codeml (Paml v4.10.6) was finally used to calculate dN and dS values.

732 Regulatory sequences in CcapiENV

733	In the same fashion as described in Cerqueira de Araujo et al. (2022), promoter sequences
734	regulating the early and late expression of viral genes in baculoviruses (Chen et al., 2013;
735	Passarelli & Guarino, 2007; Rohrmann, 2014) were sought in the 300 bp upstream of CcapiENV
736	genes. The "early" promoters described in Baculoviruses include a TATA box
737	(TATA[A/T]T[A/T]) and a sequence motif (CA[G/T]T or CGTCG) placed among the 40
738	nucleotides after the TATA box. The late promoters include the baculovirus motif
739	([A/T/G]TAAG) and the Heliothis zea nudivirus 1 motif (TTATAGTAT) (CH. Cheng et al., 2002).
740	We also considered the "late" motif ([G/T][A/T][A/G]A[A/T]ATAG[T/A]) described in Alexandra
741	Cerqueira 2022 for which 2 mismatches were allowed in the sequence search.

742

743 CcapiENV gene expression

Paired raw reads from ovaries, head-thorax, testes and venom gland of *C. capitator* wasps
were first trimmed using Trimmomatic (v 0.38) (Bolger et al., 2014) and TruSeq3-PE adaptors.
A quality check was then performed on trimmed reads using fastqc (v 0.11.9) before mapping.
Reads were mapped on the genome using Hisat-2 (v2.2.1-3n) (Kim et al., 2019) after genome
indexation. Mapped reads were then sorted using samtools (v1.16). Sorted reads were
converted into counts by FeatureCounts from the Rsubread package (v2.14.1) (Liao et al.,

750	2019). Using the edgeR package (v 3.42.2) (Robinson et al., 2010), genes with a count being
751	equal to less than 15 per sample were filtered from the dataset in order to remove non-
752	expressed genes The dataset was then normalised by converting the read counts into TPM
753	(transcripts per million). A Spearman correlation heatmap was performed to verify duplicate
754	consistency (Figure S4).

755

756 CcapiVLP purification and protein sequencing

757	In order to purify Virus-Like-Particles, 61 adult female wasps of <i>C. capitator</i> were dissected 2
758	days after emergence. In total, 122 calyces were obtained and pooled in 1X DPBS. Calyces
759	were then disrupted thanks to a pellet pestle and CcapiVLPs were purified as described in
760	Pichon et al. (2015): disrupted calyces were centrifuged at 770 g, at 4°C for 10 minutes in order
761	to separate CcapiVLPs and calyx fluid (supernatant) from cellular waste (pellet). The
762	supernatant was then retrieved and transferred into a new tube. The new tube was then
763	centrifuged at 15 400 g, at 4°C for 10 minutes. The supernatant was discarded and the pellet
764	containing CcapiVLPs was suspended in 20 μL of 1X DPBS and stored at -20°C.
765	CcapiVLP proteins were then separated by SDS-polyacrylamide gel electrophoresis (12.5%

766 polyacrylamide gel) under denaturing conditions. Separated bands were incubated for 1h with

767 a Coomassie blue solution (10% acetic acid, 50% ethanol, 0.1% R250 Coomassie blue, q.s. to

768	1L of milliQ water) and 9 slices were cut from the gel. Slices were chopped into 1mm ³ cubes
769	before being stored at -20°C and analysed by the platform PIXANIM (France) using a
770	nanoUPLC_LTQ-VElos Pro Orbitrap Mass Spectrometer.
771	For each protein identified by the mass spectrometry, sites and domains were searched for
772	using InterProScan and gene ontology terms were attributed using sequence homology with
773	curated proteins from the Uniprot SWISSprot database (downloaded the 18th November
774	2022). Proteins with a peptide abundance higher than 50 were then retained as VLP
775	candidates.
776	
777	Electronic microscopy of the calyx region

The calyx region of adult *C. capitator* wasp ovaries was observed under electronic microscopy.
Wasp ovaries were dissected two days after emergence and fixed in PrOx/EPON epoxy resin.
Samples were fixed, cut and observed with the same protocol as one used in Cerqueira de
Araujo and collaborators (Cerqueira de Araujo et al., 2022). The protocol is available in
Supplementary materials.

784 Acknowledgements

785	The authors would like to thank Cosci Francesca, Filippo Di Giovanni and Augusto Loni from
786	the Department of Agriculture, Food and Environment (DAFE) of the University of Pisa (Italy)
787	for the help provided during field wasp sampling. The authors would like to thank also Amine
788	Chebbi who helped the first author on the transposable element annotation pipeline. We
789	would like to thank the IBiSA Electron Microscopy Facility of the University of Tours and the
790	University Hospital of Tours for their assistance. Research funding was provided by an ADS
791	Research Grant from the Smithsonian Institution to BFS, who was also supported by a GGI
792	Peter Buck postdoctoral fellowship during early stages of this work.

793

794 Data availability

795 Raw reads and assemblies are deposited on the NCBI database under BioProject

796 PRJNA936130.

797 Reference

- Abd-Alla, A. M. M., Cousserans, F., Parker, A. G., Jehle, J. A., Parker, N. J., Vlak, J. M., Robinson, A. S., &
 Bergoin, M. (2008). Genome Analysis of a *Glossina pallidipes* Salivary Gland Hypertrophy Virus
 Reveals a Novel, Large, Double Stranded Circular DNA Virus. *Journal of Virology, 82*(9), Article
 9. https://doi.org/10.1128/JVI.02588-07
- Altschul, S. F. (1998). Generalized affine gap costs for protein sequence alignment. *Proteins: Structure, Function, and Genetics, 32*(1), 88–96. https://doi.org/10.1002/(SICI)1097 0134(19980701)32:1<88::AID-PROT10>3.0.CO;2-J
- Arbuckle, J. H., Medveczky, M. M., Luka, J., Hadley, S. H., Luegmayr, A., Ablashi, D., Lund, T. C., Tolar,
 J., De Meirleir, K., Montoya, J. G., Komaroff, A. L., Ambros, P. F., & Medveczky, P. G. (2010).
 The latent human herpesvirus-6A genome specifically integrates in telomeres of human
 chromosomes in vivo and in vitro. *Proceedings of the National Academy of Sciences*, *107*(12),
 Article 12. https://doi.org/10.1073/pnas.0913586107
- Armezzani, A., Varela, M., Spencer, T., Palmarini, M., & Arnaud, F. (2014). "Ménage à Trois": The
 Evolutionary Interplay between JSRV, enJSRVs and Domestic Sheep. *Viruses*, 6(12), Article 12.
 https://doi.org/10.3390/v6124926
- Asgari, S., Reineke, A., Beck, M., & Schmidt, O. (2002). Isolation and characterization of a neprilysinlike protein from *Venturia canescens* virus-like particles. *Insect Molecular Biology*, *11*(5), Article
 5.
- Ashley, J., Cordy, B., Lucia, D., Fradkin, L. G., Budnik, V., & Thomson, T. (2018). Retrovirus-like Gag
 Protein Arc1 Binds RNA and Traffics across Synaptic Boutons. *Cell*, *172*(1–2), Article 1–2.
 https://doi.org/10.1016/j.cell.2017.12.022
- Ballinger, M. J., Bruenn, J. A., Hay, J., Czechowski, D., & Taylor, D. J. (2014). Discovery and Evolution of
 Bunyavirids in Arctic Phantom Midges and Ancient Bunyavirid-Like Sequences in Insect
 Genomes. *Journal of Virology*, *88*(16), Article 16. https://doi.org/10.1128/JVI.00531-14
- Becchimanzi, A., Avolio, M., Bostan, H., Colantuono, C., Cozzolino, F., Mancini, D., Chiusano, M. L.,
 Pucci, P., Caccia, S., & Pennacchio, F. (2020). Venomics of the ectoparasitoid wasp Bracon
 nigricans. *BMC Genomics*, *21*(1), 34. https://doi.org/10.1186/s12864-019-6396-4
- Beck, M. H., & Strand, M. R. (2007). A novel polydnavirus protein inhibits the insect prophenoloxidase
 activation pathway. *Proceedings of the National Academy of Sciences*, 104(49), Article 49.
 https://doi.org/10.1073/pnas.0708056104
- Bedwin, O. (1979). An insect glycoprotein: A study of the particles responsible for the resistance of a
 parasitoid's egg to the defence reactions of its insect host. *Proceedings of the Royal Society of*

830	London.	Series	В.	Biological	Sciences,	205(1159),	Article	1159
831	https://do	i.org/10.10	98/rspl	b.1979.0065				

- Bejarano, E. R., Khashoggi, A., Witty, M., & Lichtenstein, C. (1996). Integration of multiple repeats of
 geminiviral DNA into the nuclear genome of tobacco during evolution. *Proceedings of the National Academy of Sciences*, *93*(2), Article 2. https://doi.org/10.1073/pnas.93.2.759
- Béliveau, C., Cohen, A., Stewart, D., Periquet, G., Djoumad, A., Kuhn, L., Stoltz, D., Boyle, B., Volkoff,
 A.-N., Herniou, E. A., Drezen, J.-M., & Cusson, M. (2015). Genomic and Proteomic Analyses
 Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral
 Ancestors. *Journal of Virology*, *89*(17), Article 17. https://doi.org/10.1128/JVI.01001-15
- Belyi, V. A., Levine, A. J., & Skalka, A. M. (2010). Sequences from Ancestral Single-Stranded DNA Viruses
 in Vertebrate Genomes: The *Parvoviridae* and *Circoviridae* Are More than 40 to 50 Million
 Years Old. *Journal of Virology*, *84*(23), Article 23. https://doi.org/10.1128/JVI.01789-10
- Benelli, G., Ricciardi, R., Romano, D., Cosci, F., Stefanini, C., & Lucchi, A. (2020). Wing-fanning frequency
 as a releaser boosting male mating success—High-speed video analysis of courtship behavior
 in *Campoplex capitator*, a parasitoid of *Lobesia botrana*. *Insect Science*, *27*(6), Article 6.
 https://doi.org/10.1111/1744-7917.12740
- Beperet, I., Simón, O., Williams, T., López-Ferber, M., & Caballero, P. (2015). The "11K" gene family
 members sf68, sf95 and sf138 modulate transmissibility and insecticidal properties of
 Spodoptera frugiperda multiple nucleopolyhedrovirus. *Journal of Invertebrate Pathology*, *127*,
 101–109. https://doi.org/10.1016/j.jip.2015.03.008
- 850 Bézier, A., Annaheim, M., Herbinière, J., Wetterwald, C., Gyapay, G., Bernard-Samain, S., Wincker, P., 851 Roditi, I., Heller, M., Belghazi, M., Pfister-Wilhem, R., Periquet, G., Dupuy, C., Huguet, E., 852 Volkoff, A.-N., Lanzrein, B., & Drezen, J.-M. (2009). Polydnaviruses of Braconid Wasps Derive 853 from an Ancestral Nudivirus. Science, 323(5916), Article 5916. 854 https://doi.org/10.1126/science.1166788
- Bézier, A., Herbinière, J., Lanzrein, B., & Drezen, J.-M. (2009). Polydnavirus hidden face: The genes
 producing virus particles of parasitic wasps. *Journal of Invertebrate Pathology*, *101*(3), Article
 3. https://doi.org/10.1016/j.jip.2009.04.006
- Bézier, A., Thézé, J., Gavory, F., Gaillard, J., Poulain, J., Drezen, J.-M., & Herniou, E. A. (2015). The
 Genome of the Nucleopolyhedrosis-Causing Virus from *Tipula oleracea* Sheds New Light on
 the Nudiviridae Family. *Journal of Virology*, *89*(6), Article 6. https://doi.org/10.1128/JVI.0288414
- Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., Nuka, G., PaysanLafosse, T., Qureshi, M., Raj, S., Richardson, L., Salazar, G. A., Williams, L., Bork, P., Bridge, A.,
 Gough, J., Haft, D. H., Letunic, I., Marchler-Bauer, A., ... Finn, R. D. (2021). The InterPro protein

families and domains database: 20 years on. *Nucleic Acids Research, 49*(D1), D344–D354.
https://doi.org/10.1093/nar/gkaa977

- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence
 data. *Bioinformatics*, *30*(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Boogaard, B. (2018). An Advanced View on Baculovirus *per Os* Infectivity Factors. *Insects*, *9*(84), Article
 870 84. https://doi.org/10.3390/insects9030084
- Boyer, M., Azza, S., Barrassi, L., Klose, T., Campocasso, A., Pagnier, I., Fournous, G., Borg, A., Robert, C.,
 Zhang, X., Desnues, C., Henrissat, B., Rossmann, M. G., La Scola, B., & Raoult, D. (2011).
 Mimivirus shows dramatic genome reduction after intraamoebal culture. *Proceedings of the National Academy of Sciences*, *108*(25), Article 25. https://doi.org/10.1073/pnas.1101118108
- Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M., & Borodovsky, M. (2021). BRAKER2: Automatic
 eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein
 database. NAR Genomics and Bioinformatics, 3(1), Article 1.
 https://doi.org/10.1093/nargab/lqaa108
- Burand, J. P., Kim, W., Afonso, C. L., Tulman, E. R., Kutish, G. F., Lu, Z., & Rock, D. L. (2012). Analysis of
 the Genome of the Sexually Transmitted Insect Virus *Helicoverpa zea* Nudivirus 2. *Viruses*, 4(1),
 Article 1. https://doi.org/10.3390/v4010028
- Burke, G. R. (2019). Common themes in three independently derived endogenous nudivirus elements
 in parasitoid wasps. *Current Opinion in Insect Science*, *32*, 28–35.
 https://doi.org/10.1016/j.cois.2018.10.005
- Burke, G. R., Hines, H. M., & Sharanowski, B. J. (2021). The Presence of Ancient Core Genes Reveals
 Endogenization from Diverse Viral Ancestors in Parasitoid Wasps. *Genome Biology and Evolution*, 13(7), Article 7. https://doi.org/doi:10.1093/gbe/evab105
- Burke, G. R., Simmonds, T. J., Sharanowski, B. J., & Geib, S. M. (2018). Rapid Viral Symbiogenesis via
 Changes in Parasitoid Wasp Genome Architecture. *Molecular Biology and Evolution*, 35(10),
 Article 10. https://doi.org/10.1093/molbev/msy148
- Burke, G. R., & Strand, M. R. (2012). Deep Sequencing Identifies Viral and Wasp Genes with Potential
 Roles in Replication of *Microplitis demolitor* Bracovirus. *Journal of Virology*, *86*(6), Article 6.
 https://doi.org/10.1128/JVI.06434-11
- Burke, G. R., & Strand, M. R. (2014). Systematic analysis of a wasp parasitism arsenal. *Molecular Ecology*, 23(4), Article 4. https://doi.org/10.1111/mec.12648
- Burke, G. R., Thomas, S. A., Eum, J. H., & Strand, M. R. (2013). Mutualistic Polydnaviruses Share
 Essential Replication Gene Functions with Pathogenic Ancestors. *PLoS Pathogens*, *9*(5), Article
 5. https://doi.org/10.1371/journal.ppat.1003348
- Burke, G. R., Walden, K. K. O., Whitfield, J. B., Robertson, H. M., & Strand, M. R. (2014). Widespread

- 900 Genome Reorganization of an Obligate Virus Mutualist. *PLoS Genetics*, *10*(9), Article 9.
 901 https://doi.org/10.1371/journal.pgen.1004660
- Bushmanova, E., Antipov, D., Lapidus, A., & Prjibelski, A. D. (2019). rnaSPAdes: A de novo transcriptome
 assembler and its application to RNA-Seq data. *GigaScience*, 8(9), giz100.
 https://doi.org/10.1093/gigascience/giz100
- Cabanettes, F., & Klopp, C. (2018). D-GENIES: Dot plot large genomes in an interactive, efficient and
 simple way. *PeerJ*, 6, e4958. https://doi.org/10.7717/peerj.4958
- Campillos, M., Doerks, T., Shah, P., & Bork, P. (2006). Computational characterization of multiple Gaglike human proteins. *Trends in Genetics*, 22(11), Article 11.
 https://doi.org/10.1016/j.tig.2006.09.006
- 910 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for automated
 911 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*, 25(15), 1972–1973.
 912 https://doi.org/10.1093/bioinformatics/btp348
- Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A., & Fry, B. G. (2013). Complex cocktails: The
 evolutionary novelty of venoms. *Trends in Ecology & Evolution*, 28(4), Article 4.
 https://doi.org/10.1016/j.tree.2012.10.020
- 916 Cerqueira de Araujo, A., Leobold, M., Bézier, A., Musset, K., Uzbekov, R., Volkoff, A.-N., Drezen, J.-M.,
 917 Huguet, E., & Josse, T. (2022). Conserved Viral Transcription Plays a Key Role in Virus-Like
 918 Particle Production of the Parasitoid Wasp *Venturia canescens*. *Journal of Virology*, *96*(13),

919 Article 13. https://doi.org/10.1128/jvi.00524-22

- Cha, W. H., Kim, Y., & Lee, D.-W. (2015). Calreticulin in Cotesia plutellae suppresses immune response
 of Plutella xylostella (L.). *Journal of Asia-Pacific Entomology*, *18*(1), 27–31.
 https://doi.org/10.1016/j.aspen.2014.11.001
- Chen, Y.-R., Zhong, S., Fei, Z., Hashimoto, Y., Xiang, J. Z., Zhang, S., & Blissard, G. W. (2013). The
 Transcriptome of the Baculovirus *Autographa californica* Multiple Nucleopolyhedrovirus in
 Trichoplusia ni Cells. *Journal of Virology*, *87*(11), Article 11. https://doi.org/10.1128/JVI.00194 13
- 927 Cheng, C.-H., Liu, S.-M., Chow, T.-Y., Hsiao, Y.-Y., Wang, D.-P., Huang, J.-J., & Chen, H.-H. (2002). 928 Analysis of the Complete Genome Sequence of the Hz-1 Virus Suggests that It Is Related to 929 Members of the Baculoviridae. Journal of Virology, 76(18), Article 18. 930 https://doi.org/10.1128/JVI.76.18.9024-9034.2002
- 931 Cheng, R.-L., Li, X.-F., & Zhang, C.-X. (2020). Nudivirus Remnants in the Genomes of Arthropods.
 932 *Genome Biology and Evolution*, 12(5), Article 5. https://doi.org/10.1093/gbe/evaa074
- Cheng, R.-L., Xi, Y., Lou, Y.-H., Wang, Z., Xu, J.-Y., Xu, H.-J., & Zhang, C.-X. (2014). Brown Planthopper
 Nudivirus DNA Integrated in Its Host Genome. *Journal of Virology*, *88*(10), Article 10.

935 https://doi.org/10.1128/JVI.03166-13 936 Chikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. 937 *Bioinformatics*, 30(1), Article 1. https://doi.org/10.1093/bioinformatics/btt310 Colinet, D., Anselme, C., Deleury, E., Mancini, D., Poulain, J., Azéma-Dossat, C., Belghazi, M., Tares, S., 938 939 Pennacchio, F., Poirié, M., & Gatti, J.-L. (2014). Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC 940 941 Genomics, 15(1), Article 1. https://doi.org/10.1186/1471-2164-15-342 942 Colinet, D., Dubuffet, A., Cazes, D., Moreau, S., Drezen, J.-M., & Poirié, M. (2009). A serpin from the 943 parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. 944 Developmental & Comparative 33(5), Article 5. Immunology, https://doi.org/10.1016/j.dci.2008.11.013 945 946 Crochu, S., Cook, S., Attoui, H., Charrel, R. N., De Chesse, R., Belhouchet, M., Lemasson, J.-J., de Micco, 947 P., & de Lamballerie, X. (2004). Sequences of flavivirus-related RNA viruses persist in DNA form 948 integrated in the genome of Aedes spp. Mosquitoes. Journal of General Virology, 85(7), Article 949 7. https://doi.org/10.1099/vir.0.79850-0 950 Dainat, J., Hereñú, D., Dr. K. D. Murray, Davis, E., Crouch, K., LucileSol, Agostinho, N., Pascal-Git, 951 Zollman, Z., & Tayyrov. (2023). NBISweden/AGAT: AGAT-v1.2.0 (v1.2.0) [Computer software]. 952 Zenodo. https://doi.org/10.5281/ZENODO.8178877

- Dani, M. P., Edwards, J. P., & Richards, E. H. (2005). Hydrolase activity in the venom of the pupal
 endoparasitic wasp, Pimpla hypochondriaca. *Comparative Biochemistry and Physiology Part B: Biochemistry* and Molecular Biology, 141(3), 373–381.
 https://doi.org/10.1016/j.cbpc.2005.04.010
- Danquah, J. O., Botchway, S., Jeshtadi, A., & King, L. A. (2012). Direct Interaction of Baculovirus Capsid
 Proteins VP39 and EXON0 with Kinesin-1 in Insect Cells Determined by Fluorescence
 Resonance Energy Transfer-Fluorescence Lifetime Imaging Microscopy. *Journal of Virology*,
 86(2), Article 2. https://doi.org/10.1128/JVI.06109-11
- De Graaf, D. C., Aerts, M., Brunain, M., Desjardins, C. A., Jacobs, F. J., Werren, J. H., & Devreese, B.
 (2010). Insights into the venom composition of the ectoparasitoid wasp *Nasonia vitripennis*from bioinformatic and proteomic studies. *Insect Molecular Biology*, *19*(s1), 11–26.
 https://doi.org/10.1111/j.1365-2583.2009.00914.x
- Delaroque, N., Maier, I., Knippers, R., & MV^oller, D. G. (1999). Persistent virus integration into the
 genome of its algal host, Ectocarpus siliculosus (Phaeophyceae). *Journal of General Virology*,
 80(6), Article 6. https://doi.org/10.1099/0022-1317-80-6-1367
- Di Giovanni, D., Lepetit, D., Guinet, B., Bennetot, B., Boulesteix, M., Couté, Y., Bouchez, O., Ravallec,
 M., & Varaldi, J. (2020). A Behavior-Manipulating Virus Relative as a Source of Adaptive Genes

- 970 for *Drosophila* Parasitoids. *Molecular Biology and Evolution*, 37(10), Article 10.
 971 https://doi.org/10.1093/molbev/msaa030
- Drezen, J., Bézier, A., Lesobre, J., Huguet, E., Cattolico, L., Periquet, G., & Dupuy, C. (2006). The few
 virus-like genes of *Cotesia congregata* bracovirus. *Archives of Insect Biochemistry and Physiology*, *61*(3), 110–122. https://doi.org/10.1002/arch.20108
- Drezen, J.-M., Bézier, A., Burke, G. R., & Strand, M. R. (2022). Bracoviruses, ichnoviruses, and virus-like
 particles from parasitoid wasps retain many features of their virus ancestors. *Current Opinion in Insect Science*, 49, 93–100. https://doi.org/10.1016/j.cois.2021.12.003
- Drezen, J.-M., Leobold, M., Bézier, A., Huguet, E., Volkoff, A.-N., & Herniou, E. A. (2017). Endogenous
 viruses of parasitic wasps: Variations on a common theme. *Current Opinion in Virology*, 25, 41–
 48. https://doi.org/10.1016/j.coviro.2017.07.002
- Elde, N. C., Child, S. J., Eickbush, M. T., Kitzman, J. O., Rogers, K. S., Shendure, J., Geballe, A. P., & Malik,
 H. S. (2012). Poxviruses Deploy Genomic Accordions to Adapt Rapidly against Host Antiviral
 Defenses. *Cell*, *150*(4), Article 4. https://doi.org/10.1016/j.cell.2012.05.049
- Etebari, K., Palfreyman, R. W., Schlipalius, D., Nielsen, L. K., Glatz, R. V., & Asgari, S. (2011). Deep
 sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma
 semiclausum. *BMC Genomics*, *12*(1), 446. https://doi.org/10.1186/1471-2164-12-446
- Fang, Q., Wang, F., Gatehouse, J. A., Gatehouse, A. M. R., Chen, X., Hu, C., & Ye, G. (2011). Venom of
 Parasitoid, Pteromalus puparum, Suppresses Host, Pieris rapae, Immune Promotion by
 Decreasing Host C-Type Lectin Gene Expression. *PLoS ONE*, 6(10), e26888.
 https://doi.org/10.1371/journal.pone.0026888
- Feddersen, I., Sander, K., & Schmidt, O. (1986). Virus-like particles with host protein-like antigenic
 determinants protect an insect parasitoid from encapsulation. *Experientia*, 42(11–12), Article
 11–12. https://doi.org/10.1007/BF01946422
- Feschotte, C., & Gilbert, C. (2012). Endogenous viruses: Insights into viral evolution and impact on host
 biology. *Nature Reviews Genetics*, *13*(4), Article 4. https://doi.org/10.1038/nrg3199
- Filée, J. (2018). Giant viruses and their mobile genetic elements: The molecular symbiosis hypothesis.
 Current Opinion in Virology, *33*, 81–88. https://doi.org/10.1016/j.coviro.2018.07.013
- 998 Flutre, T., Duprat, E., Feuillet, C., & Quesneville, H. (2011). Considering Transposable Element
 999 Diversification in De Novo Annotation Approaches. *PLoS ONE*, 6(1), Article 1.
 1000 https://doi.org/10.1371/journal.pone.0016526
- Frank, J. A., & Feschotte, C. (2017). Co-option of endogenous viral sequences for host cell function.
 Current Opinion in Virology, 25, 81–89. https://doi.org/10.1016/j.coviro.2017.07.021
- 1003Fry, B. G., Roelants, K., Champagne, D. E., Scheib, H., Tyndall, J. D. A., King, G. F., Nevalainen, T. J.,1004Norman, J. A., Lewis, R. J., Norton, R. S., Renjifo, C., & de la Vega, R. C. R. (2009). The

1005Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annual1006Review of Genomics and Human Genetics, 10(1), Article 1.1007https://doi.org/10.1146/annurev.genom.9.081307.164356

- Gauthier, J., Boulain, H., van Vugt, J. J. F. A., Baudry, L., Persyn, E., Aury, J.-M., Noel, B., Bretaudeau, A.,
 Legeai, F., Warris, S., Chebbi, M. A., Dubreuil, G., Duvic, B., Kremer, N., Gayral, P., Musset, K.,
 Josse, T., Bigot, D., Bressac, C., ... Drezen, J.-M. (2021). Chromosomal scale assembly of
 parasitic wasp genome reveals symbiotic virus colonization. *Communications Biology*, 4(1),
 Article 1. https://doi.org/10.1038/s42003-020-01623-8
- Gauthier, J., Gayral, P., Le Ru, B. P., Jancek, S., Dupas, S., Kaiser, L., Gyapay, G., & Herniou, E. A. (2018).
 Genetic footprints of adaptive divergence in the bracovirus of *Cotesia sesamiae* identified by
 targeted resequencing. *Molecular Ecology*, 27(8), Article 8.
 https://doi.org/10.1111/mec.14574
- Guinet, B., Lepetit, D., Charlat, S., Buhl, P. N., Notton, D. G., Cruaud, A., Rasplus, J.-Y., Stigenberg, J., De 1017 1018 Vienne, D. M., Boussau, B., & Varaldi, J. (2023). Endoparasitoid lifestyle promotes 1019 endogenization and domestication of dsDNA viruses. eLife, 12, e85993. 1020 https://doi.org/10.7554/eLife.85993
- Gundersen-Rindal, D., Dupuy, C., Huguet, E., & Drezen, J.-M. (2013). Parasitoid polydnaviruses:
 Evolution, pathology and applications: Dedicated to the memory of Nancy E. Beckage.
 Biocontrol Science and Technology, 23(1), Article 1.
 https://doi.org/10.1080/09583157.2012.731497
- Hellers, M., Beck, M., Theopoid, U., Kamei, M., & Schmidt, O. (1996). Multiple alleles encoding a virus like particle protein in the ichneumonid endoparasitoid *Venturia canescens*. *Insect Molecular Biology*, 5(4), Article 4. https://doi.org/10.1111/j.1365-2583.1996.tb00098.x
- Herniou, E. A., Huguet, E., Thézé, J., Bézier, A., Periquet, G., & Drezen, J.-M. (2013). When parasitic
 wasps hijacked viruses: Genomic and functional evolution of polydnaviruses. *Philosophical Transactions of the Royal Society B: Biological Sciences, 368*(1626), Article 1626.
 https://doi.org/10.1098/rstb.2013.0051
- Holmes, E. C. (2011). The Evolution of Endogenous Viral Elements. *Cell Host & Microbe*, 10(4), Article
 4. https://doi.org/10.1016/j.chom.2011.09.002
- Horie, M., & Tomonaga, K. (2019). Paleovirology of bornaviruses: What can be learned from molecular
 fossils of bornaviruses. *Virus Research, 262, 2–9.*https://doi.org/10.1016/j.virusres.2018.04.006
- 1037Inwood, S. N., Harrop, T. W. R., & Dearden, P. K. (2023). The venom composition and parthenogenesis1038mechanism of the parasitoid wasp Microctonus hyperodae, a declining biocontrol agent. Insect1039BiochemistryandMolecularBiology,153,103897.

1040 https://doi.org/10.1016/j.ibmb.2022.103897

- Irwin, N. A. T., Pittis, A. A., Richards, T. A., & Keeling, P. J. (2021). Systematic evaluation of horizontal
 gene transfer between eukaryotes and viruses. *Nature Microbiology*, 7(2), 327–336.
 https://doi.org/10.1038/s41564-021-01026-3
- Jehle, J. A., Abd-Alla, A. M. M., & Wang, Y. (2013). Phylogeny and evolution of *Hytrosaviridae*. *Journal of Invertebrate Pathology*, *112*, S62–S67. https://doi.org/10.1016/j.jip.2012.07.015
- 1046Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices1047from protein sequences.*Bioinformatics*, 8(3), 275–282.1048https://doi.org/10.1093/bioinformatics/8.3.275
- Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment,
 interactive sequence choice and visualization. *Briefings in Bioinformatics, 20*(4), Article 4.
 https://doi.org/10.1093/bib/bbx108
- Katsuma, S., & Kokusho, R. (2017). A Conserved Glycine Residue Is Required for Proper Functioning of
 a Baculovirus VP39 Protein. *Journal of Virology*, *91*(6), Article 6.
 https://doi.org/10.1128/JVI.02253-16
- Katzourakis, A., & Gifford, R. J. (2010). Endogenous Viral Elements in Animal Genomes. *PLoS Genetics*,
 6(11), Article 11. https://doi.org/10.1371/journal.pgen.1001191
- Kikhno, I., Gutiérrez, S., Croizier, L., Croizier, G., & Ferber, M. L. (2002). Characterization of pif, a gene
 required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus. *Journal of General Virology*, *83*(12), Article 12. https://doi.org/10.1099/0022-1317-83-12-3013
- 1060 Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and
 1061 genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology*, *37*(8), Article 8.
 1062 https://doi.org/10.1038/s41587-019-0201-4
- Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J.,
 Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020). metaFlye: Scalable long-read metagenome
 assembly using repeat graphs. *Nature Methods*, *17*(11), 1103–1110.
 https://doi.org/10.1038/s41592-020-00971-x
- Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: Scalable
 and accurate long-read assembly via adaptive k -mer weighting and repeat separation.
 Genome Research, 27(5), Article 5. https://doi.org/10.1101/gr.215087.116
- 1070 Kück, P., & Longo, G. C. (2014). FASconCAT-G: Extensive functions for multiple sequence alignment
 1071 preparations concerning phylogenetic studies. *Frontiers in Zoology*, *11*(1), Article 1.
 1072 https://doi.org/10.1186/s12983-014-0081-x
- Laetsch, D. R., & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies. *F1000Research*,
 6, 1287. https://doi.org/10.12688/f1000research.12232.1

- Lai, Q., Wu, W., Li, A., Wang, W., Yuan, M., & Yang, K. (2018). The 38K-Mediated Specific
 Dephosphorylation of the Viral Core Protein P6.9 Plays an Important Role in the Nucleocapsid
 Assembly of Autographa californica Multiple Nucleopolyhedrovirus. *Journal of Virology*, *92*(9),
 Article 9. https://doi.org/10.1128/JVI.01989-17
- Lapointe, R., Popham, H. J. R., Straschil, U., Goulding, D., O'Reilly, D. R., & Olszewski, J. A. (2004).
 Characterization of Two *Autographa californica* Nucleopolyhedrovirus Proteins, Ac145 and
 Ac150, Which Affect Oral Infectivity in a Host-Dependent Manner. *Journal of Virology*, *78*(12),
 Article 12. https://doi.org/10.1128/JVI.78.12.6439-6448.2004
- Lavialle, C., Cornelis, G., Dupressoir, A., Esnault, C., Heidmann, O., Vernochet, C., & Heidmann, T.
 (2013). Paleovirology of *'syncytins'*, retroviral env genes exapted for a role in placentation.
 Philosophical Transactions of the Royal Society B: Biological Sciences, *368*(1626), Article 1626.
 https://doi.org/10.1098/rstb.2012.0507
- Legendre, M., Fabre, E., Poirot, O., Jeudy, S., Lartigue, A., Alempic, J.-M., Beucher, L., Philippe, N.,
 Bertaux, L., Christo-Foroux, E., Labadie, K., Couté, Y., Abergel, C., & Claverie, J.-M. (2018).
 Diversity and evolution of the emerging Pandoraviridae family. *Nature Communications*, 9(1),
 Article 1. https://doi.org/10.1038/s41467-018-04698-4
- Leobold, M., Bézier, A., Pichon, A., Herniou, E. A., Volkoff, A.-N., & Drezen, J.-M. (2018). The
 Domestication of a Large DNA Virus by the Wasp *Venturia canescens* Involves Targeted
 Genome Reduction through Pseudogenization. *Genome Biology and Evolution*, *10*(7), Article
 7. https://doi.org/10.1093/gbe/evy127
- Li, H. (2023). Protein-to-genome alignment with miniprot. *Bioinformatics*, 39(1), btad014.
 https://doi.org/10.1093/bioinformatics/btad014
- Li, L., Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic
 genomes. *Genome Research*, *13*(9), 2178–2189. https://doi.org/10.1101/gr.1224503
- Liao, Y., Smyth, G. K., & Shi, W. (2019). The R package Rsubread is easier, faster, cheaper and better
 for alignment and quantification of RNA sequencing reads. *Nucleic Acids Research*, 47(8),
 Article 8. https://doi.org/10.1093/nar/gkz114
- Liu, H., Fu, Y., Jiang, D., Li, G., Xie, J., Cheng, J., Peng, Y., Ghabrial, S. A., & Yi, X. (2010). Widespread
 Horizontal Gene Transfer from Double-Stranded RNA Viruses to Eukaryotic Nuclear Genomes.
 Journal of Virology, *84*(22), Article 22. https://doi.org/10.1128/JVI.00955-10
- Liu, S., Coates, B. S., & Bonning, B. C. (2020). Endogenous viral elements integrated into the genome
 of the soybean aphid, *Aphis glycines*. *Insect Biochemistry and Molecular Biology*, *123*, 103405.
 https://doi.org/10.1016/j.ibmb.2020.103405
- Liu, S., Sappington, T. W., Coates, B. S., & Bonning, B. C. (2021). Nudivirus Sequences Identified from
 the Southern and Western Corn Rootworms (Coleoptera: Chrysomelidae). *Viruses*, *13*(2),

1110 Article 2. https://doi.org/10.3390/v13020269

- Loni, A., Samartsev, K. G., Scaramozzino, P. L., Belokobylskij, S. A., & Lucchi, A. (2016). Braconinae
 parasitoids (Hymenoptera, Braconidae) emerged from larvae of Lobesia botrana (Denis & amp;
 Schiffermüller) (Lepidoptera, Tortricidae) feeding on Daphne gnidium L. *ZooKeys*, *587*, 125–
 https://doi.org/10.3897/zookeys.587.8478
- Lorenzi, A., Ravallec, M., Eychenne, M., Jouan, V., Robin, S., Darboux, I., Legeai, F., Gosselin-Grenet, A. S., Sicard, M., Stoltz, D., & Volkoff, A.-N. (2019). RNA interference identifies domesticated viral
 genes involved in assembly and trafficking of virus-derived particles in ichneumonid wasps.
 PLOS Pathogens, 15(12), Article 12. https://doi.org/10.1371/journal.ppat.1008210
- Lucchi, A., Ricciardi, R., Loni, A., Cosci, F., Alvarez, A. R., Beeche, M., & Scaramozzino, P. L. (2018).
 Rearing Campoplex capitator Aubert in Italy and in Chile: Preliminary achievements.
 IOBC/Wprs Bulletin, *139*, 96–99.
- Mangeney, M., Renard, M., Schlecht-Louf, G., Bouallaga, I., Heidmann, O., Letzelter, C., Richaud, A.,
 Ducos, B., & Heidmann, T. (2007). Placental syncytins: Genetic disjunction between the
 fusogenic and immunosuppressive activity of retroviral envelope proteins. *Proceedings of the National Academy of Sciences, 104*(51), Article 51. https://doi.org/10.1073/pnas.0707873105
- Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO Update: Novel
 and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring
 of Eukaryotic, Prokaryotic, and Viral Genomes. *Molecular Biology and Evolution*, *38*(10), 4647–
 4654. https://doi.org/10.1093/molbev/msab199
- Mao, M., Simmonds, T. J., Stouthamer, C. M., Kehoe, T. M., Geib, S. M., & Burke, G. R. (2023). A
 chromosome scale assembly of the parasitoid wasp *Venturia canescens* provides insight into
 the process of virus domestication. *G3: Genes, Genomes, Genetics, 13*(10), jkad137.
 https://doi.org/10.1093/g3journal/jkad137
- Maori, E., Tanne, E., & Sela, I. (2007). Reciprocal sequence exchange between non-retro viruses and
 hosts leading to the appearance of new host phenotypes. *Virology*, *362*(2), Article 2.
 https://doi.org/10.1016/j.virol.2006.11.038
- Mathé-Hubert, H., Colinet, D., Deleury, E., Belghazi, M., Ravallec, M., Poulain, J., Dossat, C., Poirié, M.,
 & Gatti, J.-L. (2016). Comparative venomics of Psyttalia lounsburyi and P. concolor, two olive
 fruit fly parasitoids: A hypothetical role for a GH1 β-glucosidase. *Scientific Reports*, 6(1), 35873.
 https://doi.org/10.1038/srep35873
- McLachlin, J. R., & Miller, L. K. (1994). Identification and characterization of vlf-1, a baculovirus gene
 involved in very late gene expression. *Journal of Virology*, *68*(12), Article 12.
 https://doi.org/10.1128/jvi.68.12.7746-7756.1994
- 1144 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., &

1145 Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference 1146 in the Genomic Era. Molecular Biology and Evolution, 37(5), Article 5. 1147 https://doi.org/10.1093/molbev/msaa015

- 1148Moreau, J., Villemant, C., Benrey, B., & Thiéry, D. (2010). Species diversity of larval parasitoids of the1149European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae): The influence of region1150andcultivar.BiologicalControl,54(3),1151https://doi.org/10.1016/j.biocontrol.2010.05.019
- Moreau, S., & Asgari, S. (2015). Venom Proteins from Parasitoid Wasps and Their Biological Functions.
 Toxins, 7(7), Article 7. https://doi.org/10.3390/toxins7072385
- Murphy, N., Banks, J. C., Whitfield, J. B., & Austin, A. D. (2008). Phylogeny of the parasitic microgastroid
 subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an
 improved time estimate of the origin of the lineage. *Molecular Phylogenetics and Evolution*,
 47(1), Article 1. https://doi.org/10.1016/j.ympev.2008.01.022
- Papura, D., Rusch, A., Roux, P., Delbac, L., & Thiéry, D. (2016). Early detection and identification of
 larval parasitoids in *Lobesia botrana* using PCR-RFLP method. *Biological Control*, *103*, 95–100.
 https://doi.org/10.1016/j.biocontrol.2016.08.005
- Passarelli, A., & Guarino, L. (2007). Baculovirus Late and Very Late Gene Regulation. *Current Drug Targets, 8*(10), Article 10. https://doi.org/10.2174/138945007782151324
- 1163 Perkin, L. C., Friesen, K. S., Flinn, P. W., & Oppert, B. (2015). Venom gland components of the 1164 ectoparasitoid wasp, Anisopteromalus calandrae. *Journal of Venom Research*, *6*, 19–37.
- Petersen, J. M., Bézier, A., Drezen, J.-M., & van Oers, M. M. (2022). The naked truth: An updated review
 on nudiviruses and their relationship to bracoviruses and baculoviruses. *Journal of Invertebrate Pathology*, *189*, 107718. https://doi.org/10.1016/j.jip.2022.107718
- Pichon, A., Bézier, A., Urbach, S., Aury, J.-M., Jouan, V., Ravallec, M., Guy, J., Cousserans, F., Thézé, J.,
 Gauthier, J., Demettre, E., Schmieder, S., Wurmser, F., Sibut, V., Poirié, M., Colinet, D., da Silva,
 C., Couloux, A., Barbe, V., ... Volkoff, A.-N. (2015). Recurrent DNA virus domestication leading
 to different parasite virulence strategies. *Science Advances*, 1(10), Article 10.
 https://doi.org/10.1126/sciadv.1501150
- Poirié, M., Carton, Y., & Dubuffet, A. (2009). Virulence strategies in parasitoid Hymenoptera as an
 example of adaptive diversity. *Comptes Rendus Biologies*, *332*(2–3), Article 2–3.
 https://doi.org/10.1016/j.crvi.2008.09.004
- 1176Poirié, M., Colinet, D., & Gatti, J.-L. (2014). Insights into function and evolution of parasitoid wasp1177venoms.CurrentOpinioninInsectScience,6,52–60.1178https://doi.org/10.1016/j.cois.2014.10.004
- 1179 Quicke, D. L. J., & Butcher, B. A. (2021). Review of Venoms of Non-Polydnavirus Carrying Ichneumonoid

1180 Wasps. *Biology*, *10*(1), Article 1. https://doi.org/10.3390/biology10010050

- Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features.
 Bioinformatics, *26*(6), Article 6. https://doi.org/10.1093/bioinformatics/btq033
- 1183 Ratnasingham, S., & Hebert, P. D. N. (2007). BARCODING: Bold: The Barcode of Life Data System
 1184 (http://www.barcodinglife.org): BARCODING. *Molecular Ecology Notes*, 7(3), Article 3.
 1185 https://doi.org/10.1111/j.1471-8286.2007.01678.x
- Reineke, A., Asgari, S., Ma, G., Beck, M., & Schmidt, O. (2002). Sequence analysis and expression of a
 virus-like particle protein, VLP2, from the parasitic wasp *Venturia canescens*. *Insect Molecular Biology*, *11*(3), Article 3.
- Reineke, A., Asgari, S., & Schmidt, O. (2006). Evolutionary origin of *Venturia canescens* virus-like
 particles. *Archives of Insect Biochemistry and Physiology*, *61*(3), Article 3.
 https://doi.org/10.1002/arch.20113
- Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential
 expression analysis of digital gene expression data. *Bioinformatics*, 26(1), Article 1.
 https://doi.org/10.1093/bioinformatics/btp616
- Rohrmann, G. F. (2014). Baculovirus nucleocapsid aggregation (MNPV vs SNPV): An evolutionary
 strategy, or a product of replication conditions? *Virus Genes*, *49*(3), Article 3.
 https://doi.org/10.1007/s11262-014-1113-5
- Rotheram, S. (1967). Immune Surface of Eggs of a Parasitic Insect. *Nature*, *214*(5089), Article 5089.
 https://doi.org/10.1038/214700a0
- Rotheram, S. (1973). The surface of the egg of a parasitic insect. I. The surface of the egg and first instar
 larva of *Nemeritis*. *Proceedings of the Royal Society of London. Series B. Biological Sciences*,
 183(1071), Article 1071. https://doi.org/10.1098/rspb.1973.0012
- Salt, G. (1965). Experimental studies in insect parasitism XIII. The haemocytic reaction of a caterpillar
 to eggs of its habitual parasite. *Proceedings of the Royal Society of London. Series B. Biological Sciences, 162*(988), Article 988. https://doi.org/10.1098/rspb.1965.0040
- Santos, B. F., Klopfstein, S., Whitfield, J. B., & Sharanowski, B. J. (2022). Many evolutionary roads led
 to virus domestication in ichneumonoid parasitoid wasps. *Current Opinion in Insect Science*,
 50, 100861. https://doi.org/10.1016/j.cois.2021.12.001
- Scaramozzino, P. L., Di Giovanni, F., Loni, A., Ricciardi, R., & Lucchi, A. (2018). Updated list of the insect
 parasitoids (Insecta, Hymenoptera) associated with Lobesia botrana (Denis & amp;
 Schiffermüller, 1775) (Lepidoptera, Tortricidae) in Italy. 2. Hymenoptera, Ichneumonidae,
 Anomaloninae and Campopleginae. *ZooKeys*, 772, 47–95.
 https://doi.org/10.3897/zookeys.772.25288
- 1214 Serbielle, C., Dupas, S., Perdereau, E., Héricourt, F., Dupuy, C., Huguet, E., & Drezen, J.-M. (2012).

Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for
 protein tyrosine phosphatases. *BMC Evolutionary Biology*, *12*(1), 253.
 https://doi.org/10.1186/1471-2148-12-253

- Sharanowski, B. J., Ridenbaugh, R. D., Piekarski, P. K., Broad, G. R., Burke, G. R., Deans, A. R., Lemmon, 1218 1219 A. R., Moriarty Lemmon, E. C., Diehl, G. J., Whitfield, J. B., & Hines, H. M. (2021). Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and 1220 1221 endogenization. Molecular Phylogenetics 156, viral and Evolution, 107023. 1222 https://doi.org/10.1016/j.ympev.2020.107023
- Singh, U., & Wurtele, E. S. (2021). orfipy: A fast and flexible tool for extracting ORFs. *Bioinformatics*,
 37(18), Article 18. https://doi.org/10.1093/bioinformatics/btab090
- Stoltz, D. B. (1990). Evidence for Chromosomal Transmission of Polydnavirus DNA. *Journal of General Virology*, *71*(5), 1051–1056. https://doi.org/10.1099/0022-1317-71-5-1051
- Strand, M. R., & Burke, G. R. (2012). Polydnaviruses as Symbionts and Gene Delivery Systems. *PLoS Pathogens*, 8(7), Article 7. https://doi.org/10.1371/journal.ppat.1002757
- Strand, M. R., & Burke, G. R. (2014). Polydnaviruses: Nature's Genetic Engineers. Annual Review of
 Virology, 1(1), Article 1. https://doi.org/10.1146/annurev-virology-031413-085451
- Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: Robust conversion of protein sequence
 alignments into the corresponding codon alignments. *Nucleic Acids Research*, *34*(Web Server),
 Article Web Server. https://doi.org/10.1093/nar/gkl315
- Tarlinton, R. E., Meers, J., & Young, P. R. (2006). Retroviral invasion of the koala genome. *Nature*,
 442(7098), Article 7098. https://doi.org/10.1038/nature04841
- Teng, Z.-W., Xiong, S.-J., Xu, G., Gan, S.-Y., Chen, X., Stanley, D., Yan, Z.-C., Ye, G.-Y., & Fang, Q. (2017).
 Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the
 Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). *Toxins*, 9(4), 135.
 https://doi.org/10.3390/toxins9040135
- Theopold, U., Krause, E., & Schmidt, O. (1994). Cloning of a VLP-protein coding gene from a Parasitoid
 Wasp Venturia canescens. Archives of Insect Biochemistry and Physiology, 26(2–3), Article 2–
 https://doi.org/10.1002/arch.940260207
- Thézé, J., Bézier, A., Periquet, G., Drezen, J.-M., & Herniou, E. A. (2011). Paleozoic origin of insect large
 dsDNA viruses. *Proceedings of the National Academy of Sciences*, *108*(38), Article 38.
 https://doi.org/10.1073/pnas.1105580108
- Thiéry, D., Delbac, L., Villemant, C., & Moreau, J. (2011). Control of grape berry moth larvae using
 parasitoids: Should it be developed? *IOBC-WPRS Bulletin*, *67*(26), Article 26.
 https://doi.org/10.13140/2.1.3313.7442
- 1249 Vanarsdall, A. L., Okano, K., & Rohrmann, G. F. (2006). Characterization of the Role of Very Late

- 1250 Expression Factor 1 in Baculovirus Capsid Structure and DNA Processing. *Journal of Virology*,
 1251 80(4), Article 4. https://doi.org/10.1128/JVI.80.4.1724-1733.2006
- 1252 Volkoff, A.-N., & Cusson, M. (2020). The Unconventional Viruses of Ichneumonid Parasitoid Wasps.
- 1253 *Viruses*, *12*(10), Article 10. https://doi.org/10.3390/v12101170
- Volkoff, A.-N., Drezen, J.-M., Cusson, M., & Webb, B. A. (2012). The Organization of Genes Encoding
 Ichnovirus Structural Proteins. In *Parasitoid Viruses* (pp. 33–45). Elsevier.
 https://doi.org/10.1016/B978-0-12-384858-1.00003-5
- Volkoff, A.-N., Jouan, V., Urbach, S., Samain, S., Bergoin, M., Wincker, P., Demettre, E., Cousserans, F.,
 Provost, B., Coulibaly, F., Legeai, F., Béliveau, C., Cusson, M., Gyapay, G., & Drezen, J.-M.
 (2010). Analysis of Virion Structural Components Reveals Vestiges of the Ancestral Ichnovirus
 Genome. *PLoS Pathogens*, 6(5), Article 5. https://doi.org/10.1371/journal.ppat.1000923
- Wang, L., Fang, Q., Qian, C., Wang, F., Yu, X.-Q., & Ye, G. (2013). Inhibition of host cell encapsulation
 through inhibiting immune gene expression by the parasitic wasp venom calreticulin. *Insect Biochemistry* and *Molecular Biology*, *43*(10), 936–946.
 https://doi.org/10.1016/j.ibmb.2013.07.010
- Wang, L.-G., Lam, T. T.-Y., Xu, S., Dai, Z., Zhou, L., Feng, T., Guo, P., Dunn, C. W., Jones, B. R., Bradley,
 T., Zhu, H., Guan, Y., Jiang, Y., & Yu, G. (2020). Treeio: An R Package for Phylogenetic Tree Input
 and Output with Richly Annotated and Associated Data. *Molecular Biology and Evolution*, *37*(2), 599–603. https://doi.org/10.1093/molbev/msz240
- Wang, Y., Kleespies, R. G., Huger, A. M., & Jehle, J. A. (2007). The Genome of *Gryllus bimaculatus* Nudivirus Indicates an Ancient Diversification of Baculovirus-Related Nonoccluded Nudiviruses
 of Insects. *Journal of Virology*, *81*(10), Article 10. https://doi.org/10.1128/JVI.02781-06
- Wang, Y., R.P., O., & A., J. (2012). Nudivirus Genomics and Phylogeny. In M. Garcia (Ed.), Viral
 Genomes—Molecular Structure, Diversity, Gene Expression Mechanisms and Host-Virus Interactions (pp. 33–52). InTech. https://doi.org/10.5772/27793
- Wey, B., Heavner, M. E., Wittmeyer, K. T., Briese, T., Hopper, K. R., & Govind, S. (2020). Immune
 Suppressive Extracellular Vesicle Proteins of *Leptopilina heterotoma* Are Encoded in the Wasp
 Genome. *G3 Genes Genomes Genetics*, *10*(1), 1–12. https://doi.org/10.1534/g3.119.400349
- Wong, E. S. W., & Belov, K. (2012). Venom evolution through gene duplications. *Gene*, 496(1), Article
 1. https://doi.org/10.1016/j.gene.2012.01.009
- Wu, W., Lin, T., Pan, L., Yu, M., Li, Z., Pang, Y., & Yang, K. (2006). Autographa californica Multiple
 Nucleopolyhedrovirus Nucleocapsid Assembly Is Interrupted upon Deletion of the *38K* Gene.
 Journal of Virology, *80*(23), Article 23. https://doi.org/10.1128/JVI.01155-06
- Yang, S., & Miller, L. K. (1998). Expression and Mutational Analysis of the Baculovirus Very Late Factor
 1 (vlf-1) Gene. *Virology*, 245(1), Article 1. https://doi.org/10.1006/viro.1998.9152

Yang, S., & Miller, L. K. (1999). Activation of Baculovirus Very Late Promoters by Interaction with Very
 Late Factor 1. *Journal of Virology*, *73*(4), Article 4. https://doi.org/10.1128/JVI.73.4.3404 3409.1999

- Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T.-Y. (2017). ggtree: An r package for visualization and
 annotation of phylogenetic trees with their covariates and other associated data. *Methods in Ecology and Evolution*, 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628
- Zhang, G., Schmidt, O., & Asgari, S. (2006). A calreticulin-like protein from endoparasitoid venom fluid
 is involved in host hemocyte inactivation. *Developmental & Comparative Immunology*, *30*(9),
 756–764. https://doi.org/10.1016/j.dci.2005.11.001
- 1294 Zhang, J.-H., Washburn, J. O., Jarvis, D. L., & Volkman, L. E. (2004). Autographa californica M 1295 nucleopolyhedrovirus early GP64 synthesis mitigates developmental resistance in orally 1296 infected noctuid hosts. Journal of General Virology, 85(4), Article 4. https://doi.org/10.1099/vir.0.19773-0 1297
- Zhang, Y., Wang, J., & Han, G.-Z. (2020). Chalcid wasp paleoviruses bridge the evolutionary gap
 between bracoviruses and nudiviruses. *Virology*, *542*, 34–39.
 https://doi.org/10.1016/j.virol.2020.01.007
- Zheng, Q., Shen, Y., Kon, X., Zhang, J., Feng, M., & Wu, X. (2017). Protein–protein interactions of the
 baculovirus per os infectivity factors (PIFs) in the PIF complex. *Journal of General Virology*,
 98(4), Article 4. https://doi.org/10.1099/jgv.0.000730

Table 1: Summary table of CcapiENV gene information. Putative functions were predicted from gene functions described in baculoviruses.
Functional nudivirus core genes are indicated in bold and pseudogenized nudivirus core genes are indicated with an asterisk. Names between
parentheses correspond to alternative names of the genes found in the literature. TPMs and PSM correspond to transcripts per million and
peptide-spectrum matches respectively. A complete version of this table is available in supplementary data (Table S3).

Function in baculoviruses	Gene name	Contig	Nudiviral cluster	Position in the contig	Gene length in bp	Mean of normalized TPMs in ovaries	Presence in VLPs	Peptide abundance (PSM)	Protein size in aa
DNA amplification	helicase	contig 13	2	complement(6986111 - 6989746)	3636	60.10636905			1212
Viral	p47	contig 2	1	complement(15493852 - 15494922)	1071	202.0627154			357
transcription	lef-4	contig 13	2	complement(6977003 - 6978238)	1236	307.9753009			412
	lef-8	contig 13	2	6982207 - 6985356	3150	190.7332664			1050
	lef-5	contig 328	4	complement(708144 - 708470)	327	390.8433835			109
	lef-9	contig 328	4	complement(727668 - 729752)	2085	380.7544624			695
Envelope	pif-4 (19 Kda)	contig 328	4	706840 - 707595	756	10234.6896	X	39	252
components and infectiosity	p33 (ac92)	contig 2	1	15496092 - 15497036	945	4562.742796	X	49	315
and intectionity	pif-2	contig 13	2	complement(6971652 - 6972776)	1125	1950.200664	X	51	375
	pif-6 (ac68)	contig 328	4	complement(690595 - 691005)	411	4524.153106	X	13	137
	p74 (pif-0)	contig 328	4	695558 - 697498	1941	1979.354037	X	23	647
	vp91 (pif-8)	contig 328	4	complement(713819 - 715891)	2073	1898.483467	X	71	691
	pif-5-1 (odv-e56)	contig 328	4	725333 - 726583	1251	8407.359441	X	104	417
	pif-5-2 (odv-e56)	contig 328	4	733696 - 734952	1257	2238.100222	X	127	419
	pif-3	contig 328	4	744312 - 744905	594	5389.304417	X	33	198
	pif-1	contig 13	2	6978638 - 6980113	1476	1358.325472	X	24	492
	Ac81	contig 328	4	701318 - 701800	483	870.8774304			161
Morphogenesis and particle assembly	vlf-1	contig 328	4	709361 - 710638	1278	785.8570436			426
Unknown	OrNVorf59-like	contig 328	4	707602 - 708123	522	9224.822369	x	43	174

OrNVorf54-like	contig 2	1	complement(15472150 - 15473337)	1188	3589.443084	X	49	396
OrNVorf41-like-1 (11K)	contig 2	1	15475263 - 15475550	288	32236.6679	X	13	96
OrNVorf41-like-2 (11K)	contig 2	1	15476320 - 15476727	408	20804.23563	X	33	136
OrNVorf41-like-3 (11K)	contig 2	1	15479909 - 15480358	450	41424.23901			150
OrNVorf41-like-4 (11K)	contig 2	1	15481182 - 15481586	405	55874.69226	X	13	135
OrNVorf44-like	contig 2	1	15483923 - 15484489	567	11612.46173	X	66	189
OrNVorf46-like	contig 2	1	complement(15486115 - 15487905)	1791	151.0870697			597
OrNVorf136-like	contig 2	1	complement(15488716 - 15489168)	453	3212.888481			151
OrNVorf23-like	contig 2	1	15489783 - 15490574	792	261.6013813	X	47	264
OrNVorf19-like	contig 2	1	complement(15494837 - 15495235)	399	420.6676754			133
OrNVorf47-like	contig 13	2	6975948 - 6976769	822	2839.655997	X	18	274
OrNVorf73-like	contig 13	2	6992759 - 6993544	786	242.6407675			262
OrNVorf41-like-5 (11K)	contig 326	3	complement(2612826 - 2613125)	300	11433.84229			100
OrNVorf41-like-6 (11K)	contig 326	3	complement(2613850 - 2614170)	321	12768.01194			107
OrNVorf138-like	contig 328	4	complement(686054 - 686347)	294	2268.386529			98
OrNVorf61-like	contig 328	4	complement(689155 - 689526)	372	10869.81904	X	25	124
OrNVorf76-like	contig 328	4	691432 - 691659	228	978.3012378			76
OrNVorf25-like	contig 328	4	698675 - 700330	1656	3713.565782	X	191	552
OrNVorf27-like	contig 328	4	710904 - 712094	1191	2834.742838	X	20	397
OrNVorf90-like	contig 328	4	complement(717857 - 721093)	3237	225.2549736	X	35	1079
OrNVorf63-like	contig 328	4	complement(723007 - 723255)	249	2050.01484			83
OrNVorf79-like	contig 328	4	731525 - 731737	213	1646.832857	X	11	71
OrNVorf118-like	contig 328	4	736112 - 736948	837	3367.630323	X	97	279
OrNVorf119-like	contig 328	4	736958 - 738058	1101	7250.849857	X	80	367
OrNVorf120-like	contig 328	4	complement(738811 - 740787)	1977	1880.881495	X	120	659
OrNVorf122-like	contig 328	4	741734 - 742414	681	364.2703585			227
OrNVorf123-like	contig 328	4	743586 - 743909	324	6143.331885	X	17	108
OrNVorf18-like	contig 328	4	746646 - 748046	1401	6663.775966	x	109	467

Pseudogenes	pseudo vp39 *	contig 2	1	15465017 - 15465368
	pseudo OrNVorf99-like	contig 4	NA	6410523 - 6410915
	pseudo OrNVorf117-like	contig 9	NA	1382035 - 1382601
	pseudo OrNVorf139-like	contig 9	NA	6965367- 6965623
	pseudo FEN-1 *	contig 12	NA	726667 - 726882, 727180 - 727562
	pseudo DNApol *	contig 13	NA	507908 - 507956, 508176 - 508868
	pseudo OrNVorf99-like	contig 13	NA	5114850 - 5115368
	pseudo pif-4 *	contig 13	2	6989881 - 6990024
	pseudo pif-1 *	contig 13	2	6994508 - 6994810
	pseudo helicase *	contig 13	2	complement(6995640 - 6995816)
	pseudo OrNVorf62-like	contig 13	NA	7033194 - 7033540
	pseudo 38K *	contig 94	NA	29063 - 29227
	pseudo integrase *	contig 322	NA	7794008 - 7794318, 7794375 - 7794869
	pseudo OrNVorf22-like (p6.9) *	contig 322	NA	12698893 - 12699488
	pseudo OrNVorf128-like	contig 322	NA	14126845 - 14127067
	pseudo OrNVorf27-like	contig 326	3	2618461 - 2618893
	pseudo lef-8 *	contig 504	NA	3017 - 3559
	pseudo 38K *	contig 508	NA	23980 - 24171

Figure 1: The nudiviral clusters of CcapiENV. Sequences of nudiviral origin are indicated by a red asterisk in the legend. Nudiviral genes were colourised according to their function described in baculoviruses. Cellular genes correspond to genes of non-nudiviral origin (with no nudiviral hit). The scale represents the cluster length in base pairs

1312	Figure 2: Phylogenetic tree of Naldaviricetes viruses. The tree includes 20 nudiviruses, 69
1313	baculoviruses, 3 hytrosaviruses (including LbFV for Leptopilina boulardi filamentous virus) and
1314	a nimavirus (WSSV for White spot syndrome virus) set as the outgroup. In total, 34 genes (21
1315	baculovirus core genes and 13 alphanudivirus core genes) were used for the tree construction,
1316	using the maximum likelihood criterion. Branch supports are given by the SH-aLRT
1317	(Shimodaira-Hasegawa approximate likelihood ratio test), corresponding to the colour of the
1318	node circles and bootstrap values, corresponding to their size. The scale bar represents the
1319	phylogenetic distance (percentage of genetic variation). Campoplex capitator Endogenous
1320	Nudivirus and Campoplex nolae Endogenous Nudivirus are called respectively CcapiENV and
1321	CnolaENV. Nudiviruses endogenized in Campopleginae wasps are mentioned in red. Virus and
1322	sequence information is given in supplementary data (Table S4).

Table 2: Nudivirus genes in the *C. capitator, C. nolae* and *V. canescens* genomes. Genes found
in *C. capitator* (in orange) and *C. nolae* (in blue) were compared with those of VcENV (in green).
Genes and pseudogenes are indicated with solid dots and crossed dots respectively. Copies
are indicated by multiple dots. "na" indicates that no copy of the corresponding gene was
found. Alternative gene names are given between parentheses.

Function in baculoviruses	Gene name	CcapiENV	CnolaENV	VcENV
DNA amplification	DNApol	\otimes	\otimes	\otimes
	FEN-1	\otimes	\otimes	\otimes
	helicase		•	•
	helicase2	na	na	na
	integrase	\otimes	\otimes	\otimes
Viral transcription	lef-4	•	•	
	lef-5	•	•	•
	lef-8		•	•
	lef-9	•	•	•
	p47	•	•	•
Envelope	ac81	•	•	•••
infectiosity	p33 (ac92)	•	•	٠
	p74 (pif-0)	•	•	•
	pif-1		•	
	pif-2	•	•	•
	pif-3	•	•	٠
	pif-4 (19 Kda)			•
	pif-5 (odv-e56)	••	••	••••
	pif-6 (ac68)	•	•	•
	vp91(pif-8)	•	•	•
Morphogenesis,	38K	\otimes	na	\otimes
particle assembly	vlf-1	•	•	\otimes
	vp39	\otimes	\otimes	\otimes
	OrNVorf22-like (p6.9)	\otimes	\otimes	\otimes
Nucleotid	tk1	na	na	na
metabolism	tk2	na	na	na
the loss encour	tk3	na	na	na
Unknown	OrNVorf118-like	•	•	•
	OrNVorf119-like	•	•	•
	OrNVorf120-like	•	•	•
	OrNVorf122-like	•	•	•
	OrNVorf123-like	•	•	•
	OrNVorf136-like	•	•	•
	OrNVorf138-like	•	•	•

OrNVorf18-like	•	•	•
OrNVorf19-like	•	•	•
OrNVorf23-like	•	•	•
OrNVorf25-like	•	•	•
OrNVorf27-like			•
OrNVorf41-like (11K)	•••••	•••••	••••
OrNVorf44-like	•	•	•
OrNVorf46-like	•	•	•
OrNVorf47-like	•	•	•••
OrNVorf54-like	•	•	•
OrNVorf59-like	•		•
OrNVorf63-like	•	•	•
OrNVorf73-like	•	•	•
OrNVorf76-like	•	•	•
OrNVorf79-like	•	•	•
OrNVorf90-like	•	•	•
OrNVorf2-like	na	na	\otimes
OrNVorf9-like	na	\otimes	\otimes
OrNVorf62-like	\otimes	\otimes	\otimes
OrNVorf99-like	\otimes	\otimes	\otimes
OrNVorf117-like	\otimes	\otimes	\otimes
OrNVorf128-like	\otimes	\otimes	\otimes
OrNVorf130-like	na	na	\otimes
OrNVorf139-like	\otimes	\otimes	\otimes

Figure 3: Syntenies between the CcapiENV clusters and VcENV clusters (from Mao et al., 2023). Models were colourised according to their function. Light pink models correspond to genes annotated in Mao and collaborators (Mao et al., 2023) which have no match in the NCBI database, but have nevertheless been annotated as potential virus genes. The scale represents the length in base pairs.

1338

1339 Figure 4: Parity plots comparing nudivirus genes order. A - Parity plot between the genomes 1340 of Oryctes rhinoceros nudivirus (OrNV) on the horizontal axis and other exogenous nudiviruses on the abscissa. The other nudiviruses are Gryllus bimaculatus nudivirus (GbNV), Kallithea 1341 virus (KV) Drosophila innubia nudivirus (DiNV), Esparto virus (ENV) and Tomelloso virus (TNV). 1342 **B** - Parity plot between the genomes of CcapiENV (ordinate) and the previous exogenous 1343 nudiviruses (abscissa). C - Parity plot between the genomes of CcapiENV and other 1344 endogenized nudiviruses (abscissa). The other endogenized nudiviruses are Fopius arisanus 1345 endogenous nudivirus (FaENV), VcENV, CnolaENV and Nilaparvata lugens endogenous 1346 1347 nudivirus (NIENV).

1349

1350 Figure 5: Estimation of selective pressures acting on wasp and endogenized nudivirus genes. 1351 dN/dS ratio values were calculated from wasp (in grey) and nudivirus genes of C. capitator, C. nolae and V. canescens. Numbers below each boxplot represent the number of sequences 1352 1353 used for dN/dS ratio calculation for each category. Numbers above each boxplot represent the number of values higher than 2, which could not be plotted. In red are the dN/dS ratio 1354 values for *helicase*, *p*47 and *lef* genes, in green are the values for *pif* (*per-os-infectivity factor*) 1355 genes, in pink the values for Ac81, vp91 and p33 genes, and in blue the values for OrNVorf-like 1356 1357 genes.

1358

Figure 6: The calyx region of a *C. capitator* ovaries of adult wasp observed using light and electron microscopy. A - light microscopic photograph of a semi-thin section of the calyx region, stained with toluidine blue. B, D - electron microscopy photographs of the calyx region shown in A. C, E - enlarged areas (white frames) of photographs B and D, respectively. Virogenic stromas (VS) and VLPs (dark arrow) are visible in cell nuclei (N). While virogenic stromas can be seen only in the nuclei, VLPs appear to travel from the nucleus to the lumen (L) where they accumulate, passing through the cytoplasm (C) and the membrane microvilli (MV). F - electron microscopy photograph showing the nucleus-cytoplasm-lumen interface where empty VLP envelopes can be seen in the nucleus (white circle), as described in *V. canescens* (Pichon et al., 2015).