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Abstract11

To simulate large, history-dependent material displacements, the Mate-12

rial Point Method (MPM) solves for the kinematics of Lagrangian13

material points being embedded with mechanical variables while mov-14

ing freely within a �xed mesh. The MPM procedure makes use of15

the latter mesh as a computational grid, where the momentum bal-16

ance equation with the acceleration �eld are �rst projected onto nodes,17

before material points can be moved. During that process, a number18

of di�erent choices have been adopted in the literature for what con-19

cerns the computational de�nition of time increments of velocity and20

position, from the knowledge of nodal acceleration. An overview of21

these di�erent motion integration strategies is herein proposed, with a22

particular emphasis on their impact onto the MPM conservative proper-23

ties. Original results illustrate the discussion, considering either simple24

con�gurations of solid translation and rotation or a more complex col-25

lapse of a frictional mass. These analyses furthermore reveal hidden26

properties of some motion integration strategies regarding conserva-27

tion, namely a direct in�uence of the time step value during a time28

integration being inspired by the Particle In Cell (PIC) ancestor of29

1
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2 Comparison of MPM motion integration strategies and discretization choices

the MPM. The spatial, resp. temporal (in comparison with vorticity),30

discretizations are also shown to a�ect the angular momentum conser-31

vation of the FLIP method, resp. an a�ne extension of PIC (APIC).32

Keywords: Material Point Method; PIC; FLIP; APIC; XPIC33

1 Introduction34

Anticipating the deformations of large-scale constructions, e.g. water dams35

possibly rising up to hundreds of meters, under various mechanical loads is cru-36

cial for safety concerns. These studies are typically carried out with numerical37

methods based on the Finite Element Method (FEM) and corresponding pio-38

neering works [1, 2] for continuous materials. The FEM unfortunately su�ers39

from a number of limitations related with its underlying Lagrangian mesh for40

solid mechanics. In particular, many scenarios of interest involve large defor-41

mations, e.g. possible structure failure, where extreme mesh distortions would42

prevent the FEM procedure to pursue. A solution to overcome this issue can43

be to include a conditional remeshing step in the FEM framework [3, 4, 5]44

but this can turn to be computationally expensive. If present, e.g. for elasto-45

plastic solids, a �eld of hardening variables has also to be recast into the46

new mesh which makes things even more intricate. These issues have been47

reviewed e.g. in [6], with a particular focus onto the Particle Finite Element48

Method (PFEM) [7] as an appropriate remeshing FEM technique in presence49

of hardening variables.50

In contrast, the historical Particle In Cell method (PIC) [8] has avoided51

distortion issues by �xing the mesh, turning it into an Eulerian frame within52

which the integration points of the FEM are free to move. As such, the PIC53

method came as an hybrid Eulerian-Lagrangian method with a robust nature54

in the case of large displacements. Then, in [9], the FLuid Implicit Particle55



Springer Nature 2021 LATEX template

Comparison of MPM motion integration strategies and discretization choices 3

method (FLIP) has revisited PIC with the idea of limiting the numerical dif-56

fusion and energy dissipation the latter su�ers from, adapting in particular57

the way integration points velocities are de�ned from the acceleration at grid58

points. These methods eventually led to the slightly more recent Material Point59

Method (MPM) [10], possibly in a GIMP [11] or CPDI [12] variants, which aims60

to extend the hybrid Eulerian-Lagrangian formulation to history-dependent61

materials and has become a popular tool to simulate large displacements in62

solid mechanics, see e.g. [13, 14, 15] for general MPM reviews.63

Following PIC and FLIP, the MPM essentially solves continuum mechan-64

ics equations and computes accelerations on �xed mesh grid points in order65

to eventually update positions of Lagrangian material points. Subtleties then66

arise during the MPM procedure with a frequent transport, i.e. mapping,67

of mechanical quantities between these two uncoupled spatial discretizations,68

which deteriorates the proper de�nitions of classical kinematic �elds of acceler-69

ations, velocities and positions. As it will be further exposed in the manuscript,70

it is for instance to note that material point velocities may not always be the71

time integral of their accelerations, nor the time derivatives of their positions.72

These subtleties lead the MPM to face similar challenges as PIC and FLIP for73

what concerns the conservation of energy and momentum. As a matter of fact,74

these fundamental objectives are not always ful�lled and prompted a number75

of previous studies.76

As for momentum conservation, the MPM is formulated such that linear77

momentum is automatically conserved but strong issues may concern angular78

momentum and rotational motion, as discussed, e.g., in [16, 17, 18] and further79

recalled in the remainder of the manuscript. It was actually shown in [16, 17]80

that the angular momentum is lost both with PIC and FLIP during the two-81

ways transport between material points and grid points with classical lumped82
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expressions of nodal masses and an A�ne-augmented Particle In Cell method83

(APIC) was accordingly proposed in [17] aiming to solve the issue. Before84

being further improved in [18], APIC was shown in [17] to conserve the energy85

better than PIC if not perfectly, while being more stable than FLIP. Since86

the remaining energy dissipation sources in APIC [17] basically come from its87

share of PIC transport equations, an a�ne-augmented variation of the FLIP88

velocity mapping, AFLIP, was tested in [19] and logically found to conserve89

the energy even better than both APIC and FLIP.90

Similar to APIC and AFLIP which eventually aim at better capturing a�ne91

velocity �elds when mapping one �eld from another, a spatial gradient-based92

Taylor expansion has been proposed in [20] and later denoted as Taylor-PIC93

(TPIC) in [21].94

Another recent study [22] highlights that the motion integration procedure95

actually corresponds to choosing a velocity �eld among an in�nity of solutions96

to the velocity transportation equations. With this point of view, the PIC97

strategy appears as the solution which minimizes the velocity by �ltering out98

all the noise, while the FLIP strategy minimizes the acceleration and does not99

�lter any noise. Using this insight, a new XPIC(m) strategy was proposed in100

the same study [22], for adopting the velocity �eld that minimizes the di�erence101

with respect to its previous values �ltered at the order m. The XPIC(m)102

strategy can thus be used to adapt the noise �ltration for a speci�c problem,103

giving a great adjustable compromise between PIC and FLIP strategies. Based104

on the XPIC(m) strategy, a FMPM (Full mass matrix MPM) formulation was105

proposed in [23], considering an approximation of the full mass matrix (inverse)106

instead of the traditional lumped one. Although this approach complexi�es the107

imposition of boundary conditions, results were shown to be less dissipative108

and more accurate than both FLIP and XPIC(m).109
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In connection with the evergrowing popularity of the MPM, the present110

manuscript then aims to clarify the underlying reasons for so many choices111

regarding motion integration in a MPM implementation and review most of112

the currently available alternatives. The discussion is illustrated from original113

numerical results evidencing their respective performances in terms of energy114

and momentum conservation.115

After recalling the general MPM background in Section 2, Section 3116

proposes a grouped presentation of the various possible motion integration117

strategies. Section 4 then investigates the conservative nature of several of118

those in the simple cases of an elastic solid moving in a purely translational119

motion or a rigid solid subject to a rotational motion, where analytical ground-120

truth results are available for reference. The analysis is �nally extended to121

the more complex and rather classical case of the granular column collapse in122

Section 5, together with a discussion of the (time and spatial) discretization123

parameters.124

Although the calculations performed in this study are likely to involve large125

transformations (large deformations and large rotations), our model is based126

on an in�nitesimal transformation formulation. Taking large transformations127

into account, similar to [12, 23, 24, 25], would lead to more accurate results,128

but would not change the conclusions of the present work which is focused on129

the comparison of motion integration strategies and discretization choices in130

the MPM formulation. All simulations are executed with a modi�ed version131

of the open-source code CB-Geo MPM [26], used together with its PyCBG132

interface [27].133
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2 Common MPM principles134

2.1 Governing equation and double spatial discretization135

Considering a deformable solid being continuously present in the domain Ω,136

mass density, velocity and stress �elds are respectively denoted ρ, V⃗ and σ,137

omitting time and space variables for simplicity. External forces may apply138

onto Γ, the surface of Ω, as tractions −→τ = σ · −→n , with −→n the outward normal139

to Γ. If present, a constant, uniform, gravitational �eld is denoted as −→g . With140

−→w a test function (a kinematically admissible velocity �eld, typically) the weak141

form of the virtual work principle classically reads:142

∫
Ω

ρ−→w .
∂
−→
V

∂t
dΩ =

∫
Ω

ρ−→w .−→g dΩ+

∫
Γ

−→w .−→τ dΓ−
∫
Ω

∇−→w : σdΩ (1)

As proposed in [10], the MPM solves Eq. (1) for a Lagrangian velocity143

�eld, which is de�ned on a �rst layer of spatial discretization in terms of a144

�nite set {p} of Nmp material points. Those material points will also carry145

each a constant mass quantity mp and history-dependent, e.g. elasto-plastic146

hardening, variables and accordingly express material behaviour.147

Being geometrically uncoupled to the set of material points, the MPM148

additionally relies on an Eulerian mesh with a number Ngp of grid points i149

located at constant positions x⃗i and connecting into mesh cells i.e. elements,150

see Figure 1b. While being �xed in space as illustrated in Figure 1d in con-151

trast to Figure 1c for the classical FEM in solid mechanics, that Eulerian grid152

plays a FEM-like computational role in which the weak form (1) is eventually153

transposed at every grid point. Grid points actually combine with associated154

shape functions Ni(
−→x ) to serve as a nodal basis for expressing quantities, e.g.155
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(a) Initial FEM con�guration (b) Initial MPM con�guration

(c) Final FEM con�guration (d) Final MPM con�guration

Fig. 1: Mesh (in red) and integration or material points (in blue) evolutions
during similar FEM and MPM simulations

for the test function:156

w⃗(x⃗) =
∑
i

w⃗iNi(x⃗) (2)

while obeying partition of unity:157

∑
i

Ni(x⃗) = 1 (3)

Eq. (3) can indeed be seen as a necessary condition for (i.e., a consequence of)158

Eq. (2).159
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From this double spatial discretization, the classical MPM procedure leads160

to the following expression for nodal acceleration [10]:161

−→a i =

−→
f i

mi
(4)

−→
f i =

−→
f i

int +
−→
f i

ext (5)

mi =
∑
p

Ni(x⃗
p)mp (6)

where the �rst two terms on the right-hand side of Eq. (1), describing body162

forces and external surface loads, have been turned into a nodal force quantity,163

−→
f i

ext:164

−→
f i

ext =
∑
p

Ni(
−→x p)mp−→g +

∫
Γ

Ni
−→τ dΓ (7)

while the last term of Eq. (1) being representative of internal forces corresponds165

to the following nodal force quantity
−→
f int obtained from the material points166

stresses:167

−→
f i

int = −
∑
p

mp

ρ
σp−−→∇N i(

−→x p) = −
∑
p

vpσp−−→∇N i(
−→x p) (8)

It is to note that Eqs. (4)-(6) correspond to a lumped mass matrix approach168

with known consequences for the conservative properties of the method [9, 10,169

16, 28]. While mass is naturally conserved, in the sense that
∑

i m
i =

∑
p m

p,170

the cases of momenta and energy are more intricate and will be reviewed below.171

It is also to note that, unlike the initial MPM formulation [10], mass density172

is not considered constant here but instead computed from the constant mp
173

and a variable material point volume vp. The latter is initialized from vj(p)174

the volume of the mesh element, j, including p and N j
mp the total number of175
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material points in that cell:176

vp(t = 0) =
vj(p)

N
j(p)
mp

(9)

before being updated at each iteration depending on a volumetric strain177

measure at the center of the cell j.178

2.2 Material points or material domains in the MPM179

discretization180

The above discrete equations, Eqs (4)-(8), have been obtained in [10] from181

the consideration of a point-wise mass distribution within {p}, with material182

point-centered Dirac distributions for the mass density and the stress �elds.183

As an alternative to this pure �material point� point of view, �nite �material184

domains� have been proposed in a GIMP variant [11] to carry a piece-wise185

constant stress �eld, through the concept of particle characteristic function186

with �nite support, unlike the Dirac distribution of classical MPM. Shape187

functions are then directly replaced in Eq. (7) (for its �rst right-hand side188

term) and Eq. (8) with weighting functions that convolute shape functions189

with particle characteristic functions and show more suitable properties, e.g.190

a non-linear nature even with linear shape functions (see below Section 2.3).191

As imposed by partition of unity considerations, such material domains192

should however stay contiguous and non-overlapping for results to stay consis-193

tent, e.g., [29]. Particle domains then need to be updated according to material194

point kinematics, way beyond pure translation, and the CPDI [12] extension to195

GIMP for instance enables one to update those as deformable parallelograms196

while considering piece-wise constant deformation gradients and stresses across197

domains.198
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One can note that the discrete equations, Eq. (8) in particular, could also199

be seen as a quadrature expression for a numeric integration of the weak form200

terms, avoiding any assumption on the mechanical (e.g., stress) �elds and201

considering material points just as integration points or numeric tracers. From202

this point of view, quadrature precision issues arise in connection with material203

point displacements, as discussed in e.g. [13, 30] but those could possibly be204

solved following [31], which is still out of the present scope.205

Here, the remainder of the sequel adopts the �material point� point of view206

of classical MPM to avoid the complexity of de�ning particle domains that207

maintain a rigorous tessellation of Ω whatever the kinematics.208

2.3 Chosen shape functions209

In this �material point� framework, piecewise linear shape functions such as210

used in [32, 33, 34] are avoided due to their C0 nature that may lead to211

ringing, i.e. cell crossing, instabilities [35] through the so-called internal force212

−→
f i

int in Eq. (8) with the gradient of the shape functions, which would induce213

discontinuous changes in
−→
f i

int when a material point crosses the boundary214

between two cells [13, 30, 36]. Boundary modi�ed cubic splines [15] with (twice)215

continuous derivatives are adopted instead.216

3 Various MPM motion integration strategies217

3.1 Intricacy of mappings between material points and218

grid points as motion integration strategies219

While the nodal acceleration Eq. (4) is intended to serve as a time update of220

nodal velocities, a salient keypoint of the MPM then appears in the yet unspec-221

i�ed choices for initial nodal velocities
−→
V i and for the exact role of updated222

values, being denoted
−̃→
V i likewise to [8], in the material point kinematics, in223
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necessary connection with material point velocities
−→
V p for both cases. The224

corresponding operations are generically denoted in this paper as the "motion225

integration strategy". Before being reviewed in details below, these could be226

introduced, broadly speaking, as a particular choice of back-and-forth map-227

pings between grid points and material points. From the grid points to the228

particles, a shape-function-inspired mapping for a given quantity s (which can229

be any tensor of order n ≥ 0) would be:230

sp =
∑
i

Ni(
−→x p)si (10)

which can be recast in matrix form:231

−→s P = G
▶P−→s G (11)

(G ▶P )pi = Ni(
−→x p) (12)

Here −→s P denotes the whole set of material point values and −→s G its nodal232

counterpart. The arrow in Eq. (11) corresponds to the increase in tensor order233

from n to n+1 in order to cover the whole sets of material points or grid points,234

with each line of −→s G (among Ngp), resp.
−→s P (among Nmp), corresponding to235

the quantity for a speci�c grid point, resp. material point. In the case of s236

being a vector quantity, −→s G and −→s P are both second order tensors in Eq. (11)237

and will be denoted sG and sP in the rest of this paper.238

From the particles to the grid, one could adopt, likewise to the lumped mass239

expression in Eq. (6), the following expression which obeys
∑

i s
i =

∑
p s

p:240

si =
∑
p

Ni(
−→x p)sp (13)
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or in matrix form:241

−→s G = P
▶G−→s P (14)

P
▶G = (G

▶P )T (15)

It has to be observed that in the general case Nmp ̸= Ngp, making it242

impossible for G ▶P to be square. There is furthermore even no reason for the243

latter to be at least semi-orthogonal, i.e. G ▶PP
▶G−→s P ̸= −→s P, contributing to244

the subtleties of the mappings discussed below, through the introduction of245

so-called null space errors [37].246

3.2 From known particle velocities to nodal velocities247

As for the nodal velocities
−→
V i at the beginning of a time step, those have248

been usually expressed since the FLIP method from material point velocities249

by explicitly conserving the linear momentum u⃗ through the application of250

Eq. (14) from u⃗p = mp−→V p to u⃗i and then dividing by the nodal masses to give:251

−→
V i =

∑
p Ni(

−→x p)mp−→V p

mi
(16)

The result of Eq. (16) can also be seen as a mass-weighted transport proce-252

dure that directly applies to velocities
−→
V and which can be written in matrix253

form as:254

V G = P
▶G
m V P (17)

(P ▶G
m )ip =

mpNi(
−→x p)∑

p′ mp′Ni(
−→x p′)

(18)



Springer Nature 2021 LATEX template

Comparison of MPM motion integration strategies and discretization choices 13

where V G and V P are respectively (Ngp ×Ndim) and (Nmp ×Ndim) matrices255

with Ndim the number of dimensions, and P
▶G
m a mass-weighted mapping256

matrix that directly applies to velocity quantities. Similar to the previous case257

of Eqs. (11)-(12), each line of V G, resp. V P, corresponds to the velocity of a258

speci�c grid point
−→
V i, resp. material point

−→
V p.259

Even though linear momentum is conserved by construction through260

Eq. (17), it is to note that the present lumped mass approach makes the261

nodal kinetic energy, computed from nodal masses in Eq. (6) and nodal veloc-262

ities in Eq. (16), to be less than the kinetic energy de�ned on material points263

[9, 10, 16, 38, 39]. In line with the absence of nodal history, this feature nev-264

ertheless does not necessarily hinder overall conservation of energy in itself,265

see [16] and a simple translation illustration under free fall in the forthcoming266

Section 4.1 and Figure 3.267

The Eqs. (16)-(18) are however unable to correctly infer nodal velocities268

from the ones of material points in a number of situations. Considering for269

instance a case where a grid node i would be under the in�uence (through270

Ni(
−→x p) ̸= 0) of just one material point p, one would have

−→
V i =

−→
V p no matter271

the position o�set between i and p, which is in particular incorrect if velocities272

are to correspond to an a�ne �eld, as discussed in [20]. As such, it has been273

proposed in [20], and later coined as a Taylor-PIC (TPIC) strategy in [21], to274

use a gradient-based extrapolation, i.e. a �rst order Taylor expression, for a275

better description of a�ne velocity �elds from material point values:276

V G = P
▶G
m V P +WG (19)

(WG)ik =
∑
p

∑
j

(P ▶G
m )ip(∇

−→
V p)jk(b

p
i )j (20)

−→
b p

i = −→x i −−→x p (21)
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where Eq. (19) introduces into Eq. (17) an additional term that combines the277

branch vector between i and p,
−→
b p

i , with the velocity gradient ∇−→
V p. The278

latter is stored for every material point after being computed in a previous279

iteration as:280

∇−→
V p =

∑
i

−−→
∇N i(

−→x p)⊗
−→
V i (22)

A rotational ensemble motion on a set of material points is an example of281

an a�ne velocity �eld, with an antisymmetric ∇−→
V p, and the limitations of the282

initial Eq. (17) for projecting velocity �elds naturally appear in this case, with283

a loss of angular momentum that is actually due to the lumped mass approach284

of Eqs. (4)-(6) and (17) [16, 17, 18]. While keeping the convenient lumped285

mass transport Eq. (6), it has been proposed in [17] as an APIC formulation286

to explicitly consider angular momentum in the transport Eq. (17) through287

additional terms at the material point level, namely:288

V G = P
▶G
m V P +UG (23)

(UG)ik =
∑
p

∑
j

(P ▶G
m )ip(C

p)jk(b
p
i )j (24)

Cp = Bp(Dp)−1 (25)

Bp =
∑
i

Ni(
−→x p)

−̃→
V i ⊗

−→
b p

i (26)

Dp =
∑
i

Ni(
−→x p)

−→
b p

i ⊗
−→
b p

i (27)

Here, the a�ne augmentation of Eqs. (23)-(27) (with a more complex ver-289

sion proposed in [18]) embeds every material point with an angular velocity-like290

quantity Cp which is computed from an angular momentum-like quantity291

mpBp and an inertia-like quantity mpDp (or its inverse). That angular292
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velocity-like quantity is then combined in Eq. (24) with
−→
b p

i , giving an addi-293

tional rotational term, UP, in the velocity �eld to be mapped into the grid294

in Eq. (23). In such an APIC formulation, both matrices Bp,Dp are stored295

for every material point in order to form Cp and Eq. (26) actually corre-296

sponds to an end-of-step update (from updated nodal velocities
−̃→
V i precised in297

Section 3.3) for Bp, providing its value that will be used in a subsequent step.298

A proper initialization of ∇−→
V p, for the Taylor formulation, or Bp, for299

the APIC formulation, is however critical in case of assigned initial velocities300

to material points. For this purpose, the initial value of ∇−→
V p is determined301

by repeating Eqs. (19) to (22) until ∇−→
V p converges. Because it can usually302

be observed that the APIC Cp is numerically similar to velocity gradient, as303

suggested by the formal similarities between Eq. (20) and (24), the former is304

incidentally initialized to the same value of the latter.305

3.3 From nodal acceleration to particle kinematics306

Whether
−→
V i is a�ne-augmented or not, an updated nodal velocity �eld

−̃→
V i

307

is subsequently obtained after solving Eq. (1) in its discrete form Eq. (4) for308

nodal acceleration and applying a simple, explicit, �nite di�erence scheme in309

time:310

−̃→
V

i

=
−→
V i +−→a i ·∆t (28)

Eq. (28) naturally leaves aside possible grid points serving as Dirichlet bound-311

ary conditions with constant velocity components (aik = 0 and V i
k �xed to312

a chosen V i
k |lim for one or several directions k). Time step ∆t is computed313

as a fraction of the characteristic time obtained with the material and mesh314

parameters:315

∆t = aτ lcell

√
ρ

E
(29)
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with lcell the size of a mesh element, ρ the mass density of the material,316

E its Young modulus for the subsequent examples considering, at least in317

part, Hooke's law, and aτ a proportion coe�cient. The latter is determined318

empirically in each speci�c case, in order to ensure a stable simulation.319

In line with the absence of nodal history, the updated velocity �eld
−̃→
V

i

is320

only temporary, before being overwritten at the beginning of the next iteration321

with the one transported from the material points with one or another mapping322

among Eqs. (17), (19) or (23). It rules however material point kinematics323

during current time step, where di�erent MPM strategies can again be found324

for this purpose. Consistently with the above use of a mapping matrix P
▶G
m ,325

this procedure can be considered as equivalent to solving the following equation326

for V P,new:327

P
▶G
m V P,new = Ṽ

G

=


P

▶G
m V P +WG + aG∆t for TPIC

P
▶G
m V P +UG + aG∆t for APIC

P
▶G
m V P + aG∆t for other strategies

(30)

In the general case with Nmp ̸= Ngp and a non-square P
▶G
m , the set of328

solutions to Eq. (30) can be in�nite, justifying the existence of several strate-329

gies. The most direct solution to Eq. (30) was inspired by the PIC method330

and essentially maps the velocity from grid points back to the material points331

with Eq. (11), leading to:332

V P,new
PIC = G

▶P Ṽ
G

(31)

xP,new
PIC = xP + V P,new

PIC ×∆t (32)
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Although this strategy is straightforward to implement, it is known to improp-333

erly �lter the velocity which leads to an unrealistic damping [22, 40]. One334

can note for instance that Eq. (31) erases the individual memory for material335

point velocity one could expect since V P,new is not directly integrated from336

V P. Moreover, it has been demonstrated in [22] that V P
PIC is the solution to337

Eq. (30) that minimizes V P.338

Aiming to achieve a better energy conservation than PIC, the FLIP method339

[9] has been proposed with alternative time velocity increments from the same340

nodal acceleration. In a FLIP approach, the latter is actually transported341

into P towards an incremental computation of the material points' velocity,342

reinstating a direct, individual, link between
−→
V p,new and

−→
V p:343

V P,new
FLIP = V P +G

▶PaG ×∆t (33)

Thinking in terms of solution to Eq. (30), it was established in [22] that344

V P
FLIP is the solution which minimizes the �uctuations in V P, i.e. acceleration.345

However, FLIP still uses the same Eq. (32) as PIC to displace the material346

points, which can be recast as:347

xP,new = xP + V P,new
PIC ×∆t

= xP +G
▶P

(
V G + aG∆t

)
∆t

(34)

Since G ▶PV G ̸= V P, one could consider from comparing Eq. (34) and (33) the348

FLIP scheme implies an unnatural description of the material points motion349

in the sense that the time derivative of −→x p
FLIP is di�erent from the FLIP350

material point velocity (even though this was intended in [9]):351

−→
V p

FLIP ̸=
d−→x p

FLIP

dt
(35)
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As such,
−→
V p

PIC in Eq. (32) has been replaced in [41] with
−→
V p

FLIP , forming352

another NFLIP strategy (Naturally modi�ed FLIP), as coined by [19]:353

xP,new
NFLIP = xP + V P,new

FLIP ×∆t (36)

As previously mentioned, FLIP and NFLIP conserve better energy than354

PIC but they are more prone to instabilities. A common practice is thus to355

blend FLIP or NFLIP with PIC in order to make the simulation more stable356

[13, 42, 43, 44], based on a blending parameter PPIC . These blended strategies357

are denoted FLIPX and NFLIPX, where X = 1 − PPIC indirectly highlights358

the proportion of PIC. Namely, a FLIPX velocity is given by:359

V P,new
FLIPX = XV P,new

FLIP + (1−X)V P,new
PIC

= (1− PPIC)V
P,new
FLIP + PPICV

P,new
PIC

(37)

Such a FLIPX velocity would also be used by the NFLIPX strategy to360

compute new positions for the material points, similarly to NFLIP Eq. (36):361

xP,new
NFLIPX = xP + V P,new

FLIPX ×∆t (38)

On the other hand, it has been proposed in [22, 23, 45] , that the blended362

velocity update of Eq. (37) should be accompanied with deeper changes in363

position updates that would eventually conform neither Eq. (34) nor Eq. (38)364

but include a second order term.365

Such a second order position update is actually found in the XPIC(m)366

strategy [22], which �rst aims for a de�nition of the updated velocity �eld367

V P,new that shows minimal variations from its previous value, in a smoothed368
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version Vsm
P:369

Vsm
P = (I − (I −G

▶PP
▶G
m )m−1)V P (39)

with I the (Nmp×Nmp) identity matrix and m a chosen smoothing parameter.370

The resulting solution to Eq. (30) is then [22]:371

V P,new
XPIC(m) = V P − (I −G

▶PP
▶G
m )mV P +G

▶PaG ×∆t (40)

Material points are then moved using a second order time integration scheme:372

xP,new
XPIC(m) = xP+G

▶P Ṽ
G
∆t−1

2

(
G

▶PaG∆t2 + (I −G
▶PP

▶G
m )mV P∆t

)
(41)

Note that with m = 1, a XPIC(1) strategy is equivalent to PIC, see Eq. (40) vs373

Eq. (31) for velocity, and that the corresponding position update of Eq. (41)374

has latter been further modi�ed in [23] and be proposed as an optimal position375

update for a PIC framework.376

Most of the motion integration strategies mentioned above have been377

declined into their a�ne-augmented version (APIC, AFLIP and ANFLIP,378

AFLIPX and ANFLIPX) just by using Eq. (23) to express the grid points379

velocity V G depending on the material points velocity V P. Similarly, a TFLIP380

counterpart to TPIC is de�ned as using Eq. (19) for initializing grid velocities381

from material point ones, before using all other FLIP equations.382

Since the FLIP logic is to incrementally update the material point velocity383

rather than over-writing it through a grid interpolation, one could expect sim-384

ilar time update equations for the matrices Bp,Dp,Cp for AFLIP or ∇−→
V p

385

for TFLIP. Since it is instead chosen to use the same equations than APIC or386
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Motion

integration strategy

Motion integration

operations
V G measure from current V P V P update from aG, i.e. updated V G xP update

PIC

[8]

P ▶G
m V P

Eq. (17)

V P
PIC

Eq. (31)

xP
PIC

Eq. (32)

APIC
[17]

P ▶G
m

(
V P +UP)

Eq. (23)

TPIC
[20, 21]

P ▶G
m

(
V P +W P)

Eq. (19)

FLIP
[9, 10]

P ▶G
m V P

Eq. (17)

V P
FLIP

Eq. (33)

AFLIP
[17, 19]

P ▶G
m

(
V P +UP)

Eq. (23)

TFLIP
[20]

P ▶G
m

(
V P +W P)

Eq. (19)

NFLIP
[41, 19]

P ▶G
m V P

Eq. (17)
xP
NFLIP

Eq. (36)

ANFLIP
P ▶G

m

(
V P +UP)

Eq. (23)

FLIPX
P ▶G

m V P

Eq. (17)

X V P
FLIP + (1−X)V P

PIC

Eq. (37)

xP
PIC

Eq. (32)

AFLIPX
P ▶G

m

(
V P +UP)

Eq. (23)

NFLIPX
P ▶G

m V P

Eq. (17)
xP
NFLIPX

Eq. (38)

ANFLIPX
P ▶G

m

(
V P +UP)

Eq. (23)

XPIC(m)
[22]

P ▶G
m V P

Eq. (17)

V P
XPIC(m)

Eq. (40)

xP
XPIC(m)

Eq. (41)

Table 1: Designations of the di�erent MPM motion integration strategies with
their chosen underlying equations

TPIC to express those matrices, with a direct transport from the grid, a bet-387

ter terminology could adopt AFLIP/PIC and TFLIP/PIC notations, which is388

nevertheless not done here for the sake of simplicity.389

Table 1 summarizes all these motion integration strategies.390

3.4 Stress update scheme391

Following [10, 46] and for the sake of simplicity, a small deformations (notwith-392

standing possible large displacements) strain tensor ϵ is de�ned from its rate393
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ϵ̇:394

ϵ̇ =
1

2

(
∇
−→
V + (∇

−→
V )T

)
(42)

and the corresponding increment dϵ is related with dσ through a material-395

speci�c constitutive relation for non-viscous solids, taking into account history-396

dependent variables when necessary. If necessary, large strain-compliant more397

general formulations based on deformation gradient and, possibly, objective398

stress rate (e.g., of Jaumann type) can be found for instance in [12, 23, 24, 25].399

The MPM algorithm naturally applies the incremental stress update at each400

material point, after computing a �nite ∆ϵp from nodal velocities
−→
V i:401

∆ϵp = ϵ̇p∆t (43)

ϵ̇p =
1

2

∑
i

(
Aip +AipT

)
(44)

Aip =
−−→
∇N i(

−→x p)⊗
−→
V i (45)

with Aip de�ned for each pair of grid point i and material point p. Due to the402

intricate relations between nodal velocity or even material point velocity and403

time increments of material positions, it is again to note that such a strain404

tensor may not be directly interpreted from the relative displacements among405

material points.406

The location of that stress update in the sequence of the MPM algorithm407

is a matter of choice, with no prior justi�cation for an execution before or408

after the internal force computation of Eq. (8). The two immediate choices of409

updating stresses before, resp. after, solving the equation of motion have been410

denoted USF (�Update Stress First�), resp. USL (�Update Stress Last�) and411

analysed in [38] for their consequences on energy conservation. It was shown412
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therein the USF scheme is more likely to conserve energy in average through413

a mutual cancellation of two sources of errors that a�ect both material points414

kinetic and strain energies at each MPM iteration. It has also been observed415

herein during preliminary simulations that USF is better suited to use with416

linear shape functions, unlike USL which exacerbates cell crossing instability417

issues in this case.418

The stress update scheme was further studied in [47], where a variation of419

the USL scheme initially proposed in [48] was coined MUSL (�Modi�ed Update420

Stress Last�) and found to be very similar to the USF scheme in its results. In421

its de�nition, the MUSL scheme executes the stress update likewise to USL,422

after relating internal forces to nodal acceleration in Eq. (8), but uses for this423

purpose a strain increment computed from updated nodal velocities, with
−̃→
V

i

424

replacing
−→
V i in Eq. (45). In line with these observations, [47] proposed the425

USAVG (�Update Stress Averaged�) scheme which conserves almost perfectly426

the energy, at the cost of computing the material behaviour twice in the same427

MPM iteration.428

In the present manuscript, a USF formulation is adopted unless otherwise429

speci�ed, including an updated stress value in Eq. (8). While a USL choice430

may be more usual in the literature, the USF scheme is herein chosen since431

it was shown in [38] that it can be completely conservative energy-wise, while432

the USL scheme is systematically strictly dissipative.433

4 Energy conservation on heuristic sti� examples434

for di�erent motion integration strategies435

This section determines the in�uence of the di�erent strategies detailed in436

the previous section on the MPM capacity to conserve energy, for two simple437
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cases with basic con�gurations that enable a ground-truth comparison. Pro-438

posed results are necessarily a�ected by the explicit �rst order time integration439

scheme (except for the XPIC case) chosen in the above equations for velocity440

or positions update, e.g., Eq. (28). Other integration schemes, e.g., proposed441

in [18], especially if symplectic, would improve energy conservation.442

4.1 Energy conservation in translation443

The �rst case extends a similar analysis in [16, 18] (that is also directly444

considered in Appendix B.1) by simulating a bouncing cube conforming a445

translational motion under gravity, with a gravitational acceleration g = 9.81446

m/s2, and illustrated in Figure 2 for its initial con�guration. The mesh con-447

tains 5×5×13 cubic cells along the di�erent axes, each with a side of lcell = 20448

cm. Each cell located between x3 = 1 m and x3 = 2 m contains initially 23 = 8449

material points located at the Gauss-Legendre integration points, for a total450

of 8× 125 = 1000 material points. The normal velocity is imposed to zero on451

all grid points on the left, right, front, back and bottom boundaries.452

⃗g
1m

⃗e 2
⃗e 1

⃗e 3

Fig. 2: Simulation setup of the bouncing cube example (plane view)
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Hyperelastic Hooke's law is assigned to the solid material (e.g., to describe453

the deformations of the cube upon impact on the �oor), with Young's modulus454

being set to E = 12.84 MPa and Poisson's ratio to ν = 0.16. The density of455

the material is set to ρ = 1748 kg × m−3, meaning that each material point456

will have a mass of mp ≈ 1.75 kg. Using Eq. (29) along with aτ ≈ 5× 10−2 or457

aτ ≈ 5×10−3, the time step is chosen as∆t = 1.17×10−4 s or∆t = 1.17×10−5
458

s.459

In line with the conservative nature of the problem, energy should theoreti-460

cally conserve and just converts during time between elastic strain energy Eel,461

kinetic energy Ek and gravitational energy Ep (with x3 = 0 serving as refer-462

ence for Ep = 0). Measuring those quantities over all material points and using463

Einstein's convention for summing over repeated indices, we namely have:464

Eel =
∑

p∈{p}

vp

2
(σijϵij) (46)

Ek =
∑

p∈{p}

1

2
mp∥

−→
V p∥2 (47)

Eg =
∑

p∈{p}

mpgxp
3 (48)

The following Figures 3 and 4 illustrate the obtained energy balance in465

MPM for di�erent motion integration strategies, namely PIC, FLIP, APIC,466

AFLIP, TPIC, and TFLIP; when using the USF stress update scheme (USL467

results being also presented for the same simulations in Appendix A). The468

NFLIP formulation was also considered during preliminary simulations with a469

coarser mesh and linear shape functions and was observed to yield unrealistic470

results (e.g., segregation of material points within the cube cells for various471

time steps ranging from aτ ≈ 5×10−6 to 5×10−2), as already reported in [23].472
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(a) aτ = 5 × 10−2
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(b) aτ = 5 × 10−3

Fig. 3: Total energy for the bouncing cube example simulated with di�erent
motion integration strategies for di�erent time steps (Eref ≈ 25.7 kJ)

Figure 3 �rst shows the total energy Etot = Eel + Ek + Eg relative to473

its initial value of Eref ≈ 25.7 kJ , for the two di�erent time steps. At �rst,474

during the initial free fall phase with neither strains nor stress, all results475

are strictly equivalent and theoretically correct, whatever the motion integra-476

tion strategy. After the �rst contact with the �oor, all PIC-based cases (PIC,477

APIC and TPIC) dissipate so much energy that the cube does not bounce, no478
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(c) Kinetic energy Ek (the grey curve materializes the theo-
retical free fall case)
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Fig. 4: Energy balance for the bouncing cube example simulated with di�erent
MPM motion integration strategies (Eref ≈ 25.7 kJ , aτ = 5× 10−2)
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Fig. 5: Material points positions at t ≈ 3.5 s (Eref ≈ 25.7 kJ , see a
corresponding video as a supplementary material)

matter the time step used. On the other hand, FLIP-based strategies appear479

to be much more conservative, allowing for several bounces. In more details,480

FLIP conserves energy almost perfectly, slightly increasing it, while AFLIP481

and TFLIP let Etot decrease by approximately 3% between each bounce (these482

strategies are shown to be equivalent to FLIP when using the USL scheme in483

Appendix A), although these defects are limited when using a lower time step.484

Figure 4 then discriminates between the various energy terms in Etot when485

using aτ = 5 × 10−2. PIC-induced arti�cial damping therein appears both486

in terms of elastic energy Eel (Figure 4 (a)) with no energy oscillations after487

impacting the �oor, and in terms of gravitational energy Eg (Figure 4 (b)) with488

the height of the cube reaching its �nal value after the �rst contact with the489

�oor. With FLIP-based strategies, the cube continues to deform even during490

its ascending phase, especially for FLIP, and the material points almost bounce491
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back to their initial heights. In fact, after the last bounce, the FLIP set of mate-492

rial points bounces higher than its previous peak position, in correspondence493

to Etot observations. As for Ek (Figure 4 (c)), all motion integration strate-494

gies reproduce the theoretical velocity obtained during the free fall part of the495

simulation. Then, all FLIP-based strategies give a similar variation rate of Ek,496

even though it is shifted in time because of the di�erent bouncing altitudes497

the cube reaches. One can lastly note that, due to the MPM discretization498

and the extended support of present cubic B-spline shape functions (two cells499

wide for the boundary case), impacts and bounces occur as soon as the lowest500

material points reach x3 = 0.4 m.501

On this very simple case involving translation only, FLIP thus appears a502

possible best candidate for conserving energy (both with present USF choice503

or with USL, see Appendix A).504

4.2 Conservation of rotational kinetic energy and505

angular momentum506

4.2.1 Simulation description507

A second simpli�ed case study includes a combination of rotational and linear508

motion, without gravity, which extends a somewhat similar previous analysis509

in [18] (also directly considered in Appendix B.2). Basically, a cube with a510

side lcube = 3 m is thrown in space, i.e. is given an initial velocity with both a511

linear and rotational motion, with512

−→
V c =

Vc√
3
(−→e 1 +

−→e 2 +
−→e 3)

Vc = 1.71 cm/s

(49)
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the linear velocity of the cube, computed so that the cube stays within the513

mesh during the whole simulation, and514

−→ω = ω

√
2

3
(0.5−→e 1 + 0.5−→e 2 +

−→e 3)

ω = 0.108 rad/s

(50)

its angular velocity, computed so that the cube performs several revolutions515

during the simulation.516

The whole space domain is covered by a mesh of cubic elements with a side517

length of lcell = lcube/3 = 1 m , the solid cube thus spans over l3cube = 33 =518

27 mesh cells. Initially, the cube is located in a corner of the domain while519

including 23 material points per cell which are regularly spaced in the cells,520

and have initial velocities assigned in accordance with the desired linear and521

angular velocities mentioned in the above. The time step ∆t is computed with522

Eq. (29) from the simulation parameters and a variable aτ (equal to 5× 10−2
523

unless otherwise speci�ed, providing a time step of 5.83× 10−4 s).524

While the same elastic material properties are used here as in previous525

Section 4.1, inertial (centrifuge) e�ects are small enough to consider the cube526

as rigid. As a matter of fact, inertial e�ects can be quanti�ed from the following527

dimensionless number Ca which is considerably small:528

Ca =
ρω2R2

E
≈ 1.07 · 10−5 (51)

with R =

√
3

2
lcube the radius of the circumscribed sphere. While being analog529

to the Cauchy number in �uid mechanics, Ca is built from ρω2R2 that rules530

stress quantities in a rotating elastic solid [49] and material sti�ness E.531
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Strains being theoretically negligible, use can be made of rigid bodies532

equations, e.g., Eq. (52) below, with the consideration of angular momentum533

I−→ω (where I is the inertia matrix), in order to theoretically predict the move-534

ment. Since angular momentum is here constant in a body-attached local frame535

due to the absence of external loads, while I for a cube is a spherical tensor536

with a constant expression in any frame, angular velocity can also directly be537

considered as constant with its expression in global frame such as given in538

Eq. (50). The position of any material point p can thus be predicted over time539

instants being separated by a given ∆t and corresponding to the MPM time540

discretization as follows:541

−→
V p =

−→
V c +

−→ω × (−→x p −−→x c) (52)

−→x p,new = −→x p +
−→
V p∆t (53)

with × denoting the cross product when being applied like in Eq. (52) to542

two vectors, −→x p and −→x p,new corresponding to the positions at two successive543

integration times, and544

−→x c =

∑
p
−→x p

Nmp
(54)

the position of the center of mass of the cube.545

These will be compared with actual MPM results, together with the consid-546

eration of the traveled distance dc = ∥−→x c(t)−−→x c(t0)∥, with a corresponding547

relative error as:548

Derr =

∣∣∣∣ dcVct
− 1

∣∣∣∣ (55)
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The total angular momentum Ltot is also computed on the material points549

as per the following Eq. (56):550

Ltot = ∥
∑
p

mp(−→x p −−→x c)×
−→
V p∥ (56)

in order to check to which extent MPM results do conform conservation of551

angular momentum. The Eq. (56), also used in, e.g., [15] is chosen to be consis-552

tent with the present �material point� point of view on the method discussed553

in previous Section 2.2, by considering that material points carry only linear554

velocity, and also consistent with the kinetic energy Eq. (47). On the other555

hand, with a �material domain� point of view, it could be considered that556

material points are centers of mass of some �nite domain with a space-variable557

velocity �eld that could de�ne a material point angular velocity and addi-558

tional terms would enter Eq. (56). Those additional terms would account from559

angular momentum contributions corresponding to this material domain-scale560

velocity �eld, which is a choice done in, e.g., [17, 18], in connection with the561

consideration of an a�ne velocity �eld for the APIC transfers, and should in562

principle be accompanied with corresponding modi�cations to kinetic energy563

expression, necessitating additional terms in Eq. (47).564

Without claiming for exhaustivity, the PIC, FLIP, FLIP0.99, APIC,565

AFLIP, TPIC and TFLIP motion integration strategies are herein tested.566

4.2.2 Results567

For what concerns �rst the (unconstrained) linear motion, and similarly to568

the free fall part of the previous case, all motion integration strategies provide569

accurate predictions as shown in Figure 6 where the traveled distance exhibits570

a negligible error with respect to its expected value.571
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Fig. 6: Relative error Derr on the distance traveled by the center of the
rotating cube

However, inspecting the individual movements of material points (Figure 7)572

or the time evolution of angular momentum (Figure 8) recalls how rotational573

motion gets lost for all strategies others than the a�ne-augmented or Taylor-574

based ones.575

In particular, PIC-based non-a�ne-augmented strategies (PIC and576

FLIP0.99) cancel Ltot at the very beginning of the simulation (virtually imme-577

diately for PIC), in line with PIC Eq. (31) which induces a drastic averaging578

of velocity �eld that is unable to conserve the theoretical spatially-variable579

velocity �eld inherent to rotational motion.580

The FLIP strategy allows the cube to somewhat preserve a slight rotation581

but it is clearly not the one imposed initially (Figure 7) and the angular582

momentum eventually reaches a small value after evolving quite erratically583

(Figure 8(a)). While those observations also apply even with a smaller time584

step (aτ = 2.5× 10−2 vs 5× 10−2), the Figure 26 in Appendix B.2 shows how585

FLIP conserves much better angular momentum if the mesh is �ne enough.586

On the other hand, a�ne augmented strategies show themselves to be much587

more conservative regarding this rotational motion, though with in�uences of588
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(a) At t ≈ 31 s

(b) At t ≈ 292 s

Fig. 7: Material point positions in the case of the rotating cube (see corre-
sponding video as a supplementary material)

both the time step (Figure 8(b) and (c)) and the magnitude of the angular589

velocity ω⃗ (Figure 9). More precisely, for the default case of ||ω⃗|| = 0.108rad/s,590

APIC loses a minuscule amount of angular momentum at a rate of approxi-591

mately 4.6×10−5 %/s for aτ = 2.5×10−2 (Figure 8 (b)), and roughly twice as592

much with a twice higher time step, i.e. aτ = 5×10−2 (Figure 8 (c)). AFLIP has593
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(b) A�ne- and Taylor-based cases and aτ = 2.5 × 10−2

0 100 200 300 400
t (s)

0.994

0.996

0.998

1.000

Lto
t /L

to
t

re
f

TFLIP
APIC

TPIC
AFLIP

(c) A�ne- and Taylor-based cases and aτ = 5 × 10−2

Fig. 8: (Non-)Conservation of angular momentum for the rotating cube, with
various motion integration strategies and time steps (Ltot

ref ≈ 7, 413 kg.m2/s).
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Fig. 9: Impact of ||ω⃗|| onto the (non-)conservation of the angular momentum
for the rotating cube up to t ≈ 400 s for APIC, with aτ = 5 × 10−2 (7, 413
kg.m2/s ≤ Ltot

ref ≤ 74, 128 kg.m2/s).

a similar behaviour, with a steeper and more noisy decrease in Ltot, as well as594

a higher sensitivity to ∆t. Also, one can see that TFLIP gives almost the same595

results as AFLIP, while TPIC di�ers from APIC by both its non-monotonous596

evolution and the amount of Ltot it dissipates, which is approximately 0.3%597

more than APIC at t ≈ 400 s. Various simulations conducted in [21] also598

showed that the TPIC conservation of some angular momentum was less than599

the APIC one.600

For what concerns the in�uence of the angular velocity magnitude on the601

APIC results, Figure 9 shows that the faster the cube rotates, the faster its602

angular momentum is lost. As a matter of fact, multiplying the velocity by 5603

makes the angular momentum dissipates approximately 24 times faster, and604

multiplying it by 10 makes it dissipate approximately 95 times faster, suggest-605

ing that the dissipation ratio evolves as the square of the angular velocity ratio.606

Keeping in mind the results given in Figure 8, one could accommodate this607

loss on Ltot by dividing the time step by the squared angular velocity ratio.608
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Although all a�ne augmented or Taylor-based motion integration strate-609

gies are able to accurately conserve the angular momentum, APIC stands out610

as the most predictable and performant in that regard. However, its incapac-611

ity to preserve the energy through an impact, as shown in Section 4.1, makes612

AFLIP or TFLIP emerges as the possibly optimal choice for integrating motion613

equations. The following section pursues the analysis on a more realistic MPM614

simulation setting.615

5 Granular column collapse case study616

The in�uence of the MPM motion integration strategy is now examined on617

a more realistic case in the form of a granular column collapse, which is a618

classical case study for granular materials being seen as solids prone to large619

displacements and often simulated with MPM [19, 32, 44, 50], among other620

numerical approaches [51, 52, 53, 54].621

5.1 Simulation setup622

5.1.1 General description623

For simplicity, the problem is considered to be invariant in the out-of-plane624

direction, enabling a plane-strain numerical analysis with a 2D mesh geometry,625

likewise to [32, 44, 50, 51, 55, 56]. While a third principal stress is naturally626

still computed along the out-of-plane direction, the material point volume is627

computed in Eq. (9) as a surface and all energies will be given in J/m, i.e.,628

normalized with respect to the out-of-plane length.629

The simulation includes two steps: �rst, the material is let to settle verti-630

cally under gravity in a lateral displacement-constrained column; second, the631

material is triggered to collapse under its own weight after releasing the pre-632

vious lateral constraint. While the �rst step basically consists in computing633
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a lithostatic stress state in the column which could also be directly assigned,634

its simulation will enable further discussion of the MPM results. Gravitational635

acceleration is taken to be of magnitude g = 9.81 m/s2.636

5.1.2 Geometry, mesh and material points637

The width of the column is considered to span over the x-axis while its height638

spans over the y-axis. The aspect ratio AR is de�ned as the column initial639

height Linit
y divided by its initial width Linit

x = 1 m, the latter being the same640

for all simulations (Figure 10).641

1m

g

x

y

z

Fig. 10: Initial conditions for the granular column collapse simulation, illus-
trated for the speci�c case of AR = 1, Nmppc = 4 and lcell = 10 cm (see
text)

The mesh consists of square elements with a side of lcell ∈ {10 cm, 7.69 cm,642

5.88 cm, 5 cm}, i.e. Linit
x /lcell ∈ {10, 13, 17, 20}. For the initial settling phase,643

the mesh cells just cover material extents:644

W settling
mesh = Linit

x (57)

Hmesh = Linit
y = AR×W settling

mesh (58)
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with Hmesh the mesh height which will be constant for the whole simulation645

while W settling
mesh is the mesh width only during this settling phase. The second646

simulation phase will actually adopt a wider mesh for enabling a collapse647

on the right side. Taking advantage of the absence of mesh-history in MPM,648

the mechanical state of material points obtained after the settling phase is649

imported on the left-side of another mesh de�ned as a substantial enlargement650

of the settling one:651

W collapse
mesh = 6×W settling

mesh (59)

All cells contain initially Nmppc (a squared integer) material points. For652

the purpose of verifying quadrature rules, at least in the initial setup, those653

are located at the roots of Legendre's polynomials (in local coordinates), given654

in e.g. [57]. As an example, the roots of the second Legendre's polynomial655

correspond to the classical local positions of the points in each direction for656

Nmppc = 22 = 4:657

s̃ = ± 1√
3
, ∀s ∈ {x, y} (60)

In terms of boundary conditions, a nil orthogonal velocity is imposed at658

the left, right and bottom boundary nodes. For convenience, the left and right659

boundaries are referred to as walls, while the bottom boundary is referred to660

as a �oor. A Coulomb friction condition is imposed on the �oor, driven by a661

µ = 0.3 coe�cient.662

Figure 10 illustrates the initial con�guration of the simulation for AR = 1,663

Nmppc = 4 and lcell = 10 cm.664
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Mass density

ρ

Young's modulus

E

Poisson's ratio

ν

Friction angle

ϕ

Dilatancy angle

ψ

Cohesion

c

Tension cut-o�

Tcut

1,748 kg.m−3 1.284× 107 Pa 0.16 33.75 ◦ 0 ◦ 1 Pa
c

tanϕ

Table 2: Parameters used with the Mohr-Coulomb model

5.1.3 Material parameters and numerical damping665

In order to have a simple access to all energy quantities including material dissi-666

pation (see below), the collapse is simulated adopting the simplest constitutive667

model for frictional materials, i.e. the elastic-plastic Mohr-Coulomb model that668

combines Hooke's law for the elastic regime and Mohr-Coulomb perfect plas-669

ticity with a non-associated �ow rule. Corresponding material parameters are670

calibrated (in the best possible way for this simple model) from the triaxial671

behavior of a real sandy soil, Camargue's sand studied in [58], and are given672

in Table 2.673

As for the initial settling phase which can be seen as purely numerical,674

an elastic behaviour is chosen in order to prevent plastic deformations that675

would otherwise occur during the P-wave-like oscillations of the model from676

zero initial stresses (1 Pa, actually, for all material points in order to avoid677

edge-cases in the Mohr-Coulomb model) towards lithostatic equilibrium. When678

explictly mentioned for some of those settling simulations whose dynamics is679

not of interest, a �ctitious Cundall's damping force [59] is also introduced in680

Eq. (5) in order to dissipate energy in a user-controlled way and converge to681

the intended lithostatic equilibrium. Such damping force is implemented as682

follows, being computed from the total nodal force supplemented by a damping683

parameter D ≥ 0 (used with D = 0.1 when mentioned to be present) and684

oriented to be component-wise dissipative:685

−→
f damp = −D∥

−→
f i∥−−→cws(

−→
V i) (61)
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where cwsk(
−→u ) =

uk

|uk|
for any vector−→u = (uk), k ∈ J1, 3K (62)

5.1.4 Energy balance and other post-processing quantities686

In the present usage of the Mohr-Coulomb constitutive model, the elastic687

energy Eel and the energy dissipated during plastic deformation, i.e. the plas-688

tic work Wpl, are computed incrementally as follows (with δij the Kronecker's689

symbol):690

dϵelij =
1

E
((1 + ν)dσij − νdσkkδij) (63)

dEel =
∑
p

σijdϵ
el
ijv

p (64)

dWpl = −
∑
p

σij(dϵij − dϵelij)v
p (65)

with Eel(0) = Wpl(0) = 0 J/m in line with chosen initial conditions and691

dWpl < 0 during plastic deformation by convention. For the numerical evalua-692

tion of Eq. (64), σij is replaced by the average of its two values obtained before693

and after the constitutive update (i.e., at the very beginning and at the very694

end of a MPM iteration), which enables one to avoid �nite size (of dϵelij) e�ects695

and keep an exact numerical integration by virtue of the linear relationship696

between σij and ϵelij .697

The energy dissipated by frictional forces Wfrict during the collapse is also698

computed incrementally from:699

dWfrict =
∑
i

−→
F i

frict.
−→
V i∆t (66)

with
−→
F i

frict the frictional force at grid point i and dWfrict < 0 during sliding700

by construction.701
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In the general absence of Cundall's damping, the energy balance of the702

system is then:703

dEk + dEg + dEel = dWpl + dWfrict + dWMPM (67)

where dWMPM (and its integral WMPM ) will quantify the numerical MPM704

energy error (dissipation, if negative) related with the chosen motion integra-705

tion strategy, after being computed as:706

dWMPM = dEk + dEg + dEel − (dWpl + dWfrict) (68)

As for the kinetic and gravitational energies, they are computed from707

Eq. (47) and Eq. (48) respectively. The di�erence in potential energy between708

two stable states (before and after the collapse) |∆Estable
p | will often be used709

as a reference value to normalize energy balance and is computed as follows:710

|∆Estable
p | = |∆Eg +∆Eel| (69)

In addition to the above energy consideration, the time evolution of the711

front of the column is measured as a major insight on how the collapse unfolds,712

with an upper bound equal to the mesh right boundary x = W collapse
mesh . Because713

the left edge does not move during the collapse, the latter front position is714

simply equal to the width of the column, Lx, and is tracked from the furthest715

material point along the x−axis and the mesh geometry (naturally considering716

the material to be present in a whole cell as long as at least one material point717

is inside):718
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Lx = �oor

(
maxp∈{p}(x

p)

lcell
+ 1

)
lcell (70)

Because of this "voxelized" point of view, Lx logically increases by steps719

of lcell as the column spreads to the right. Note that Lx is directly related to720

the so-called runout distance dr:721

dr = Lx − Linit
x (71)

Additionally, the normalized spreading length L̃ and collapse time t̃ are722

other common dimensionless quantities used to describe the dynamics of the723

collapse, both being computed as in [60]:724

L̃ =
dr

Linit
x

(72)

t̃ =
t√

AR× Linit
x

g

(73)

Finally, in order to quantify how much the column is sheared, the second725

invariant ϵD of material point strain tensor ϵp is also systematically monitored,726

using its classical expression:727

ϵpdev = ϵp − tr(ϵp)
3

I3 (74)

ϵD = ∥ϵpdev∥ =
√

(ϵdev)ij(ϵdev)ij (75)
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lcell Nmppc ∆t aτ
Motion integration

strategy
AR

10 cm 4

2.92× 10−6 s 2.25× 10−3

Each of the following

FLIP, PIC, APIC,

FLIP0.9, AFLIP, TFLIP

1

1.46× 10−6 s 1.25× 10−3

3.65× 10−7 s 3.125× 10−4

1.46× 10−7 s 1.25× 10−4

7.29× 10−8 s 6.25× 10−5

Table 3: Parameters used to investigate the time step in�uence for di�erent
motion integration strategies (series S1, 30 simulations)

5.2 Time step in�uence for PIC damping728

As a �rst interesting result, the chosen value for the time step appears to pos-729

sibly have a strong in�uence on the settling dynamics, looking at the so-called730

S1 series of simulations that combine di�erent motion integration strategies731

with a variable time step (Table 3).732

Observing kinetic energy during this settling phase (Figure 11), one can see733

that for all FLIP-based strategies (Figure 11 (a), (c) and (e)) ∆t has virtually734

no impact on the simulated dynamics: all tested values lead the column to735

oscillate inde�nitely with the same period, in line with the conservative nature736

of FLIP and the elastic nature of the settling process.737

However, a drastic in�uence of ∆t appears with the PIC-based strategies738

(for the same ∆t values being below the critical one, Figure 11 (b), (d) and (f))739

where the dissipation rate of Ek is lower for smaller∆t. From this point of view,740

one can interpret the PIC damping as being even more arti�cial and numeric741

in nature than Cundall's damping of Eq. (61) since it is purely cumulative742

according to MPM iterations instead of being time-proportional to a given743

dissipative power as is the case for Cundall's damping which is introduced in744

the form of an ad-hoc additional force.745

A more striking evidence of this very arti�cial nature of the PIC damping746

is presented in Figure 12 (b), where all values of WMPM are nicely grouped747

together when plotted with respect to t∆t, demonstrating a direct dependence748
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Fig. 11: Kinetic energy during the settling phase for di�erent ∆t and motion
integration strategy (simulation series S1)

on ∆t. As a contrast, the WMPM observed for FLIP on Figure 12 (a) has no749

noticeable correlation to ∆t.750
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Fig. 12: Energy di�erence caused by the MPM procedure WMPM during the
settling (simulation series S1, |∆Estable

p | ≈ 2.45 J/m)

Because FLIP-based strategies induce permanent oscillations of the col-751

umn, the settling step was performed again for these simulations using752

Cundall's damping, see appendix C. Figure 13 (a) and (b) show that the753

�nal vertical stress �eld obtained with both FLIP-based (with D = 0.1) and754

PIC-based (with D = 0) strategies is the expected lithostatic one.755

These �rst observations on the settling phase suggest that FLIP-based756

strategies are to be preferred from both a theoretical and practical point of757

view. Indeed, since PIC signi�cantly decreases the kinetic energy, the column758

takes approximately 50 times longer (with the �nest time discretization) to759

settle, requiring much more computational resources.760

Looking then at the collapse phase where displacements are much more761

signi�cant, the time evolution of the column width Lx is plotted on Figure 14762

for the same simulation series S1 (Table 3). Here again, one can see that ∆t763

does not have a signi�cant in�uence on the results with FLIP-based strategies.764

Indeed, both the collapse dynamics and the �nal Lx obtained are in these765

cases virtually identical for di�erent ∆t. However, the �nal column obtained766

with AFLIP and TFLIP is approximately 9% lower than the one obtained767
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(a) FLIP (b) PIC

Fig. 13: Vertical stress at the end of the settling phase with ∆t = 1.46×10−6

s (simulation series S1)

with FLIP. Regarding the kinetic energy Ek observed on Figure 15 (a), (c),768

and (e), it is also independent from ∆t for all FLIP-based collapses, but one769

can notice that at the end a slight amount of kinetic energy (less than 0.001%770

of the initial potential energy) remains, although the material points do not771

appear to be moving. The use of Cundall's damping could solve this issue, by772

decreasing globally the energy level.773

As for PIC-based strategies, Figures 14 (b), (d) and (f) clearly show that774

they induce the column to collapse at an unrealistically low rate, as it can also775

be observed on Figure 16 (d), where the collapse is still in an early stage 3776

minutes after releasing the right constraint on the column. As a comparison,777

it takes approximately a second and a half with FLIP-based strategies for the778

1 m-high column to completely collapse, which is much more realistic.779

Similarly to the settling phase, the PIC damping observed during the col-780

lapse is dependent on the value of ∆t used, with higher time steps leading to781
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Fig. 14: Width of the column during the collapse for di�erent ∆t and motion
integration strategies (simulation series S1)

faster collapses. The developed kinetic energy Ek in the PIC simulation is at782

least 4 million times lower than with FLIP, see Figure 15 (a) and (b), and the783

gap increases with low values of ∆t, which require more MPM iterations to784

cover the same model time. Yet again, using APIC and the PIC-FLIP blend785
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Fig. 15: Kinetic energy during the collapse for di�erent ∆t and motion
integration strategies (series S1, Etot

init ≈ 8.57 · 103 J/m)

FLIP0.9 (with a non-negligible 0.1 portion of PIC) enables one to mitigate the786

PIC damping and describe slightly faster column collapses, but it is certainly787

not enough for the results to be realistic.788

Figure 17 (a) shows that for ∆t ≤ 1.46 × 10−7 s, FLIP dissipates the789

same small amount of energy (approximately 0.1% of the expected energy790
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(a) With FLIP, Nmppc = 4, lcell = 10 cm, and ∆t = 7.29 × 10−7 s (from series S1)

(b) With FLIP, Nmppc = 49, lcell = 10 cm, and ∆t = 7.29 × 10−6 s (from series S3)

(c) With AFLIP, Nmppc = 4, lcell = 10 cm, and ∆t = 7.29 × 10−7 s (from series S1)

(d) With PIC, Nmppc = 4, lcell = 10 cm, and ∆t = 2.92 × 10−6 s (from series S1)

(e) With TFLIP, Nmppc = 4, lcell = 10 cm, and ∆t = 1.46 × 10−7 s (from series S1)

Fig. 16: Positions of material points after the collapse (except for PIC), with
deviatoric strains ϵD in colorbar (see corresponding video in the supplementary
material)
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di�erence) at the end of the collapse. For higher values of ∆t, the column gains791

energy as ∆t increases. In Figure 17 (b), an overlap of the data similar to one792

obtained during the settling is found when plotting the energy lost by MPM as793

a function of ∆t, although the result for ∆t = 7.29× 10−8 somewhat deviates794

from the other results. Note that in this �gure, the WMPM obtained with PIC795

is normalized by the ∆Estable
p obtained with FLIP because PIC columns did796

not have the time to reach a stable state.797
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Fig. 17: Energy di�erence caused by the MPM procedure WMPM during the
collapse (series S1, |∆Estable

p | ≈ 4× 103 J/m)

5.3 Spatial discretization in�uence798

While the previous results were obtained using Nmppc = 4 material points799

per mesh element, likewise to [32], the possibility for the MPM results to con-800

verge with respect to the spatial discretization is often an open question, be801

it in terms of Nmppc or the size of a mesh element lcell. Considering various802

simulations and/or various quantities for similar granular column collapse sim-803

ulations such as shown here, convergence was for instance usually obtained804

for what regards lcell in [50] but that was less the case in [29, 32]. Here, two805
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lcell Nmppc ∆t aτ
Motion integration

strategy
AR

10 cm

4

1.46× 10−6 s

1.25× 10−3 FLIP 1
7.69 cm 1.12× 10−6 s

5.88 cm 8.58× 10−7 s

5 cm 7.29× 10−7 s

Table 4: Parameters used to investigate the in�uence of the cell size, lcell
(series S2, 4 simulations)

lcell Nmppc ∆t aτ
Motion integration

strategy
AR

10 cm

1

1.46× 10−6 s 1.25× 10−3 FLIP 1

4

9

16

25

36

49

Table 5: Parameters used to investigate the in�uence of the number of
particles per cell, Nmppc (series S3, 7 simulations)

other simulation series, S2 and S3, investigate this aspect in terms of both lcell806

(series S2, Table 4) and Nmppc (S3 series, Table 5).807

Regarding �rst the simulation of the settlement process, Figure 18 shows808

that neither lcell nor Nmppc has a noticeable in�uence for the most part of the809

stabilization, for t < 0.3 s. After that, lower values of lcell lead to lower Ek,810

but the value of Nmppc has still almost no impact on Ek. In fact, a di�erence811

can be observed between Nmppc = 1 and Nmppc ≥ 4. Indeed, when using only812

1 material point per mesh element, Ek is higher than for all other values of813

Nmppc, but since its value is already less than 0.1% of the maximum Ek, this814

variation can be considered negligible. Moreover, Figure 19 (a) con�rms that815

even with Nmppc = 1, the vertical stress obtained after stabilization is the one816

expected.817

As for the collapse phase, Figure 20 shows Lx and Ek for all tested values818

of lcell and Nmppc, and Figure 16 (b) (or the corresponding video) shows the819
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Fig. 18: Ek during the settling phase for di�erent spatial discretization
parameters (simulation series S2 and S3 with FLIP)

(a) Nmppc = 1 (b) Nmppc = 49

Fig. 19: Vertical stress at the end of the settling phase in various con�gurations
and with ∆t = 1.46× 10−6 s (simulation series S3)

positions of all material points throughout the collapse for Nmppc = 49. Lower820

values of lcell increase Lx by approximately 7% (see Figure 20 (a)), with only821
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Fig. 20: In�uence of the spatial discretization parameters during the collapse
phase (series S2 and S3)

a slight impact for lcell < 10 cm, the mesh element size has thus no signi�cant822

impact on the collapsing column. A stronger in�uence is here observed for823

what concerns Nmppc since the �nal Lx is 25% higher for Nmppc = 49 than824

for Nmppc = 1. Although the in�uence of Nmppc is less important for 25 ≤825

Nmppc ≤ 49, no clear convergence is observed for Lx.826

This dependency to Nmppc is probably caused by the "voxelized" point of827

view inherent to the MPM, along with the extensive shear experienced by the828

material points on the right side of the column (see Figure 16 (a) and (b)).829

Indeed, if one was to attribute an initial domain to each material point, likewise830

to the use of GIMP in [50], at some point the ones on the right side of the831

column should span over several mesh elements, but this can not be taken into832

account in the present MPM formulation. Increasing Nmppc decreases the size833

of these domains, improving their chances to restrict in only 1 mesh element.834

This observation suggests that a splitting procedure similar to the one used in835

FEMLIP [31] could reduce the dependency on Nmppc. Basically, the size of the836

domains previously mentioned would be tracked, and a material point be split837

into two if its domain became too large. Nevertheless, this procedure is left838
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lcell Nmppc ∆t aτ
Motion integration

strategy
AR

10 cm 4 1.46× 10−6 s 1.25× 10−3

FLIP and AFLIP 0.6

FLIP
1

2.4

FLIP and AFLIP 3

Table 6: Parameters used for comparison with results from the literature
(series S4, 4 simulations)

for future work as it would require particular attention on the velocities and839

state parameters to attribute to each new material point in order to conserve840

important quantities (e.g. the momentum) in the process.841

5.4 (Non-)necessity of an a�ne-augmented motion842

integration strategy for di�erent aspect ratio and843

comparison with the literature844

A last simulation series (S4, see Table 6) combines a variable aspect ratio AR845

and two di�erent motion integration strategies among the most conservative846

choices FLIP and AFLIP.847

Looking at the collapse dynamics in terms of spreading length, i.e. Lx(t)848

(Figure 21), one can see that both FLIP and AFLIP provide similar results for849

AR = 0.6 and AR = 3. More precisely, FLIP gives a wider collapsed column850

by approximately 9% for AR = 0.6, and 5% for AR = 3. Considering the851

conclusions from Section 4, these results suggest that the collapse of a granular852

column up to AR = 3 doesn't involve much rotational motion and can thus be853

modelled using the simple FLIP strategy.854

For further validation of the results, the spreading lengths obtained with855

the FLIP scheme in this same S4 series are �nally compared to results from856

the literature in Figure 22. The latters include:857

� experimental results conducted on glass beads in [61];858
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Fig. 21: Evolving width of the column during the collapse for di�erent aspect
ratios and motion integration strategies (simulation series S4)

� numerical results performed in [51] with a FEM-based hybrid Eulerian-859

Lagrangian method, in conjunction with the Mohr-Coulomb model with860

ϕ ∈ [25◦; 40◦].861

� numerical results obtained in [52] using a 3D DEM model, with a viscous862

elasto-plastic contact law;863

� numerical results from [53], obtained with the SPH method and the864

micromechanical 3D-H model (denoted in this paper SPHx3D-H).865

While no attempt was made in the present study to de�ne material param-866

eters similar to those of these literature results, one should note that the latter867

form a consistent data set which seems to be independent of material proper-868

ties and should therefore be appropriate to serve as a comparison basis for our869

results.870

A �rst observation is that our MPM columns take slightly longer to reach871

their �nal length, for all values of AR. Considering that PIC-based motion872

integration strategies lead to even longer spreading times, as previously shown873
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in Figure 14, the energy dissipation observed with FLIP in Section 4.2 might874

be to blame.875

Figure 22 also shows that the �nal spreading length is higher in MPM, with876

respect to collapses performed with other numerical models for the same AR.877

For instance, with AR = 1, the MPM simulation gives a �nal length approx-878

imately 38% higher than the results presented in [51], while the results from879

[53] are only approximately 19% lower. A similar gap is observed between our880

results and the DEM ones from [52]. Because both SPHx3D-H and DEM are881

supposed to be more accurate for granular materials than the Mohr-Coulomb882

model, the proximity of our results with the SPHx3D-H and DEM results is883

quite comforting.884

According to the experimental results from [61], the real collapsing columns885

are clearly less wide than the MPM ones, more precisely by 34% for AR = 3.886

However, for AR = 0.6, this di�erence is restricted to approximately 5%,887

and the experimental L̃ is higher than the MPM one for the most part of888

the collapse. This di�erence could come from the way the measurement of889

L̃ is performed: experimentally, some grains that are isolated from the rest890

of the column might be excluded from the measurement, but with numerical891

results, all of the material present initially in the column is included in the892

measurement.893

6 Conclusion894

This paper reviewed the implications of using di�erent motion integration895

strategies in MPM, whose possibility stems from the necessity to express and896

integrate in time kinematic �elds on a double layer of spatial discretization897

with uncoupled grid nodes and material points. Numerical investigations, in898

a USF scheme by default, focused on the impact of these motion integration899
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Fig. 22: Obtained collapse dynamics in terms of normalized spreading length
L̃ (series S4), in comparison with results from the literature

strategies for conserving energy in a number of cases of increasing complexity,900

up to the simulation of a granular column collapse.901

Even though theoretically correct for describing the simplest rigid linear902

motions, PIC was recalled to dissipate the energy during an elastic deformation903

event in a MPM simulation and considerably dampen, i.e., slow down, the904

description of a granular column collapse. Moreover, this unnatural damping905

was shown herein to increase with lower time steps, unveiling an impossible906

convergence of the PIC strategy with respect to the temporal discretization.907

On the other hand, it was shown that if only a translational motion and908

elastic deformations are involved in the simulation, the FLIP strategy was the909

most performant at preserving the total energy in the system and una�ected910

by the chosen time step, when below the divergence Courant-Friedrichs-Lewy911

limit.912

In cases involving rotational motions, it has been recalled how both PIC913

and FLIP are unable to describe rigid body rotations, even though spatial914

discretization a�ects FLIP performances in this aspect, and that an a�ne aug-915

mentation procedure such as the APIC strategy is necessary to conserve the916
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angular momentum. As a matter of fact, APIC was found to conserve accu-917

rately the angular momentum in the simple case of a rigid rotating object,918

with the condition that the time step is low enough compared to the object's919

angular velocity. In that very simple case, APIC is not only more predictable920

than AFLIP, TPIC and TFLIP, but also more performant. However, in the921

general case involving deformations, APIC su�ers from the unnatural damp-922

ing inherited from PIC, along with its impossibility to converge with respect923

to the temporal discretization. The AFLIP and TFLIP strategies are thus bet-924

ter than APIC when rotational motions and large deformations are involved,925

both giving almost identical results. Ultimately, because the implementation926

of TFLIP is more straightforward than AFLIP, TFLIP is certainly the most927

suitable motion integration strategy to recommend.928

A Bouncing cube with the USL scheme929

This appendix gives insights on the e�ect of the stress update scheme on930

the bouncing cube simulation presented in Section 4.1. The evolution of total931

energy Etot during the simulation is plotted for the USL scheme in Figure932

23, similarly to previous Figure 3 (a) for the USF case. One can see that all933

motion integration strategies are strictly dissipative when using USL, even934

FLIP-based ones, unlike the previous USF case. This observation is consistent935

with the conclusions of [38], where the USL scheme was demonstrated to be936

strictly dissipative by formulation. One can also note that with the present937

USL choice, a given motion integration strategy can not be distinguished from938

its a�ne-augmented version (e.g., PIC vs APIC or FLIP vs AFLIP) in this939

translation regime, in some contrast with the USF case.940
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Fig. 23: Total energy for the bouncing cube example simulated with di�erent
motion integration strategies and the USL stress update scheme (Eref ≈ 25.7
kJ , aτ = 5× 10−2)

B Reproduction of results from the literature941

For validation purposes of the used MPM implementation, this section aims942

to reproduce two di�erent simulations taken from the literature: a bouncing943

disk case conducted in [16], Section 4.1 therein, and a rotating disk simulation944

of [18], Section 6.1 therein.945

Although a Neo-Hookean material model was used in [16] and [18], the946

results in this Appendix are obtained using the same hyperelastic Hooke's law947

as used in previous Section 4.1, assigning the Neo-Hookean linearized elastic948

parameters of [16] and [18] to their constant Hooke's counterparts. Also, the949

simulations are performed using the USL scheme as well as boundary modi�ed950

cubic B-spline shape functions.951
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B.1 Bouncing elastic disk in comparison with [16]952

The bouncing disk simulation from [16], �4.1 therein, is very similar to the953

one presented in previous Section 4.1, the main di�erences being the number954

of dimensions (2D in this Appendix, 3D in Section 4.1), the shape of the955

bouncing object (a disk in this section, a cube in Section 4.1), and the absence956

of gravity in the present Appendix (the movement is caused by an initial957

velocity instead).958

The simulation is performed with the same spatial and time discretiza-959

tions as [16] and three di�erent motion integration strategies (PIC, FLIP, and960

APIC), although [16] only used FLIP.961
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Fig. 24: Bouncing elastic disk simulation using various motion integration
strategies

These results show that our MPM implementation is in accordance with962

the one from [16] in terms of energy conservation. Indeed, it is herein obtained,963

with the FLIP strategy, virtually the same Etot than [16]. The minor di�er-964

ences observed starting from t ≈ 50 s can be attributed to the more complex965

constitutive model used in [16]. The results obtained for PIC and APIC are966
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noticeably di�erent one from another for this 2D gravitation-less simulation,967

while they were almost identical for the 3D cube bouncing under gravity from968

Section 4.1.969

B.2 Rotating disk in comparison with [18]970

The rotating disk simulation from [18], �6.1 therein, is similar to the one in971

Section 4.2 of the present study, the main di�erences being the number of972

dimensions (2D in this Appendix, 3D in Section 4.2) and the shape of the973

rotating object (a disk in this Appendix, a cube in Section 4.2).974

For reproducing that case of a rotating disk, several values of the time step975

are herein tested, with aτ ranging from 10−2 to 0.2 (1.4 × 10−5 s ≤ ∆t ≤976

2.8 × 10−4 s), as well as three di�erent motion integration strategies (PIC,977

FLIP, and APIC) and two di�erent mesh cell sizes, between 0.03125 m and978

0.0625 m for a 0.6 m disk diameter.979

Figure 25 shows that both PIC and FLIP results are in agreement with980

the results from [18], although we obtain a slightly lower angular momentum.981

However, our implementation used in conjunction with PIC dissipated almost982

all the angular momentum as soon as the �rst iteration, while the PIC sim-983

ulation from [18] loose its angular momentum slowly over approximately 4 s.984

This might be due to the use of a more advanced time integration scheme in985

[18], which can implicit depending on the value of a parameter λ.986

Figure 26 shows that, even though the variations are small, higher time987

steps actually promote the conservation of angular momentum, thanks to988

a reduced number of MPM iterations that accumulate errors. More impor-989

tantly, the size of the mesh cells is shown to have an signi�cant impact on the990

conservation of the angular momentum in the case of using FLIP.991
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Fig. 25: Rotating disk simulation of [18] using various motion integration
strategies (for aτ = 0.2)

C Granular column settling with Cundall's992

damping for FLIP-based strategies993

Although not using Cundall's damping is necessary to investigate the energy994

dissipation coming from the MPM procedure, during the settling phase this995

consideration lead the column modelled using FLIP-based strategies to per-996

petually oscillate. As a consequence, the settled states used to initialize the997

material points positions and stresses before the collapse presented in Figure998

14 were obtained after using D = 0.1 for FLIP-based settling simulations. This999

appendix shows the evolution of Ek during this settling phase in Figures 27,1000

corresponding to Figures 11.1001

One can notice that Cundall's damping has no in�uence on the non-1002

dependance of the results on the motion integration strategy and ∆t during1003
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Fig. 26: E�ect of ∆t and lcell on the angular momentum during the rotating
disk (of 0.6 m diameter) simulation of [18] using FLIP

the settling phase. Indeed, FLIP, AFLIP and NFLIP all lead the column to1004

stabilize in as much time with a same period for the pseudo-oscillations, no1005

matter ∆t.1006
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Fig. 27: Kinetic energy during the settling phase for di�erent ∆t and motion
integration strategy (series S1 with Cundall's damping, FLIP-based)
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