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 Abstract 24 

Climate change, with its repercussions on agriculture, is one of the most important adaptation 25 

challenges for livestock production. Poultry production is a major source of proteins for human 26 

consumption all over the world. With a growing human population, improving poultry’s adaptation 27 

to environmental constraints becomes critical. Extensive evidence highlights the influence of 28 

environmental variations on epigenetic modifications. The aim of this paper is therefore to explore 29 

chickens’ molecular response to maternal heat stress. We employed Reduced Representation 30 

Bisulfite Sequencing (RRBS) to generate genome-wide single-base resolution DNA methylation 31 

profiling and RNA sequencing (RNA-seq) to profile the transcriptome of the brains of embryos 32 

hatched from dams reared under either heat stress (32 °C) or thermoneutrality (22°C). We detected 33 

289 significant differentially methylated CpG sites (DMCs) and one differentially methylated 34 

region (DMR) between heat stressed and control groups. These DMCs were associated with 357 35 

genes involved in processes such as cellular response to stimulus, developmental processes and 36 

immune function. In addition, we identified 11 genes differentially expressed between the two 37 

groups of embryos, and identified ATP9A as a target gene of maternal heat stress on offspring. 38 

This study provides a body of fundamental knowledge on adaptive mechanisms concerning heat 39 

tolerance in chickens. 40 

 41 
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Introduction 46 

Climate change and its direct and indirect consequences represent one of the most important 47 

adaptation challenges for livestock production, as unpredictable and rapid environmental changes 48 

are a source of stress. Chicken meat and eggs are major sources of proteins for human food 49 

worldwide, but their production is affected by global warming. Rising temperatures have adverse 50 

effects on poultry growth, production and survival. It has been shown that heat stress causes a 51 

decrease in productivity in many species1–3 . Heat stress in chickens, as in other species, leads to 52 

reduced feed consumption, resulting in decreased energy and nutrient intake. This ultimately leads 53 

to compromised growth and reduced quality of broiler products, as well as decreased egg quantity 54 

and quality in layers4–9. The increased demand for animal products worldwide combined with a 55 

growing human population urges the need to improve the ability of animals to respond to heat 56 

stress10. Research has demonstrated that the environment exerts influence on gene expression in 57 

both plants and animals, resulting in phenotypic plasticity; this phenomenon leads to the 58 

emergence of different phenotypes from the same genotype in response to different environmental 59 

conditions, and can even affects the phenotype of future generations through transgenerational 60 

plasticity11–13. Some of these effects are mediated by epigenetics phenomena: in response to the 61 

environment, epigenetic mechanisms can induce changes in gene expression, linking 62 

environmental changes to the physiology and health of animals14,15. These mechanisms may act as 63 

catalysts and trigger the adaptation of organisms to their environment. 64 

Epigenetics covers all mechanisms that modify gene expression in a reversible and transmissible 65 

way through mitosis or meiosis, without modifying the DNA sequence16. These phenomena 66 

include DNA methylation, histone modification, remodeling of chromatin, and regulation of gene 67 
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expression by non-coding RNAs (ncRNAs). Numerous studies, particularly in humans and 68 

mammals, showed that maternal stress can lead to epigenetic alterations in offspring, which 69 

ultimately may affect their phenotype17,18.  70 

In avian species, Tzschentke and Basta (2002) reported that, in ducks, prenatal temperature 71 

experience has a clear influence on postnatal neural hypothalamic thermosensitivity and could be 72 

the result of epigenetic temperature adaptation19. In chickens, research focused on the effect of 73 

thermal manipulations during embryogenesis on post-hatch heat tolerance and showed an 74 

increased heat tolerance in broilers within the first 5 weeks of life, when exposed to an acute heat 75 

stress20,21. In Japanese quails, a study by Vitorino Carvalho et al. (2020) reported that thermal 76 

manipulation during embryogenesis significantly reduced the hatching rate and increased mortality 77 

during the first four weeks of life22. Subsequent research (Vitorino Carvalho et al., 2021) reported 78 

that thermal manipulation during embryogenesis had little to no effect on gene expression 79 

regulation in the hypothalamus of 35-day-old quails23. On the contrary, exposure to a heat 80 

challenge before this sampling resulted in an increase in the number of differentially expressed 81 

genes, reinforcing the hypothesis that embryonic thermal conditioning has a beneficial effect and 82 

increases thermotolerance later in life10,21,24. 83 

The response to heat stress can also be triggered by heat exposure in the previous generation. For 84 

example, Ahmed et al., (2017) reported that maternal heat stress during late gestation increased 85 

acute thermal tolerance of the calf at maturity25. In birds several studies have also tried to elucidate 86 

the effect of the environmental experience of mothers on their offspring. In Japanese quails, it has 87 

been reported that maternal stress may affect and prepare future generations to cope with later 88 

environmental difficulties26,26. Santana et al. (2021) reported that maternal stress led to lower 89 

laying rate, egg mass and higher chick mortality rate at the 1–15 days of age. They observed that 90 
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the performance and oxidative metabolism of offspring raised in thermoneutral conditions were 91 

unaffected by maternal heat stress, while offspring subjected to heat stress during growth showed 92 

increased levels of protein oxidation18. In a recent study27, it was shown that thermal manipulation 93 

repeated during 4 generations in Japanese quail had a transgenerational effect on body weight and 94 

egg weight, suggesting non-genetic inheritance mechanisms. The hypothesis made to justify the 95 

improved resistance was that heat stress-induced epigenetic modifications were occurring as a 96 

consequence of the embryonic thermal manipulation, leading to increased thermal tolerance and 97 

adaptability in adults. A recent study confirmed the epigenetic nature of the transmission of heat-98 

induced effects between generations through epigenetic mechanisms in chicken28. 99 

Unlike mammals, birds have not been extensively studied for the effect of maternal heat stress on 100 

offspring heat tolerance. In this study, we explored this aspect by analyzing the genome-wide 101 

methylation and transcriptomic profiling of embryos whose mothers were reared under high 102 

ambient temperatures or under thermoneutral conditions. The underlying hypothesis is that 103 

maternal heat stress induces changes in DNA methylation in chicken embryos leading to changes 104 

in gene expression. 105 

Results 106 

In order to assess the epigenomic response to maternal heat stress on the DNA methylation levels 107 

in 13-day-old embryos, 22 embryos (10 controls and 12 stressed) were analysed. The results 108 

showed that heat stress of hens can mediate changes in the methylation patterns and also 109 

differential expression of some genes in offspring. 110 

DNA methylation changes 111 
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Some general statistics of RRBS sequencing results are summarized in Table S2. An average of 112 

20 million reads per sample were obtained.. The average mapping efficiency was 64.84%, in 113 

accordance with what is expected from this type of data29. We have assessed 1,075,291 CpG sites 114 

(after preprocessing; Fig 2A) with an average depth of 18.34. The distribution of methylation level 115 

around the transcription start site (TSS) showed a decreased value in this region (Fig 2B). Among 116 

the analysed CpGs, we detected a total of 289 DMCs between HS and CT groups, of which 138 117 

were hypermethylated and 151 were hypomethylated in the HS group (Fig 3). The DMCs were 118 

present along most chromosomes (Fig 4 and Fig S2). Their distribution was not constant along the 119 

genome and some regions had a high density of DMCs. Notably, one region on chromosome 4 120 

(Chr4:2858109,2858165) was identified as a DMR. This region harbored two lncRNA genes 121 

(LOC121110553, LOC121110554) with unknown functions. As shown in Fig 5 these two genes 122 

have contrasted expression patterns across 47 tissuesl30, and only LOC121110553 was expressed 123 

in embryo. 124 

Annotation of differentially methylated cytosine 125 

DMCs were annotated according to gene features. From the detected DMCs, 28.85% were located 126 

in promoter regions, 40.28% in introns and 18.42% in exons (Fig 6). Chi2 test showed that these 127 

distributions among CpGs and DMCs (p-value < 2.2e-16) and among hyper and hypo DMCs (p-128 

value < 2.2e-16) were significantly different. The fraction of the DMCs located in the promoter 129 

region was more frequently hypermethylated (37.25%) than hypomethylated (19.98%), while 130 

hypomethylation was more frequent in exons and introns.  131 

Gene ontology functional analysis 132 
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Based on the DMCs location, we identified 357 differentially methylated genes (DMGs) that 133 

harbored at least one DMC in one of the gene features considered (Table S3) out of 35,995 genes 134 

with at least one CpG. The functional analysis of these genes has enabled us to identify as enriched 135 

several biological processes (BP) linked to the development stage. The gene ontology ViSEAGO 136 

output showed also the significance of embryo development, metabolic process, cellular response 137 

to stimulus, immune function (Fig 7). 138 

Gene expression analysis 139 

RNA sequencing analysis was performed to investigate the impact of heat stress on embryo gene 140 

expression. Among the 17,939 genes identified as expressed in embryos, eleven DEGs were 141 

detected between HS and CT groups as listed in Table 1, all being protein coding genes. Among 142 

these, four genes were upregulated and seven genes were down regulated. ATP9A (ATPase 143 

phospholipid transporting 9A), one of the upregulated genes in the HS embryos, was also in the 144 

list of DMGs, with 4 DMCs in the introns and exon regions, all of them being hypermethylated 145 

(Fig 8). 146 

Pyromark validation 147 

Pyrosequencing validation of seven DMCs with PyroMark confirmed all the positions as DMCs. 148 

Fig 9 shows the methylation level obtained with RRBS and PyroMark. 149 

Discussion 150 

The livestock industry faces a growing number of challenges due to climate change and global 151 

warming, which have a direct impact on animal growth, reproduction, health, and welfare. The 152 

exposure of animals to climate changes and other associated stressors has both short- and long-153 
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term effects over the course of the animal’s life. There is growing evidence that epigenetics, in 154 

interaction with the environment, may also contribute to the phenotypic diversity of animals31. In 155 

addition, these effects can be passed across generations with multigenerational inheritance and 156 

perhaps provide the ability to adapt to climate change for the subsequent generations32,33.  157 

Our study aimed to elucidate the effect of maternal heat exposure on DNA methylation and gene 158 

expression in chicken embryos. The results revealed a slight influence of maternal heat stress on 159 

embryo transcriptomic levels, with eleven differentially expressed genes. We detected a total of 160 

289 DMCs between HS and CT groups, consistent with findings from previous studies in 161 

chicken28, cow34 or guinea pig35, which have demonstrated changes in DNA methylation linked to 162 

parental heat exposure.  163 

We observed that promoter DMCs were more frequently hypermethylated than hypomethylated in 164 

contrast with what was observed in exon and intron regions. This suggests that the promoter region 165 

may be more prone to hypermethylation in response to the mother heat stress than the other parts 166 

of the genes. A slight similar trend was observed in rainbow trout sperm after heat exposure of 167 

males during spermatogenesis36.    168 

We identified 357 DMGs containing at least one DMC in various gene features, with a number of 169 

6 DMCs per gene on average. In contrast, only 11 genes exhibited significant differential 170 

expression. This highlighted the observation that the majority of differential methylation sites are 171 

not simultaneously associated with changes in gene expression. Such finding is consistent with the 172 

well-established knowledge that gene expression is highly context dependent, presenting a very 173 

fine tissue and stage specificity37. The lack of association at this developmental stage does not 174 

exclude a potential functional impact of methylation marks on gene expression later in life, which 175 
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could facilitate responses to heat stress exposures. It is indeed expected that during embryogenesis, 176 

some epigenetic marks are programmed and largely maintained throughout development, 177 

contributing to better cope with environmental stressors later in life38 (Skinner, 2011).  178 

Among the identified DMGs, ERBB4 (Erb-B2 Receptor Tyrosine Kinase 4), NFATC2 (Nuclear 179 

Factor Of Activated T-Cells 2) and ATP9A (ATPase Phospholipid Transporting 9A) have been 180 

linked to GWAS signals associated with thermotolerance in pigs, as reported by Kim et al., 181 

(2018)39. Another study by Ramírez-Ayala et al., (2021) linked the ATP9A gene to thermogenesis 182 

in cattle40. Interestingly, in our study, ATP9A emerged as both DMG and DEG, and harbored 183 

numerous DMCs in both its intronic and exonic regions. This observation suggests the existence 184 

of temperature regulation pathways potentially shared between mammals and birds. 185 

The DMR on chromosome 4 is associated with two long non-coding RNAs whose function has 186 

yet to be characterized: LOC121110553 is weakly expressed but not differentially expressed 187 

between the two groups, while LOC121110554 does not appear to be expressed. 188 

The gene ontology analysis of DMGs identified important biological processes including cellular 189 

response to stimulus, embryo development, and telencephalon development. Cellular response to 190 

stimulus encompasses any process that alters the state or activity of a cell, such as movement, 191 

secretion, enzyme production, or gene expression. Indeed, cellular reaction to stress is diverse, 192 

ranging from activation of pathways involved in survival strategies to programmed cell death, 193 

which eliminate damaged cells41. Cellular apoptosis was reported as upregulated after a longer 194 

period of heat stress in highland and lowland chicken10. The cell’s initial reaction to a stressful 195 

stimulus tends to support its defense and recover from injury. However, if distressing stimuli 196 

persist without resolution, cells activate signaling pathways leading to programmed cell death41 .  197 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589068doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?hZ01m5
https://www.zotero.org/google-docs/?oS0GGW
https://www.zotero.org/google-docs/?FvlKAH
https://www.zotero.org/google-docs/?afdApd
https://www.zotero.org/google-docs/?YFBsl1
https://www.zotero.org/google-docs/?p7AJiY
https://doi.org/10.1101/2024.04.12.589068
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Adaptive immune response is another pathway that was associated with DMGs. Heat stress in 198 

commercial laying hens has been shown to reduce production performance and inhibit immune 199 

function leading to an increase in mortality42. Similarly, a study showed that HS causes immune 200 

abnormalities in broiler chickens by impairing T and B cell development and maturation in primary 201 

and secondary lymphoid tissues43. In another study, transcriptome analysis revealed the genes and 202 

pathways involved in bursal responses to heat stress and lipopolysaccharide, showing that the 203 

combined treatments had the greatest effect44. The negative link between heat stress and immune 204 

function was also observed in cattle. For example, Dahl et al., (2020) reported that lactating cows 205 

often exhibit higher disease incidence in summer (metritis, mastitis, respiratory disease), possibly 206 

linked to compromised immune cell activity due to heat stress45. Additionally, calves born to 207 

mothers experiencing heat stress and dry period during the late gestation had lower weight at birth 208 

and through puberty46–48.  209 

Epigenetics has the capability of conveying information to next generations without DNA 210 

sequence alteration. Epigenetic marks may represent the signature of environment stresses and 211 

specific physiological states acquired by the parental generation that could enhance adaptability of 212 

next generations to new situations. The outcome of the current study illustrates that maternal 213 

exposure to heat stress has an effect on the DNA methylation pattern of offspring. However, even 214 

with the exclusion of observed SNPs at CpG sites, we cannot rule out the hypothesis that some of 215 

the identified DMCs may be caused by genetic polymorphisms. Although these methylome 216 

changes were not associated with extensive transcriptional changes at the embryonic level, the 217 

affected genes and pathways identified from differentially methylated genes suggest a potential 218 

foundation for adaptive responses in progeny. This aligns with the studies of McGuigan et al. 219 

(2021) and Weyrich et al. (2016), indicating that under conditions of climate change and stressful 220 
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environments, epigenetic factors, through intergenerational and transgenerational effects, play a 221 

role in promoting adaptability of exposed populations33,35. This has been observed in chicken, with 222 

an intergenerational inheritance of heat resilience after fathers’ embryonic heat conditioning, 223 

associated with DNA methylation changes in anterior preoptic hypothalamus28.  224 

This study shows that maternal exposure to heat stress can induce hundreds of changes in 225 

methylation level and minor changes in transcriptome level in offspring. These DNA methylation 226 

modifications during the embryonic development as a consequence of their mother's heat stress 227 

may provide the capability of an adaptive response to subsequent heat stress exposure. 228 

Materials and Methods 229 

Sample preparation and experimental design 230 

A total of 4 hens (2 controls and 2 heat-stressed) from an experimental layer population (R-) issued 231 

from selection for feed efficiency49 were used. All birds were reared under standard conditions 232 

(22°C, ad libitum feeding) at the INRAE UE 1295 PEAT Poultry Experimental Unit (Nouzilly). 233 

In the heat stress group (Fig 1), hens were reared at 22°C until 28 weeks of age. Between 28 and 234 

32 weeks of age, the hens were kept at 32°C (increasing by 2°C per hour for 5 hours). The four 235 

hens were inseminated by the same male at week 30. Their eggs were collected between 31 and 236 

32 weeks and incubated for 13 days. 237 

The experiments were carried out at the PEAT experimental unit under license number C37-175-238 

1 for animal experimentation, in compliance with European Union legislation, and were approved 239 

by the local ethics committee for animal experimentation (Val de Loire) and by the French 240 
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Ministries of Higher Education and Scientific Research, and Agriculture and Fisheries (n°2873-241 

2015112512076871), complying with the ARRIVE guidelines. 242 

DNA and RNA extraction 243 

DNA and RNA from brain of 13-day-old embryos were extracted, according to the manufacturer's 244 

instructions, with AllPrep DNA/RNA Mini Kit (Qiagen catalog No. / ID: 80204). Total RNA and 245 

DNA were quantified with a NanoDrop ND-1000 spectrophotometer (Thermo Scientific). The 246 

dsDNA concentration was measured using the Quant-iT PicoGreen dsDNA (Invitrogen) assay 247 

according to the manufacturer instructions. The fluorometric measurements were performed using 248 

ABI7900HT (Applied Biosystem). 249 

The RNA quality was controlled using an Agilent 2100 bioanalyzer (Agilent Technologies France) 250 

with the Eukaryote Total RNA Nano Assay. Results were analysed with the 2100 Expert Software. 251 

RNA integrity (RIN) was 9.9 on average.  252 

Reduced representation bisulfite sequencing 253 

We obtained Reduced Representation Bisulfite Sequencing (RRBS) data from whole brains of 22 254 

embryos of unknown sex (10 controls and 12 stressed) at 13 days of age, derived from R- hens 255 

with or without heat stress. RRBS libraries were prepared using the Premium RRBS Kit 256 

(Diagenode, #C02030033), according to the manufacturer's instructions. Briefly, the protocol 257 

consisted in the digestion of 100 ng of genomic DNA by the MspI enzyme followed by fragment 258 

end repair, and addition of adaptors. A size selection step was performed with AMPure XP Beads 259 

(Beckman Coulter). Next, samples were quantified by qPCR and the Ct values were used to pool 260 

samples by equimolarity. Then the bisulfite conversion was realized on the pool and the final 261 
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libraries were amplified using MethylTaq Plus Master Mix (Diagenode kit). After a clean-up with 262 

AMPure XP Beads, the RRBS library pools were analysed with the Qubit dsDNA HS Assay Kit 263 

(Thermo Fisher Scientific), and the profile of the pools was verified using the High Sensitivity 264 

DNA chip for 2100 Bioanalyzer (Agilent) or DNF-474 NGS fragment kit on a Fragment Analyzer 265 

(Agilent). Libraries were sequenced in single-end mode of 50 bp on an Illumina HiSeq 4000 on 266 

the GenomEast platform (https://www.igbmc.fr/en/plateforms-and-267 

services/platforms/genomeast). 268 

Bioinformatics analyses 269 

The nf-core/methylseq pipeline50 version 2.1.0 was used for analysing methylation bisulfite 270 

sequencing data. Bismark version 0.24.2 with Bowtie2 as an alignment tool was used for mapping 271 

on the Gallus gallus genome GRCg7b obtained from Ensembl (bGalGal1.mat.broiler.GRCg7b, 272 

https://ftp.ensembl.org/pub/release-273 

109/fasta/gallus_gallus/dna/Gallus_gallus.bGalGal1.mat.broiler.GRCg7b.dna.toplevel.fa.gz). 274 

Pipeline’s default parameters were used, with the option --clip_r1 3 for adapter trimming 275 

(trimming 3 bases from the 5' end of each read). 276 

Differential methylation analyses 277 

The Bioconductor package edgeR v3.28.151 was used to detect differentially methylated CpGs 278 

sites (DMCs), The callDMR function from the DSS package v2.38.052 was used to call DMRs 279 

(differentially methylated regions) from the edgeR outputs. A DMR was defined as a region with 280 

a minimum number of 3 CpGs and a percentage of CpG sites with significant p-values (less than 281 

0.05) greater than 50% between Heat Stress (HS) and Control (CT) groups. Here a two-step 282 
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process has been implemented: preprocessing and differential methylation analysis. During the 283 

preprocessing step, CpGs that overlapped with C-T single nucleotide polymorphisms (SNPs) were 284 

filtered out to avoid erroneous identification of C-T polymorphisms as methylation changes. SNPs 285 

were detected by gemBS v4.053 with option “bs_call”, CpGs were further filtered using other 286 

criteria (maximum Coverage: 200, minimum coverage: 5 and minimum fraction of samples present 287 

per position: 0.8). Differential methylation analysis was performed with edgeR using a multifactor 288 

model (HS/CT and Sex) with False Discovery Rate (FDR) ≤ 0.05. Identification of the sex of 289 

embryos was performed through the average of read mapped on sex chromosomes (Fig S1). 290 

Genomic features annotation was done with the GenomeFeatures package version 1.3 291 

(https://forgemia.inra.fr/aurelien.brionne/GenomeFeatures) with default defined promoter region 292 

upstream:3000 bp and downstream:500 bp. An in-house enriched annotation file was used in this 293 

study54. 294 

Functional enrichment analysis 295 

We analyzed all the genes that had at least one DMC in their genomic features (promoter, UTR5, 296 

introns, UTR3, downstream). Functional enrichment analysis was done with the R package 297 

ViSEAGO v1.14.055, and the full list of genes having at least one CpG in genomic features was 298 

used as background.  299 

RNA-seq data acquisition  300 

Paired-end sequencing was performed using an Illumina HiSeq3000 (Illumina, California, USA) 301 

system, with 2 × 150 bp, as in Jehl et al, 201956. FASTQ files were mapped on the GRCg7b 302 

reference genome (GCF_016699485.2) and the nf-co.re/rnaseq50 pipeline version 3.8.1 was used 303 
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for providing raw count and transcript per kilobase million (TPM) normalized expression per gene 304 

and sample. 305 

RNA-seq analysis 306 

The normalized expression level was obtained using the trimmed mean of M-values (TMM) 307 

scaling factor method, implemented in Bioconductor package edgeR version 3.32.1, with the 308 

functions of “calcNormFactors” and “rpkm” used to scale the raw library sizes and scale of gene 309 

model size respectively. In situations where TPM and TMM normalized expressions were ≥ 0.1 310 

and read counts ≥ 6 in at least 80% of the samples, the gene was considered as expressed. For 311 

differential expression analysis we used the raw counts from the expressed genes previously 312 

selected and normalized by the TMM method. The Bioconductor package edgeR was used to 313 

perform the differential expression analysis, which is based on a generalized negative binomial 314 

model for model fitting. The method of “edgeR-Robust” was used to account for potential outliers 315 

when estimating per gene dispersion parameters. P-values were corrected for multiple testing using 316 

the Benjamini-Hochberg approach to control the false discovery rate (FDR), and FDR < 0.05 was 317 

used to identify significant DEG (Differentially Expressed Gene). 318 

Pyromark validation 319 

For the DMC validation, the Pyrosequencing method was used to perform a quantitative 320 

methylation analysis of bisulfite-converted DNA for each individual. The pyrosequencing was 321 

performed using PyroMark Q24 (QIAGEN). All the primers (forward, reverse and sequencing 322 

primers) were designed with the PyroMark Assay Design software (Version 2.0.1.15, Qiagen) 323 

using the assay type "Methylation Analysis" (CpG) (Table S1). 324 
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The PCR reaction contained 2 µl of bisulfite treated DNA sample (EZ DNA Methylation-Gold kit, 325 

Zymo Research), 2.5 µl of buffer + 0.05 µl of Taq Polymerase (PCRBIO Classic Taq, Eurobio), 326 

2.5 μl of dNTP (2mM, Promega), 1 μl of each primer (10 μM), and 5.95 μl of water. The program 327 

on the thermal cycler (Thermocycleur ABI2720, Applied Bisystem) was: 95 °C for 5 min; followed 328 

by 35 cycles of: 95 °C for 30 sec, hybridization temperature for 30 sec, and 72 °C for 30 sec; and 329 

a final extension at 72 °C for 5 min. 330 

Ten μl of PCR product were then mixed with 1 μl of Streptavidin sepharose™ high performance 331 

(GE Healthcare) and 40 μl of PyroMark binding buffer (Qiagen). The mix was shaken at 1400 rpm 332 

on a microplate mixer for at least 10 min. The immobilized PCR products were purified using 333 

PyroMark Q24 vacuum workstation (manufacturer instructions, QIAGEN), mixed with 1 μl of a 334 

sequencing primer (5µM) and 24 μl of Pyromark annealing buffer, and heated at 80 °C for 5 min 335 

to anneal the sequencing primer before analysis on the PyroMark Q24. Results were analysed with 336 

the PyroMark Q24 software (version 2.0.8, build 3, Qiagen). DNA methylation values obtained 337 

via pyrosequencing were compared between the HS and Control groups using a Wilcoxon test. 338 
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 502 

Figure legend 503 

Fig 1: Experimental design 504 

Fig 2: Preprocessed data A) Number of CpGs kept after each step of the pre-processing 505 

workflow. B) Average methylation level around TSS regions. 506 

Fig 3: Volcano plot of CpG methylation and DMCs between HS and CT. 507 

Hyper=hypermethylated; Hypo=hypomethylated, FDR=False Discovery Rate, 508 

DMC=differentially methylated CpG site 509 

Fig 4: Manhattan plot of differential methylation analysis between HS and CT groups. The above 510 

dashed line represents FDR ≤ 0.05 and solid line represents FDR ≤ 0.01.  511 

FDR=False Discovery Rate 512 

Fig 5: Expression pattern of two lncRNA genes (LOC121110553, LOC121110554) across 47 513 

tissues (https://gega.sigenae.org/) 514 

Fig 6: Distribution of total CpGs and DMCs (hypermethylated and hypomethylated) across the 515 

different genomic regions. 516 

Fig 7 : Gene Ontology functional analysis of the genes related to DMCs. The clustering heat map 517 

plot of the functional sets of gene ontology (GO) terms was obtained using ViSEAGO. Gene 518 

Ontology functional analysis with count showing information content and a dendrogram on 519 

enriched GO terms based on BMA semantic similarity distance and Ward’s clustering criterion. 520 

Fig 8: Expression and methylation level of the 4 DMCs per group (CT and HS) for ATP9A. 521 

 522 

 523 

 524 
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 525 

 526 

Table 1. Differentially expressed genes between Heat Stress and Control groups.  527 

*Up: more expressed in HS than in CT, Down: less expressed in HS than in CT. fc: fold change, lfc: log2(fold change) 528 

 529 

Gene id Gene Name Chr start end strand Expression* padj fc lfc 

LOC100858942 LOC100858942 34 2198709 2201885 + UP 0.01 242.44 7.92 

LOC112531412 LOC112531412 JAENSK010000420.1 8859 18598 - UP 0.03 98.82 6.63 

LOC396217 MBP 2 90091375 90199666 + UP 0.02 12.92 3.69 

LOC419345 ATP9A 20 13450938 13503307 + UP 0.01 2.57 1.36 

LOC107054346 LOC107054346 12 1193659 1196336 + DOWN 0.04 0.04 -4.48 

LOC121108245 LOC121108245 Z 169136 201956 - DOWN 0.01 0.08 -3.69 

LOC100857335 LOC100857335 34 1513723 1516547 - DOWN 0.01 0.1 -3.34 

LOC107057116 ZNFY4 16 1583937 1595533 + DOWN 0.01 0 -12.35 

LOC121108653 LOC121108653 MU179258.1 33562 38085 + DOWN 0.01 0.33 -1.62 

LOC100502566 TMSB15B 4 1940045 1942512 + DOWN 0.00 0.34 -1.57 

LOC417488 CLIP2 19 3258667 3318184 - DOWN 0.00 0.41 -1.28 
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