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Abstract 1 

Besides the well-understood qualitative disease resistance, plants possess a more complex 2 

quantitative form of resistance: quantitative disease resistance (QDR). QDR is commonly defined 3 

as a partial but more durable form of resistance and, therefore, might display a valuable target for 4 

resistance breeding. The characterization of QDR phenotypes, especially of wild crop relatives, 5 

displays a major bottleneck in deciphering QDR's genomic and regulatory background. Moreover, 6 

the relationship between QDR parameters, such as infection frequency, lag phase duration, and 7 

lesion growth rate, remains elusive. High hurdles for applying modern phenotyping technology, 8 

such as the low availability of phenotyping facilities or complex data analysis, further dampen 9 

progress in understanding QDR. Here, we applied a low-cost phenotyping system to measure lesion 10 

growth dynamics of wild tomato species (e.g., S. pennellii or S. pimpinellifolium). We provide 11 

insight into QDR diversity of wild populations and derive specific QDR strategies and their 12 

crosstalk. We show how temporally continuous observations are required to dissect end-point 13 

severity into functional resistance strategies. The results of our study show how QDR can be 14 

maintained by facilitating different defense strategies during host-parasite interaction and that the 15 

capacity of the QDR toolbox highly depends on the host's genetic context. We anticipate that the 16 

present findings display a valuable resource for more targeted functional characterization of the 17 

processes involved in QDR. Moreover, we show how modest phenotyping technology can be 18 

leveraged to help answer highly relevant biological questions.  19 

  20 
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1. Introduction  1 

Quantitative disease resistance in plants 2 

Plant resistance is commonly divided into two concepts with fundamental differences: qualitative 3 

and quantitative resistance [1,2]. While qualitative disease resistance provides a highly effective 4 

race-specific resistance, quantitative disease resistance (QDR) is a broad-range yet incomplete 5 

resistance [2,3]. Qualitative resistance is driven by major race-specific resistance genes (R-genes). 6 

They often lead to complete and easily observable resistance and were the dominant research focus 7 

for disease resistance breeding programs. However, reports of R-genes losing their efficacy against 8 

pathogens have increased recently, and major resistance genes have not been identified for many 9 

so-called necrotrophic plant pathogens, like Botrytis cinerea or Sclerotinia sclerotiorum [3–7]. 10 

Commonly, degrees of QDR can’t be divided into discrete classes. Quantitative resistance 11 

phenotypes are continuously distributed and can only be explained by highly integrated, polygenic 12 

regulatory mechanisms [8]. Moreover, QDR can manifest itself in several ways, ranging from 13 

differences in infection frequency on the leaf or delayed onset of infection to stalled lesion growth. 14 

Numerous studies documented wide distributions of QDR phenotypes against necrotrophic 15 

pathogens in both natural and domesticated plant populations, yet the relations of different QDR 16 

phenotypes have not yet been studied in detail [1–3,8–12]. Recent reports summarized the diversity 17 

in functional QDR, arguing that QDR might be influenced by many independent components such 18 

as regulation as a pleiotropic side-effect, weak R-genes, involvement in defense signal 19 

transduction, or cis/trans-regulatory mechanisms [1,2]. Indeed, many QTLs that influence some 20 

degree of QDR have been identified [8,13,14]. Linkage of such QTLs or the underlying loci to 21 

exact resistance features, like the lag-phase duration, will be one of the future challenges that would 22 

allow understanding and utilizing QDR in pathogen resistance breeding.  23 

  24 
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Phenotyping technology and approaches to quantify QDR 1 

The functional characterization of QDR highly depends on precisely measured phenotypes [2,15]. 2 

However, the experimental design required to assess QDR phenotypes over entire plant or pathogen 3 

populations quickly exceeds the limits of traditional, manual scoring methods and calls for more 4 

sophisticated phenotyping technology. The increasing availability of sensor technology (e.g., RGB, 5 

multi- or hyperspectral sensors) and analytical methods (e.g., deep-learning or artificial intelligence 6 

algorithms) recently have strengthened the attention to plant phenotyping [16]. Many studies have 7 

shown how imaging technology can be used to determine plant phenotypes like plant height, 8 

nutritional status, or water-use efficiency but also to assist breeder’s decisions [14,17,18]. 9 

Moreover, several reviews recently summarized the potential of modern sensor technology and 10 

related software in quantifying phenotypes of host-parasite interactions on multiple levels [19–24]. 11 

Even advanced applications, like in-field phenotyping or assessing complex features in non-12 

standardized conditions, are possible due to deep-learning models like ‘PLPNet’ or ‘ResNet-9’ 13 

[25–27]. However, large phenotyping platforms also have limitations. High-end systems often 14 

collect a multitude of 3D scanning images or images in multiple spectral wavelengths. Analysis of 15 

these data is computationally intensive and often requires very specific knowledge. Thus, such 16 

technologies might overwhelm (non-data-science-) researchers with high amounts of complex 17 

datasets as significant skills are required to derive easy-to-interpret insights relevant to answering 18 

biological research questions [28]. A second challenge lies in adapting an established phenotyping 19 

system for various pathosystems, i.e., different crops or pathogens [22,29]. Lastly, most high-end 20 

phenotyping systems have very high investment and running costs and thus are less available. 21 

Combined with the aforementioned low flexibility, this further limits their use and application in 22 

the broad spectrum of plant pathology, where quick and easy screening of QDR in a large panel of 23 

plants is one of the main objectives. Recent developments, however, enable researchers to use the 24 

generally available consumer-level technology and build low-cost phenotyping platforms like the 25 

‘Navautron’ [30]. In this study, we show the usefulness of such systems in unraveling QDR 26 

dynamics in crop wild relatives.  27 

 28 

Wild tomato populations as a reservoir of potential QDR loci against major pathogens 29 

The domestic tomato (Solanum lycopersicum) is a major food crop of global importance [31]. 30 

However, plant pathogens, including the necrotroph Sclerotinia sclerotiorum or species from the 31 
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genus Alternaria, commonly threaten tomato production worldwide [32–35]. Host resistance and 1 

fungicides are the standard tools to protect tomatoes against these pathogens. However, strong 2 

bottleneck events caused by R-genes or fungicides and higher-than-expected pathogen diversity in 3 

the field result in losing fungicide efficacy or plant resistance against such species [36–40]. 4 

Therefore, highly diverse wild populations are an invaluable source of desirable alleles in breeding, 5 

as crosses between wild and domestic lead to increased performance and stress tolerance [41]. 6 

Integrating phenotyping with screening of genetically highly diverse wild resources will help 7 

characterize novel alleles for QDR breeding [42]. 8 

Wild tomato species originated from several radiation events and can generally be classified into 9 

four groups within the so-called section Lycopersicon, containing a total of 15 species and two 10 

species in the section Lycopersicoides [43]. All species have adapted to specific habitats ranging 11 

from the edge of the Atacama desert to the Andes, where they withstand diverse (a)biotic stresses. 12 

Evolutionary analyses show that different species and populations have evolved drought or salt 13 

stress tolerance, as well as adaptation to cold stress [44–48]. Previous studies have also shown 14 

substantial variation in susceptibility and resistance of wild Solanum spp. against various pathogens 15 

but often relied on manual or single time-point disease assessments, thus lacking the temporal 16 

resolution and statistical power to describe QDR strategies confidently [38,49,50]. In light of the 17 

variation of QDR already shown, wild tomato species are perfectly suited for quantification of 18 

QDR mechanisms as proof of principle. Moreover, defining whether specific QDR mechanisms 19 

play major roles in resistance will generate much-needed insights into the biology of QDR to help 20 

design future durable resistance breeding projects against major pathogens. 21 

Sclerotinia sclerotiorum is a necrotrophic pathogen that can infect hundreds of host species, 22 

including important crops such as rape seed and tomato [30,51,52]. On vegetables, including 23 

tomatoes, infection with S. sclerotiorum can cause tremendous yield loss due to collapsing stems 24 

or damaged fruits [53,54]. Infection in the field can happen through air-dispersed ascospores or via 25 

myceliogenic germination of its overwintering structures in the soil, the so-called sclerotia [32,52]. 26 

In experimental conditions, mycelial inoculation procedures are commonly used, as the preparation 27 

of ascospores can display a major challenge [55–59]. No complete form of resistance against the 28 

generalist S. sclerotiorum has been characterized; therefore, resistance breeding relies on QDR as 29 

the source of new alleles [32,52,55,57,60]. 30 
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In the present work, we build on a low-budget image-based phenotyping system [30] to derive 1 

high-resolution time-resolved disease phenotypes and dissect them into three distinct QDR 2 

strategies. We show the potential of this system by characterizing the natural diversity of QDR 3 

phenotypes of wild Solanum species and, therefore, provide insights into the mechanisms 4 

underlying QDR against the generalist pathogen Sclerotinia sclerotiorum. We use this system as a 5 

model to address whether QDR is always represented by a similar mechanism, i.e., infection 6 

frequency or lag phase duration, and show that the orchestration of different QDR mechanisms 7 

affects the overall QDR on a genotype-specific basis. Accordingly, we argue that the different host 8 

species have evolved specific strategies to maintain a defined degree of QDR.  9 

10 
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2. Materials and Methods  1 

Experimental Design 2 

We screened multiple accessions of four wild tomato species (S. pennellii, S. lycopersicoides, S. 3 

habrochaites, and S. lycopersicoides) with a detached-leaf assay. All accessions of the same species  4 

Figure 1: Overview of the high-throughput phenotyping assay.  5 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.07.592883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.07.592883
http://creativecommons.org/licenses/by-nc/4.0/


 

8 

 

were tested as one batch for up to five independent repetitions. To facilitate comparability between 1 

batches, S. lycopersicum cv. C32 was used as a control in every experiment. A schematic of the 2 

experimental procedures is displayed in fig. 1.  3 

Sclerotinia sclerotiorum inoculum preparation 4 

For inoculation experiments, the Sclerotinia sclerotiorum isolate 1980 or the OAH1:GFP isolate 5 

(for microscopical analysis only, [61]) was used. The fungus was alternatingly cultivated on potato 6 

dextrose agar (Sigma Aldrich) and solid malic acid medium [62] at approx. 25°C in the dark. Four 7 

1cm pieces of S. sclerotiorum inoculum were used to inoculate 100 mL PDB. After four days of 8 

incubation on a rotary shaker (24°C, 120rpm), a fungal mycelium suspension was generated: for 9 

this, the medium was mixed using a dispenser (IKA T25) for two times 10 sec at 24.000 rpm. The 10 

mixture was then vacuum-filtrated through cheesecloth, and the remaining liquid was concentrated 11 

to an OD of 1. For the negative control, fungal tissue was removed from the solution by 12 

centrifugation, and the supernatant was autoclaved. Tween20 was used as a surfactant. Per leaf, 13 

one drop (10 µL) of inoculum was used. 14 

Plant growing conditions 15 

Wild tomato germplasm was obtained from the C. M. Rick Tomato Genetics Resource Center of 16 

the University of California, Davis (TGRC UC-Davis, http:// tgrc.ucdavis.edu/) (see suppl. table 17 

5). The species were selected to include genetically diverse species within the section Lycopersicon 18 

and a species from the section Lycopersicoides (fig. 2). All plants were grown at the greenhouse 19 

facility of the Department of Phytopathology and Crop Protection, Institute of Phytopathology, 20 

Faculty of Agricultural and Nutritional Sciences, Christian Albrechts University, Kiel, Germany. 21 

Following seed surface sterilization using 2.75% hypochlorite (15 min. incubation followed by 22 

washing twice with dH2O), seeds were sown in the substrate (STENDER C700, Germany) and 23 

cultivated in a growth chamber (21 °C, 65% rH, 450 PAR). From the 3-leaf stage on, plants were 24 

cultivated in standard greenhouse conditions with supplement light. Plants were occasionally 25 

fertilized via the irrigation system (1% Sagaphos Blue, Germany). Plants were propagated using 26 

cuttings (Chryzotop Grün 0.25%) and regularly screened for virus infection. 27 
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Detached leaf assay  1 

Detached leaf assays were conducted to 2 

measure quantitative disease resistance of a 3 

diverse panel of wild Solanaceae plants. A 4 

custom phenotyping system was adapted 5 

[30]. A 50cm x 70cm PMMA tray was filled 6 

with eight layers of blue tissue paper and 7 

flooded with 700mL sterile dH2O. Plant 8 

leaves were placed abaxial side up onto the 9 

tissue and inoculated with 10 µL of mock-/S. 10 

sclerotiorum-suspension. Next, the tray is 11 

covered with a custom hood. The boxes were 12 

placed inside a growth chamber (24°C) and 13 

incubated for seven days. The assay was 14 

independently repeated five times. We used 15 

a representative set of three experiments for 16 

all further analysis.  17 

 18 

Phenotyping platform  19 

High-resolution images were acquired using RGB cameras (Yealink UVC30) mounted on the box. 20 

Cameras were controlled using Raspberry Pi microcomputers or desktop PCs running headless 21 

Ubuntu22. A cron daemon launched the image-acquisition script every ten minutes. Plant lights 22 

also briefly illuminate during nighttime for image capture to enable images in the dark while 23 

maintaining circadian rhythm. This was achieved by using the ‘Shelly Plus Plug S’ wifi plug.  24 

Image analysis 25 

We adapted the ‘navautron’ software package (https://github.com/A02l01/Navautron). The image 26 

analysis involved manually defining regions of interest (ROI) using ImageJ (ImageJ Version 27 

1.530). Further, HSV thresholds were optimized individually per box. For this, ‘assess_noChl.py’ 28 

was used, and an overlay was generated in Gimp (Version 2.10). Once binary masks represented 29 

Figure 2: Sampling localities of wild tomato accessions 

used in this study. Seed material of all wild tomato 

accessions was provided from C. M. Rick Tomato Genetics 

Resource Center of the University of California, Davis 

(TGRC UC-Davis, http:// tgrc.ucdavis.edu/). Individual 

dots represent the geographical origin of each accession.  
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the respective feature classes (leaf_healthy, leaf_diseased, background), the whole dataset was 1 

evaluated using the ‘infest.py’ script. Segmentation was iterated and classified pixel counted. The 2 

analysis includes functions from the python3 (Version 3.11.4) libraries ‘numpy’ (Version 1.25.2), 3 

‘opencv’ (Version 4.8.1.78), ‘plantcv’ (Version 4.0.1), and ‘scikit-image’ (Version 0.22.0). The 4 

plantcv function ‘dilate’ was used to remove leaf edges containing shadows with ksize=9, i=1 [63]. 5 

To improve thresholding accuracy (e.g., filling holes) on the lesion, an index filter was applied 6 

[ndimage.generic_filter(mask, threshold, size=3, mode=’constant’)] with a condition to overwrite 7 

pixels deviating from the value of the majority of the surrounding pixels. np.sum(mask) was used 8 

to quantify the number of pixels in each feature class (lesion and leaf). Code and scripts can be 9 

found at https://github.com/seveein/QDR_Wild_Tomatoes. 10 

Microscopy analysis  11 

Plant leaves were harvested and inoculated under standard conditions as described before but with 12 

either a GFP-expressing S. sclerotiorum strain, the S. sclerotiorum wildtype 1980, or the mock 13 

suspension. The leaves were evaluated at 12-hour intervals using a Zeiss Discovery V20 14 

stereomicroscope under bright light and fluorescent illumination (Zeiss HXP120). Images were 15 

taken using an AxioCam MRc camera.  16 

Statistical analysis 17 

An interactive R-script (R-Version 4.3.2, R-Studio 2023.12.1+402) was facilitated to extract lag-18 

phase duration and LDT to quantify resistance characteristics [30]. Each leaf's lesion size over time 19 

was fitted against a 4-degree polynomial regression. The fit to the measured data point was 20 

reviewed for each sample. Lesion doubling time (LDT) and lag phase were determined based on a 21 

segmented regression analysis, expecting two linear phases. First, a linear phase during the lag 22 

period (no symptom development), and second, a linear log growth (symptom) during the 23 

exponential growth phase. The start of exp(LDT) is considered the lag phase, while the LDT 24 

represents the log(slope) of the linear growing curve in this area.  25 

A two-tier filtering pipeline was developed to increase accuracy and remove artifacts from the 26 

dataset. First, single time points with an arbitrary high/low leaf area were filtered per leaf. The top 27 

and lowest 2.5 % of the data points were trimmed for this. Next, individual leaves with 28 

unexpectedly high variability in leaf area were excluded from the data set. Therefore, samples with 29 
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sd(leaf) > 10% of the mean(leaf) were removed from the dataset using a simple tidyverse (v. 2.0.0) 1 

pipeline.  2 

As a measure of symptom development over time, the area under the disease progress curve 3 

(AUDPC) was calculated using the R-package agricolae (v. 1.3-6). General statistical analysis and 4 

visualization were conducted in RStudio (R-Version 4.3.2, R-Studio 2023.12.1+402 [64]), and the 5 

packages tidyverse [65], ggplot2 [66], ggpubr [67] and agricolae [68]. AUDPC is defined with 6 

i=time and yi=symptom severity at time=i as: [68]  7 

𝐴𝑈𝐷𝑃𝐶 =  ∑
(𝑦𝑖+𝑦𝑖+1) × (𝑖 − 1)

2

𝑁

𝑖=1

 8 

For continuous variables (lag phase duration, lesion doubling time, AUDPC, tt100), a statistical 9 

model based on a generalized least squares model was defined [69]. In contrast, a generalized linear 10 

model was defined for binomial values (infection frequency, 100%/f) [70]. These models included 11 

genotype and start date (without interaction effect). 12 

The residuals corresponding to the continuous values were assumed to be approximately normally 13 

distributed and heteroscedastic concerning the different genotypes. These assumptions are based 14 

on a graphical residual analysis (suppl. fig. 7 & 8). Based on these models, a Pseudo R2 was 15 

calculated [71], and an analysis of variances (ANOVA) was conducted, followed by multiple 16 

contrast tests [72,73]. User-defined contrast matrices were used i) to compare the species' means 17 

with each other and ii) to compare the population means within their specific species with the 18 

corresponding species' mean. The individual leaf area was previously found to have no significant 19 

influence on lesion area; therefore, it was not included in our statistical model [74]. A linear mixed-20 

effects model was used to determine the relationship between AUDPC and predictors such as 21 

genotype, lag phase duration, and LDT. Random intercepts were specified per start date to account 22 

for experimental repetitions.  23 

Based on this model, fixed effect values were extracted and used to predict AUDPC per 24 

genotypei=1,2,3 in relationship to varying lag and LDT values.  25 

𝐴𝑈𝐷𝑃𝐶𝑖 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖 +  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑎𝑔_𝑖 × 𝑙𝑎𝑔 +  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝐿𝐷𝑇_𝑖 × 𝐿𝐷𝑇26 

+ 𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑛𝑡𝑙𝑎𝑔_𝑖×𝐿𝐷𝑇_𝑖 × 𝑙𝑎𝑔 × 𝐿𝐷𝑇 27 
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The associated R-codes can be found at https://github.com/seveein/QDR_Wild_Tomatoes. 1 

2 
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3. Results  1 

Wild tomato species carry different levels of quantitative resistance against Sclerotinia 2 

sclerotiorum depending on defense-parameters 3 

We investigated the phenotypic diversity in quantitative disease resistance in four wild tomato 4 

species (S. habrochaites, S. lycopersicoides, S. pennellii, and S. pimpinellifolium) against the 5 

Sclerotinia sclerotiorum isolate 1980 [13]. We used the “Navautron” automated phenotyping 6 

system for continuous image acquisition and applied a threshold-based segmentation algorithm to 7 

extract phenotypic data. Hence, we calculated different QDR parameters such as infection 8 

frequency, lag-phase duration, lesion doubling time (LDT), or area under the disease progress curve 9 

(AUDPC) to quantify temporal dynamics of infection (fig. 3). High variability between 10 

experimental runs with wild tomatoes has been described before [6,49,74]. To account for this, we 11 

applied a generalized least squares model (gls, continuous variables) and a generalized linear model 12 

(glm, discrete variables) for statistical analysis [69]. Overall, we discovered a great diversity of 13 

resistance phenotypes among the tested plant species. We found no 100% resistant accessions 14 

(suppl. fig. 3). We observed a significant difference in lag-phase duration among plant species, 15 

which we define as the time from infection until the first symptoms appear (see fig. 3 A, C, D). For 16 

instance, S. pimpinellifolium showed the shortest time from inoculation until lesion development 17 

(adjusted mean = 36.2 hrs). In contrast, S. habrochaites and S. pennellii displayed a significantly 18 

prolonged lag phase (both approx. 59 hours) (see suppl. table 1). Using segmented regression 19 

analysis, we determined the speed of lesion growth on individual leaves of the panel. The fastest-20 

growing lesions were found on the species S. pimpinellifolium and S. pennellii. Lesions on S. 21 

pennellii and S. pimpinellifolium leaves doubled in size within approx. eleven hours (6.56 log(LDT) 22 

and 6.55 log(LDT), respectively), while lesions on S. habrochaites and S. lycopersicoides spread 23 

significantly slower. Those lesions expanded with an average rate of approximately 7.7 log(LDT), 24 

corresponding to roughly 36 (S. habrochaites) and 41 hours (S. lycopersicoides)(see suppl. table 25 

2). Moreover, we observed that the success of disease establishment (infection frequency) depends 26 

highly on the host species. We identified a significantly lower infection rate on S. habrochaites  27 

  28 
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Figure 3: Wild tomato species possess a broad diversity of resistance against S. sclerotiorum. A) Exemplary 1 

illustration of different QDR parameters used in this study. The infection frequency is defined as the percentage of 2 

leaves showing a lesion after seven days of incubation. The lag phase, or lag-phase, is defined as the time till first 3 

visual symptoms appear. We used a segmented regression analysis to determine the lag phase's end mathematically. 4 

The absolute lesion size is represented as pixel counts, whereas normalization against leaf area results in symptom 5 

severity. The area under the disease progress curve (AUDPC) is defined as the integral area under the severity curve, 6 

which depicts the severity over time. As a measure of the lesion spread, the Lesion Doubling Time (LDT) describes 7 

the time till a lesion doubles its size. The time till a lesion covers 100% of a leaf is described by tt100%. B) The 8 

infection frequency of S. sclerotiorum inoculum differs significantly between the host species. The table shows a 9 

meta-analysis of pooled accessions collected from three independent experiments. C) Time till lesion formation (in 10 

days). The number on the x-axis indicates the count of individual leaves tested. D) Statistical analysis of pairwise 11 

differences in lag phase duration between the tested wild tomato species. Values are displayed in days and derived 12 

from a generalized least squares model. E) Lesion growth rate during the exponential growth phase hours, plotted on 13 

a log scale. The number on the x-axis indicates the count of individual leaves tested. Raw values are plotted. F) 14 

Statistical analysis of pairwise differences between the tested wild tomato species regarding lesion doubling time. 15 

Values are displayed as log(LDT[h]). Levels of significance are displayed as *** P < 0.001, ** P <0.01. * P<0.05, 16 

P<0.1. 17 
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(corrected infection frequency estimate 80 %), whereas S. lycopersicoides and S. pennellii 1 

displayed significantly higher infection frequency (~93 and 95%, respectively) (fig. 3 B).  2 

Individual QDR measures show different levels of intraspecific variation and conservation 3 

on S. pennellii and S. lycopersicoides accessions. 4 

To assess the within-species diversity of QDR phenotypes, we tested different accessions of each 5 

represented species. We collected phenotypic data from seven S. lycopersicoides and nine S. 6 

pennellii populations (fig. 4), as well as eight populations of S. habrochaites and ten of the species 7 

S. pimpinellifolium (see suppl. fig 1 and suppl. fig. 2). Especially the comparison of S. 8 

lycopersicoides and S. pennellii highlights that QDR diversity differs between species. We 9 

observed that the (adjusted) mean duration of the lag phase on different S. pennellii accessions 10 

ranged from 1.59 days (38 hours, LA1809) to 2.86 days (68 hours, LA1303) (fig. 4 A, C). Using a 11 

generalized least squares model, we identified accessions with a significantly shorter lag phase than 12 

the grand mean of the species (LA1809 and LA2657). In contrast, the accessions LA1656 and 13 

LA1303 displayed a significantly longer lag phase (2.75 days [66 h] and 2.86 days [68 h], 14 

respectively) (fig. 4 A, C). Next, we observed a significantly shorter overall lag phase duration of 15 

S. lycopersicoides accessions than S. pennellii. Accordingly, the first symptoms appeared after 1.3 16 

days (31 hours, LA2772) and the latest at 1.83 days after inoculation (43 hours LA1966). The 17 

overall time till initial symptom development was more conserved; only two S. lycopersicoides 18 

accessions deviated significantly from the grand mean, being more susceptible than the overall 19 

species level (LA2776 and LA2772) (fig. 4 B, D). Similarly, we found a lack of variation in lag-20 

phase-duration in the populations of S. pimpinellifolium. At the same time, S. habrochaites-21 

accessions displayed a wider variability of lag-phase phenotypes (suppl. fig. 1, suppl. table 3). 22 

Next, we analyzed the variability of the lesion growth rate between accessions of each species 23 

using the logarithmic lesion doubling time. We observed that all tested S. pennellii accessions 24 

displayed an average lesion doubling time ranging from 5.84 h (LA1303) to 13.07 hours (LA2963). 25 

Five accessions (LA1809, LA1282, LA2719, LA2657, LA1303) have a significantly faster lesion 26 

development than the grand mean (LDT < 11 hours). The populations LA2963 and LA1941 27 

displayed a significantly longer LDT (13.07 and 9.8 hours, respectively) (fig. 4 E, G). Generally, 28 

we found that symptoms of S. lycopersicoides grew significantly slower (observed range: 14.9 h to 29 

40 hours). However, we still observed a significant within-species variability. For instance, 30 
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symptoms on leaves of the accession LA2951 doubled within lsmean=7.88 log(LDT) (approx. 44 1 

hours), while lesions of LA2777 expanded much faster at lsmean=6.8 log(LDT) (15 hours, fig. 4 2 

F, H). We observed a high variability among the accessions for S. pennellii and S. lycopersicoides, 3 

mostly deviating from the species-mean in LDT with high significance. Interestingly, the LDT on 4 

S. habrochaites and S. pimpinellifolium appeared much more conserved between the accessions, as 5 

only a few samples significantly differed from the grand mean (suppl. fig. 2, suppl. table 4). 6 

 7 

8 
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 1 
Figure 4: QDR parameters show different levels of variation depending on the host species (S. pennellii and S. 2 

lycopersicoides). A) The lag phase duration (in days after infection) of S. sclerotiorum infection on S. pennellii 3 

accessions displays a higher level of intraspecific diversity than on accessions of S. lycopersicoides (B). C) & D) 4 

Variation statistics of the lag phase duration contrasting each accession with the grand mean per species (S. pennellii 5 

C, S. lycopersicoides D). Estimates are displayed in days post inoculation. E) & F) The lesion doubling time (in 6 

hours) of S. sclerotiorum infection on S. pennellii accessions is lower than on S. lycopersicoides. G) Variation 7 

statistics of LDT on S. pennellii and H) S. lycopersicoides. Lsmean-values and SE indicate the adjusted mean and SE 8 

per population. Estimate comp., SE.comp, and p-values describe pairwise statistics of each accession against the 9 
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grand mean. The numbers on the x-axis in panels A, B, E, and F indicate the count of individual leaves tested. Levels 1 

of significance are displayed as *** P < 0.001, ** P <0.01. * P<0.05, P<0.1. 2 

 3 

Disease resistance measures are not linked and characterize distinct components of 4 

quantitative disease resistance. 5 

To test whether fungal infection is directly linked to lesion growth, we conducted microscopy 6 

assays using a GFP-tagged S. sclerotiorum mutant of the S. sclerotiorum isolate 1980 [75]. We 7 

selected two accessions from S. pennellii with significantly altered lag-phase duration. At 72 hours 8 

after inoculation, freshly developed mycelium was observed on leaves of the S. pennellii accession 9 

with the shortest lag phase duration (LA1809). In contrast, on the less susceptible accession 10 

LA1303, the first fungal structures started growing at 96 hpi (suppl. fig. 6). Fluorescent microscopy 11 

imaging showed that fungal mycelial structures were always accompanied by clear formation of 12 

necrotic lesions but cannot be observed prior visual lesion development (fig. 5 C, suppl. fig. 6). 13 

Thus, showing that a longer lag phase does not represent any latent or biotrophic infection and that 14 

LDT and lag phase are likely uncoupled phenomena.  15 

We performed a correlation analysis to consolidate the relationship between the QDR parameters 16 

further. First, we tested the overall relation of lsmean LDT and lsmean lag-phase duration by 17 

pooling all accessions of all species. We found that LDT and lag phase were independent (R=0.14), 18 

with no significant relationship (p =0.42) (suppl. fig. 4). We also tested the correlation between 19 

QDR strategies at the species level. We found only minor linear relationships between LDT and 20 

lag-phase for the four tested species. However, we found a weak, significant negative correlation 21 

between infection frequency and the duration of the lag phase (lsmean) in S. habrochaites (R = -22 

0.64, p=0.086) (fig. 5 A, B). For the remaining species, no significant correlation was found. We 23 

did not find a single host accession with high levels of resistance in both, LDT and lag-phase 24 

duration. 25 
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 1 

Figure 5: Different QDR parameters are independent from each other. A) Pearson correlation analysis of LDT 2 

and lag-phase duration. Dots represent the least squares of each accession. B) Pearson correlation analysis between 3 

the infection frequency and lag phase duration. Dots represent infection frequency adjusted per-accession estimates 4 

from glm/gls. C) The lag-phase duration of Ss1980:GFP infection on S. pennellii genotypes is reflected in fungal 5 

growth dynamics. Images show a representative selection of 10 biological replicates. The bar indicates 500 µm. 6 

Severity analysis reveals distinct resistance phenotypes against Sclerotinia sclerotiorum 7 

within a single species  8 

For an in-depth analysis of disease severity, we selected three S. pennellii accessions with similar 9 

leaf sizes: LA1282, LA1809, and LA1941 (fig. 6 A). While symptoms developed on most of the 10 

leaves, the impact of infection is highly dependent on the respective accession (see fig. 6 B). 11 

Accession LA1941 shows a significantly lower infection frequency (~51%) and a significantly 12 

lower rate of fully infected leaves than LA1809 (approx. 11% vs. approx. 41%) or LA1282 (approx. 13 

33%, fig. 6 C). It took approx. 6.5 -7 days to cover the whole leaf surface of LA1282 and LA1941. 14 

We found a significantly faster lesion spread on LA1809 with approx. 5.5 days till 100 % coverage. 15 
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This is also reflected by the AUDPC, where LA1809 had the highest mean value (AUDPC approx. 1 

250). In contrast, in LA1282 and LA1941, the symptoms spread much slower, leading to 2 

significantly lower AUDPC values (100 and 50, respectively, fig. 6 E). Together, the prolonged 3 

time till 100% severity and a considerably low AUDPC on LA1282 indicate a late but explosive 4 

lesion growth, corresponding to the mean severity-kinetics of those genotypes (fig. 6).  5 

  6 
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 1 
Figure 6: S. pennellii accession LA1941 harbours significantly elevated level of quantitative resistance against S. 2 

sclerotiorum. A) Mean leaf area of .S. pennellii accessions quantified during infection experiments. The data of three 3 

independent experiments is shown. HSD test was performed to identify cluster with similar leaf size. Selected plants 4 

with similar leaf size are indicated by the box. B) Exemplary images of S. sclerotiorum infections on the S. pennellii 5 

populations LA1809 and LA1941 at seven days post-inoculation. C) Statistical analysis of Infection frequency (IF) 6 

and frequency of fully infected leaves at the end of experiment. “lsmean” represents the estimate as logits, while 7 

‘estimate’ represents the estimated probability. D) Comparison of time till lesion saturation of S. sclerotiorum on S. 8 

pennellii genotypes. E) Area under disease progress curve (AUDPC) of three S. pennellii populations with similar leaf 9 

size. Wilcoxon-test was performed for levels of significance. Time series data from previous experiments was used. 10 

F) Pearson correlation analysis of tt100 vs. AUDPC.  11 

All statistics were calculated using a glm/gls with custom contrast matrizes. Compact letter display were determined 12 

using the package ‘multcompLetters’ with a threshold of p < 0.05.  13 
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The moderation of QDR parameters is genotype-dependent. 1 

Next, we used a linear mixed-effect model (lme) to test which of the factors have the strongest 2 

effects on disease severity on those accessions (S. pennellii LA1282, LA1809, LA1941). Following 3 

the analysis of variance (ANOVA), we found a significant influence of most tested variables 4 

(genotype, lag phase, LDT) on the AUDPC (tab. 1). Strikingly, we found that the genomic 5 

background of the tested plants is insufficient to explain the observed diversity in AUDPC. In other 6 

words, we observe a significant relationship between lag, LDT, and their interaction with the 7 

genotype. Because of this, we extracted the fixed-effect estimates from the lme and 8 

 9 

Table 1: Statistical analysis of the effects of genotype, lag-phase duration, LDT, and their interactions on 10 

disease severity (AUDPC) of the S. pennellii accessions LA1282, LA1809, and LA1941. Results of an analysis of 11 

variance (ANOVA) based on a linear mixed-effects model are shown. 12 

 13 

 14 

 15 

 16 

 17 

Figure 7: Exemplary growth curve of three S. pennellii accessions with different resistance levels against S. 18 

sclerotiorum. Shown is the mean symptom-severity of each accession as share of leaf area over the period of seven 19 

days. The experiment was independently repeated three times. nLA1282 =205, nLA1809=148, nLA941=98. 20 

 21 

 numDF denDF F.value p.value 

Intercept 1 437 136.8 <0.001 

Genotype 2 437 211.34 <0.001 

Lag 1 437 251.68 <0.001 

LDT 1 437 90.41 <0.001 

Genotype:Lag 2 437 8.54 <0.001 

Genotype:LDT 2 437 2.32 0.099 

Lag:LDT 1 437 21.91 <0.001 

Genotype:Lag:LDT 2 437 3.3 0.038 
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generated predictor functions for the AUDPC of each genotype. Then, we modeled the AUDPC 1 

using high-confidence lag and LDT values from previous observations (see fig. 3 C, D). We 2 

observed the highly variable influence of lag-phase duration, LDT, and their interaction on the 3 

AUDPC (fig. 8). Strikingly, we found that variation of the LDT has almost no influence on the 4 

AUDPC of LA1809 besides the generally elevated severity level (fig. 8). Further, we found that 5 

only a prolonged lag phase duration might contribute to an increased potential for lower severity 6 

in LA1809 (fig. 8). However, the influence of longer lag-phase is reduced with increasing LDT. 7 

For leaves of the accessions LA1282 and LA1941, we found a stronger combined effect of lag-8 

phase and LDT on the severity. More specifically, a prolonged lag phase might lead to a small 9 

reduction of the symptom severity on LA1282 while reducing the AUDPC on LA1941 more 10 

rapidly. Further, we observe that a prolonged lesion doubling time reduced symptom severity in 11 

both LA1282 and LA1941.  12 

 13 

Figure 8: QDR parameters contribute highly dynamic and host-specific to symptom severity. We used the S. 14 

pennellii accessions LA1282, LA1809 and LA1941 to test for the genotype-dependent relationship between lag and 15 

LDT. Therefore, we extracted the estimates for the factors LDT and lag per each genotype from an ANOVA based 16 

on a generalized least square model (tab. 1). The per-genotype AUDPC was modeled using the extracted estimates 17 

over a range of values representing the plausible range of lag-/LDT-values. Crosses represent the observed mean 18 

AUDPC (fig. 6 E). 19 

20 
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4. Discussion 1 

QDR against Sclerotinia sclerotiorum is highly diverse in Solanum spp.. 2 

Wild tomato species have been screened for quantitative resistance phenotypes against many 3 

diseases, including Tomato brown rugose fruit virus, Phytophthora infestans, Alternaria solani, 4 

Fusarium spp. or Botrytis cinerea [8,49,50,74,76–79]. However, high hurdles in characterizing 5 

QDR on a phenotypic level limit detailed insights into the functional role of QDR against 6 

necrotrophic pathogens. This was mostly due to the lack of affordable high-throughput 7 

phenotyping facilities [1,2,5,8,80]. Here, we present a unique dataset of high-resolution QDR 8 

phenotypes against Sclerotinia sclerotiorum on a diverse set of wild Solanum species derived from 9 

a low-budget phenotyping set-up. In total, we tested almost 7,000 leaves with approx. 1,000 10 

measurements each, resulting in approx. 7 million data points. We used this unique dataset to 11 

characterize the lesion development of infected leaves and applied advanced statistical analysis 12 

methods to extract more specific descriptors for QDR, such as lag phase, LDT, or AUDPC [30]. 13 

Because of this system's scale and temporal resolution, we generated novel insights into the 14 

phenomena contributing to QDR. 15 

Interspecific QDR phenotypes follow a wide distribution 16 

As expected, we observed a diverse range of disease phenotypes, as demonstrated in previous 17 

studies[6,49,78]. None of the tested accessions carried complete resistance against S. sclerotiorum, 18 

although we found a wide distribution of infection phenotypes. Also, no high ‘universal’ level of 19 

partial resistance or tolerance among multiple QDR parameters was found, as none of the species 20 

harbors significant advantages in multiple measures (infection frequency, lag phase, or lesion 21 

doubling time). Complete resistance against S. sclerotiorum is rarely found in cultivated crops 22 

[32,52,60,81]. We provide evidence that the time till the emergence of the first lesions (lag-phase) 23 

is highly variable within and between host species, with only S. lycopersicoides showing a rather 24 

conserved lag-phase duration (fig. 4 B). Interestingly, Barbacci et al., (2020) reported that in 25 

Arabidopsis thaliana the lag-phase duration is mostly influenced by the S. sclerotiorum isolate 26 

rather than the host accession. The comparably low genetic diversity of the host may have 27 

influenced the observed range of QDRs. Standing genetic variation is considered much higher in 28 

(predominantly) outcrossing Solanum species than in inbreeding A. thaliana accessions [82]. 29 

Accordingly, we assume that the influence of genetic features on the lag-phase duration depends 30 
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on the specific genomic background of the host plant species. However, fungal influences on 1 

pathogenesis cannot be ignored, as the concept of the ‘extended phenotype’, describing the 2 

interaction of both genomes i.e. a genotype x genotype (GxG) interaction for host and pathogen, 3 

for one phenotype, is well established [37,83]. Furthermore, quantitative host resistance features 4 

have been described to interact with the pathogen’s genotype as described for camalexin-associated 5 

resistance [50,84].  6 

QDR phenotypes also differ on the intraspecific level but at varying degrees.  7 

High variability of QDR phenotypes among genotypes of the same plant species has been reported 8 

on multiple hosts before [6,30,49,74,85,86]. We show that the degree of variability depends on the 9 

host species and the respective resistance parameter. Whereas LDT is rather stable among S. 10 

pimpinellifolium accessions, it is highly variable on S. lycopersicoides accessions (see fig. 4 & 11 

suppl. fig. 2). The specific forms of QDR phenotypes might hint at independent regulatory 12 

mechanisms and different evolutionary backgrounds with relatively recent developments, leading 13 

to genetic variation, rather than conserved QDR mechanisms. Host adaptation to natural habitats 14 

and its influence on disease resistance has been studied before [87,88]. Adaptation might explain 15 

disease phenotypes as most S. lycopersicoides accessions show significantly prolonged LDT. The 16 

habitat of S. lycopersicoides faces much more rain than the other species, leading to higher chances 17 

of successful infection events than in relatively dry habitats, thus requiring mechanisms to fight 18 

established infections. In contrast, drought-resistant S. pennellii has high capabilities in delaying 19 

infection events, while it lacks defense efficacy once an infection is established (fig. 3), similar to 20 

S. chilense desert population losing resistance against the fungus Passalora fulva [46,87,89]. 21 

However, to truly test these hypotheses, significantly higher sample sizes and infections under 22 

natural conditions would be required, possibly paired with screenings of the morphological 23 

properties of the species to assess the pleiotropic influence of habitat adaptation on QDR, e.g., via 24 

cuticle thickness or stomata density. 25 

QDR and Genotype x Genotype x Environment interactions 26 

S. pennellii accession LA0716 was characterized as relatively resistant against B. cinerea, while 27 

this genotype is highly susceptible to S. sclerotiorum (suppl. fig. 5) [6]. Also in S. chilense, QDR 28 

phenotypes vary between the pathogen, suggesting the presence of pathogen-specific regulatory 29 

mechanisms [78]. However, the pathogen diversity tested in such studies might greatly affect the 30 
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observed degree of resistance. A study with Phytophthora infestans on 85 S. chilense accessions 1 

showed that the relative differences in resistance phenotypes between individuals were mainly 2 

determined by the plant genotype, with modest effects of pathogen isolate used [49]. In contrast, 3 

large-scale screenings of infections with different B. cinerea isolates showed a clear genotype x 4 

genotype (G x G) effect both on panels of wild and domesticated tomatoes, as well as on 5 

Arabidopsis thaliana [37,50,74,90,91]. In addition, we have shown in S chilense that QDR 6 

phenotypes, like the infection frequency, can be correlated with the phytohormone ethylene [92]. 7 

Knowing that such phytohormonal regulation is also affected by abiotic, environmental (E) factors 8 

like temperature, humidity, and light availability, we propose that QDR polymorphism is 9 

implemented in a complex signaling network affected by GxGxE interactions [1,5,93,94]. 10 

QDR is determined by the interplay of QDR strategies 11 

QDR is commonly defined as a highly interconnected regulatory network with an integrated, 12 

pleiotropic role in general plant metabolism [1]. Therefore, the linkage of different defense 13 

strategies, like IF and lag-phase duration, could be a good perspective for resistance breeding. 14 

However, we did not observe strong correlations between QDR parameters and did not find a 15 

species or accession with a universal high resistance level for all tested parameters. Disconnected 16 

QDR parameters have been reported before: Xanthomonas axanopodis mutants showed increased 17 

infection frequency but a reduced lesion growth rate on cassava and B. cinerea showed 18 

unconnected IF and lesion expansion rates on wild tomatoes [6,95]. We used the presented 19 

phenotyping platform to show that the moderation or cross-talk between defense strategies is 20 

genotype-specific and differs even between accessions of the same species (fig. 8). Based on these 21 

findings, we propose a model for QDR against necrotrophic pathogens involving three genetically 22 

distinct strategies: 1. Prohibition of initial infection, 2. Retardation of disease outbreaks, and 3. 23 

Deceleration of ongoing infections.  24 

Disease severity is specifically determined by genotype-dependent moderation of QDR 25 

strategies. 26 

We used three differently severely infected S. pennellii genotypes to describe the influence of two 27 

of the QDR strategies (retardation and deceleration of symptom development) on overall symptom 28 

severity. Interestingly, the different accessions possess diverse capabilities in moderating the QDR 29 

strategies, as our model-based approach indicates contrasting roles of LDT and lag-phase duration. 30 
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In A. thaliana, it was shown that lesion traits, like lesion size or shape, are also controlled by 1 

genetically distinct mechanisms [90]. Previous work showed that defense-associated hormone 2 

responses greatly differ between different wild tomato accessions and even within the same 3 

population. In S. chilense, ethylene responses could only be linked to IF in one population but not 4 

in others [92]. Therefore, we argue that the genetic finetuning of QDR measures highly depends 5 

on the specific genetic background, and future studies should determine the complex interplay 6 

between various QDR-regulating strategies [94].  7 

In this study, we used a new phenotyping platform to derive different QDR-related phenotypes. 8 

The low cost and high flexibility of the system allowed us to screen a big set of diverse plants 9 

relatively fast, and therefore, we identified new genotypes with distinct QDR properties. 10 

Accordingly, we characterized accessions and species with beneficial properties as significantly 11 

longer lag-phase duration (S. pennellii, LA1303 & LA1656) or prolonged LDT (S. lycopersicoides, 12 

LA2951 & LA1964). Accordingly, we suggest that S. pennellii accessions are specialized in 13 

delaying lesion development, whereas S. lycopersicoides accessions are more capable of slowing 14 

down the spread of established lesions. Follow-up research is needed to identify the genes 15 

underlying these differences. The resolution of the present dataset will enhance the ability to predict 16 

distinct defense phases, facilitating more targeted sampling strategies for transcriptomic or 17 

metabolomic analysis. This can help breed durable resistance in tomato crops with delayed and less 18 

severe symptoms without inducing strong evolutionary pressure. The sustainability of major R 19 

gene-mediated resistance (including pyramiding of such) has regularly been questioned [4,96]. 20 

Facilitating the concept of QDR is proposed to thwart the arms race between plant hosts and 21 

pathogens. QDR phenotypes specifically tolerate disease to a certain extent without applying a 22 

strong bottleneck onto the pathogen population [14]. Our findings provide major insights into the 23 

architecture of QDR strategies and will help in the targeted functional characterization of QDR. By 24 

disentangling end-point QDR phenotypes into discrete resistance mechanisms, the functional 25 

characterization of genetic features controlling QDR will become much more targeted. Based on 26 

this study, the factors influencing the level of QDR can be explained in much more detail.  27 
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