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Adaptive gene loss in the common bean
pan-genome during range expansion and
domestication

Gaia Cortinovis1,15, Leonardo Vincenzi 2,15, Robyn Anderson 3,
Giovanni Marturano2, Jacob Ian Marsh3, Philipp Emanuel Bayer 3,
Lorenzo Rocchetti1, Giulia Frascarelli1, Giovanna Lanzavecchia1, Alice Pieri1,
Andrea Benazzo4, Elisa Bellucci 1, Valerio Di Vittori 1, Laura Nanni 1,
Juan José Ferreira Fernández 5, Marzia Rossato 2,6, Orlando Mario Aguilar7,
Peter Laurent Morrell 8, Monica Rodriguez 9,10, Tania Gioia 11,
Kerstin Neumann12, Juan Camilo Alvarez Diaz13, Ariane Gratias13,
Christophe Klopp 14, Elena Bitocchi 1, Valérie Geffroy13,16,
Massimo Delledonne 2,6,16, David Edwards 3,16 & Roberto Papa 1,16

The common bean (Phaseolus vulgaris L.) is a crucial legume crop and an ideal
evolutionary model to study adaptive diversity in wild and domesticated
populations. Here, we present a common bean pan-genome based on five
high-quality genomes andwhole-genome reads representing 339 genotypes. It
reveals ~234Mb of additional sequences containing 6,905 protein-coding
genes missing from the reference, constituting 49% of all presence/absence
variants (PAVs). More non-synonymousmutations are found in PAVs than core
genes, probably reflecting the lower effective population size of PAVs and
fitness advantages due to the purging effect of gene loss. Our results suggest
pan-genome shrinkage occurred during wild range expansion. Selection sig-
natures provide evidence that partial or complete gene loss was a key adaptive
genetic change in commonbean populationswithmajor implications for plant
adaptation. The pan-genome is a valuable resource for food legume research
and breeding for climate change mitigation and sustainable agriculture.

Food legumes provide valuable resources to address global challenges
such as climate change, biodiversity conservation, and the need for
sustainable agriculture andhealthydiets1–3. Thecommonbean (Phaseolus
vulgaris L.) is a diploid (2n=2x=22) and predominantly self-pollinating
annual grain legume crop with a prominent role in agriculture and
society4–6. It is also an ideal evolutionary model to study adaptive diver-
sity in wild and domesticated legume populations7.

The use ofP. vulgaris as anevolutionarymodel reflects the parallel
and independent life history of twogeographically isolated, genetically
differentiated gene pools (Mesoamerican and Andean) following its
wild expansion from Mexico to South America ~150,000–200,000

years ago, longbefore its dual domestication8–11. Previous studies using
a single reference genome have provided insights into the population
structure of the common bean12 and the genetic basis of important
adaptive traits13. However, pan-genomic diversity must be explored in
detail to gain a more comprehensive understanding14–17.

Here, we describe the construction of a P. vulgaris pan-genome
using a non-iterative approach and an analysis of its genetic diversity
in terms of presence/absence variants (PAVs) within a representative
panel of genetically and phenotypically well-characterized acces-
sions. This publicly available common bean pan-genomewill provide
a valuable starting point to identify genes and genomic mechanisms
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affecting adaptation, and will accelerate the improvement of food
legume crops.

Results and discussion
Characterization of the common bean pan-genome
To generate the common bean pan-genome, we applied a non-iterative
approach to five high-quality de novo genome assemblies of wild and
domesticated genotypes and incorporated short-read whole genome
sequencing (WGS) data from 339 representative common bean acces-
sions, comprising 33 wild and 306 domesticated forms. This revealed
~234Mbof additional sequence containing 6905 genesmissing from the
reference genome.These regions, termednon-reference regions (NRRs),
expand our comprehension of common bean diversity. Indeed, these
sequences account for 20%of the totalpan-genes,with7.5% (2579genes)
derived from the high-quality genomes and the remaining 12.5% (4326
genes) from the panel of 339 WGS genotypes. The final size of the
reconstructed pan-genomewas ~770Mb, with 34,338 predicted protein-
coding genes (Supplementary Tables 1 and 2).

The reference pan-genome was used for variant and PAV calling
(Supplementary Data 1). We detected 23,343,365 variant sites, made up
of 19,002,047 single-nucleotide variants (SNVs) and4,341,318 insertions/
deletions (InDels). Following PAV calling, the categorization of all 34,338
predicted genes by frequency revealed that 59% of the pan-genome
consists of core genes present across all lines (20,369 genes), with the
remaining 41% comprising 13,969 PAVs encompassing genes partially
shared among accessions or private to a single genotype. Notably, 49%
of these PAVs (6905 genes) originate from NRRs (Supplementary
Table 2). The growth curve related to the size calculation suggested a
closedpan-genome. In agreement, the pan-genes reached the saturation
point (99%, 33,997 genes) and remained constant without substantial
increases when the number of accession genomes exceeded 125. In
contrast, the size of the core gene set decreased with each added gen-
otype (Fig. 1a). This indicates that the final pan-genome includes almost
all the gene content of P. vulgaris. Gene Ontology (GO) enrichment
analysis showed that the core genes are enriched for terms associated
with homeostatic (GO:0042592) and catabolic (GO:0043632) processes
(Supplementary Fig. 1 and Supplementary Data 2) whereas the PAVs are
enriched for terms related to defense (GO:0006952), responses to
external stimuli (GO:0009605), responses to light (GO:0019684), and
reproduction (GO:0000003, GO:0022414) (Supplementary Fig. 2 and
Supplementary Data 3).

To investigate the evolution of the core genes and PAVs, we cal-
culated the non-synonymous and synonymous ratio (Ka/Ks) for each
gene in each accession (Supplementary Data 4). This revealed a sta-
tistically significant difference (p < 2.2 × 10−16), with PAVs exhibiting a
higher Ka/Ks ratio compared to core genes (Supplementary Fig. 3).
When we split the PAVs into three subcategories based on their fre-
quency (soft-core 0.90 ≤ freq. < 1; accessory 0.10 ≤ freq. < 0.90; and
rare freq. < 0.10), we observed a significant increase (p =0.03) in the
Ka/Ks ratio among the rare genes compared to the soft-core genes
(Fig. 1b and Supplementary Table 3). These results may reflect the
lower effective population size of the PAVs (reducing the efficiency of
purifying selection) and the higher fitness gain from purging genes
that have accumulated non-synonymous (loss-of-function) mutations.

Evolutionary trajectory of the common bean
The common bean is characterized by three eco-geographic gene
pools. Mesoamerican (M) and Andean (A) populations, which encom-
pass both wild and domesticated forms, constitutemost of the species
diversity, while a third originates from Northern Peru/Ecuador (PhI)
and has a relatively narrow distribution of only wild individuals11. The
Mesoamerican and Andean gene pools include five domesticated
subgroups (M1, M2, A1, A2 and A3) corresponding to the Durango-
Jalisco, Mesoamerica, Nueva Granada, Peru, and Chile races13.
We constructed neighbor-joining (NJ) phylogenetic trees (Fig. 2a and

Supplementary Fig. 4) and conducted PAV-based principal component
analysis (PCA) (Fig. 2b), both of which confirmed this well-defined
population structure. Both analyses further divided the M1/Durango-
Jalisco races into clusters that we named A and B, respectively. The
analysis of variance conducted on M1/Durango-Jalisco accessions,
considering the first component for the days to flowering (PC1_DTF)13,
revealed that cluster A flowers significantly later than cluster B
(p < 0.0001; Fig. 2c and Supplementary Table 4). This genetically dis-
tinguished the M1/Durango-Jalisco races in relation to a key adaptive
trait (flowering time), indicating that the use of the pan-genome as a
reference enhances the characterization of the genetic diversity pre-
sent in P. vulgaris and consequently improves its analysis, exploitation,
and management. Cumulatively, the first and the second principal
components of the PAV-based PCA explained 46.6% of the total var-
iance, where PC1 mainly defined the differences between the Mesoa-
merican and Andean gene pools while PC2 split the groups and
subgroups within each gene pool (Fig. 2b). The NJ trees further
underscored the greater suitability of core genes rather than PAVs for
phylogenetic reconstruction because theymitigate biases arising from
the absence of genetic material among compared accessions. In con-
trast to the tree based on single-nucleotide polymorphisms (SNPs)
located on PAVs (Supplementary Fig. 4), the NJ tree based solely on
core SNPs properly grouped the wild PhI accession close to the wild
Mesoamerican genotypes originating from Guatemala and Costa Rica
(Fig. 2a), which are most closely related to the PhI gene pool11.

When we examined the total number of PAVs per genetic group
(Supplementary Table 5), we found that wild Mesoamerican and
Andean populations have a greater number of genes compared to
their domesticated counterparts (Fig. 2d). This supports the well-
established notion that domestication is usually associated with a
reduction of genetic diversity. Indeed, the amplification of gene loss in
domesticated common bean could reflect a classic bottleneck effect18

rather thannatural selection19. This suggestion is supported by the fact
that the M1/Jalisco-Durango and A2/Peru races have more PAVs than
the other domesticated subgroups in their respective gene pools
(Fig. 2d), and thisdifference is especially noticeable among theAndean
subgroups. This was corroborated by nucleotide diversity analysis
applied to the 1,451,663 core SNPs (Supplementary Fig. 5 and Sup-
plementary Data 5), and agrees with a recent hypothesis proposing
that the M1/Durango-Jalisco and A2/Peru races were the first domes-
ticatedMesoamerican and Andean populations fromwhich the M2, A1
and A3 races arose during a secondary domestication phase13.

To study the differentiation between gene pools, we analyzed the
PAV matrix for American domesticated accessions by using Fisher’s
exact test to compare theMesoamerican and Andean populations. We
found that more than 60% of the PAVs (5223) differ significantly in
terms of frequency (p < 0.05) between the two gene pools. These
included 721 diagnostic PAVs, indicating that they are present in one
population with a frequency of one and completely absent in the other
(frequency of zero). In detail, 90% (650) of the diagnostic PAVs were
fixed in theMesoamerican gene pool and the remaining 10% (71) in the
Andean gene pool (Supplementary Data 6). GO enrichment analysis
applied to the 721 diagnostic genes revealed enrichment in processes
related to metabolism (GO:0008152), detoxification (GO:0098754),
and responses to stimuli (GO:0050896) (Supplementary Fig. 6).
Interestingly, none of these PAVs were found to be diagnostic between
gene pools in Europe (Supplementary Data 6), and when a PAV-based
Fisher’s exact test was applied to the subset of 114 European acces-
sions, we did not detect any diagnostic genes between the Mesoa-
merican and Andean gene pools (Supplementary Data 7). These
outcomes reflect the extensive inter-gene-pool hybridization in Eur-
opean germplasm and confirm its key role in the adaptation of com-
mon bean to new agricultural environments13,20.

To investigate the influence of PAVs on important trait (flower-
ing time) variations and identify candidate genes associated with
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them, we conducted a PAV-based genome-wide association study
(GWAS) involving 218 American and European domesticated geno-
types. Using previously reported phenotypic data13, we identified
39 significant association events (p ≤ 7.07E−06) correlated with
day-to-flowering and photoperiod sensitivity. These associations
were linked to 35 candidate PAVs, highlighting their probable invol-
vement in the regulation of floral transition (Supplementary Data 8),
one of the major diversification traits that defines the adaptation
of plant populations to different agro-ecological conditions.
An interesting example is the GWAS peak associated with flowering
time and photoperiod sensitivity located on Phvul.003G185200

(Chr03:40,838,810-40,850,729) (Fig. 3a). This PAV is orthologous to
theHDA5 gene in Arabidopsis thaliana, which encodes a deacetylase.
Notably, A. thaliana mutants with impaired HDA5 expression pat-
terns display late-flowering phenotypes due to the upregulation of
two floral repressor genes, namely FLOWERING LOCUS C (FLC)
and MADS AFFECTING FLOWERING 1 (MAF1)21. It is noteworthy that
common bean genotypes lacking PAV Phvul.003G185200 exhibit
early-flowering phenotypes compared to accessions carrying
this gene (Fig. 3b). Additionally, the presence of Phvul.003G185200
in all Mesoamerican accessions contrasts with its limited presence
(only 18%) in the Andean gene pool (Fig. 3c). The divergent

Fig. 1 | Characterization of the common bean pan-genome. a Pan-gene and core
gene size calculation. The growth curve of pan-genes (gray) reached saturation
point (99%, 33,997 genes) when 125 individuals were included, as indicated by the
dashed red line. In contrast, the growth curve of core genes (red) diminished with
the addition of each genotype. Data for pan-genes and core genes are presented as
mean values ± SD. b Violin plots showing analysis of variance (ANOVA) related to
the ratio of non-synonymous to synonymous mutations (Ka/Ks) in core genes and
PAVs categorizedby frequency (soft-core, accessory, and rare). Box plots represent

minimum, first quartile, median, third quartile, and maximum. Sample sizes (n) for
each category are as follows: coren = 16,264, soft-coren = 2672, accessory n = 2156,
and rare n = 140. Violin plots display the data distribution for each gene category,
with significant differences indicated by different letters above the plots, based on
a Tukey–Kramer HSD post hoc test. Additionally, statistical significance was
determined by applying a two-sided pairwise Wilcoxon test. Detailed statistics are
available in Supplementary Table 3. Source data are provided as a Source Data file.
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distribution of Phvul.003G185200 in the Mesoamerican and Andean
gene pools may suggest an adaptive response associated with its loss
during population differentiation. Furthermore, we found that nine
of the 35 candidate PAVs from the GWAS display signatures of
selection in various comparisons: specifically, two PAVs differing
between wild and domesticated Mesoamerican populations and

seven PAVs differing between wild and domesticated Andean popu-
lations. Overall, although the majority (59%) of the candidate PAVs
were located on the reference genome, 41% were situated on the
NRRs (Supplementary Data 8), reaffirming the ability of the pan-
genome to identify functional variants associated with economically
and evolutionarily important traits.
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Pan-genome shrinkage during wild expansion to South America
One of themost striking outcomes we observed was the difference in
pan-genome size between theMesoamerican and Andean gene pools
(Fig. 4a). We calculated the total number of PAVs per individual and
found that accessions from the same gene pool clustered together in
separate groups, with Mesoamerican accessions exhibiting a higher
number of PAVs per individual (i.e., a greater number of genes pre-
sent) compared to those from the Andean gene pool (Fig. 4b, c and
Supplementary Table 6). This reduction in pan-genome size may
reflect genetic drift and the two sequential bottlenecks that occurred
solely in the Andean population12. To better understand the roles of
different evolutionary forces in shaping the PAV content of the
Mesoamerican and Andean gene pools, and to distinguish between
the effects of adaptation, population demography and history, we
initially considered a panel of wild genotypes representing the entire
geographical distribution in Latin America. We applied bivariate fit
analysis and found a significant correlation (p < 0.0001) between the
number of PAVs per individual and the latitude. Analysis of variance,
in which wild individuals were grouped by latitude followed by spa-
tial interpolation, revealed the progressive loss of genes ranging
from the accessions of Northern Mexico to those of Northwestern
Argentina (Fig. 5a, b and Supplementary Table 7). Furthermore, FST
analysis of PAVs comparing Mesoamerican and Andean wild popu-
lations may suggest selection for gene loss during wild range
expansion (Fig. 5c and Supplementary Data 9). We found that 64% of
the PAVs in the top 5% of the FST distribution (FST ≥0.85; candidate
PAVs) are missing from the wild Andean gene pool. This high rate of
absences exceeds that observed in the entire variable genome (25%),
demonstrating a more than twofold increase. This difference was
statistically validated using bootstrap resampling, strongly suggest-
ing that gene loss during the process of wild differentiation was not a
random occurrence but the evident outcome of selective forces
(Supplementary Figs. 7 and 8). Moreover, functional annotation of
the candidate PAVs revealed the enrichment of genes involved in
pollen germination, innate immunity, abiotic stress tolerance, and
root hair growth, indicating a potential adaptive role during wild
range expansion (Supplementary Data 10). Overall, our findings
suggest that selective pressure favoring the loss of genes involved in
adaptive mechanisms, coupled with the influence of genetic drift
resulting from the founder effect, may have contributed to the
shrinking of the Andean pan-genome during wild differentiation.

Footprints of selection for gene loss during domestication
The PAVs putatively shaped by selection during domestication in
Mesoamerica and the Andes revealed further evidence that gene loss
underpinned the successful adaptation of the American common
bean. FST analysis was applied to PAVs inwild and domesticated forms
(separately for each gene pool) with only PAVs in the top 5% of the FST
distribution considered as candidates (Supplementary Data 11 and 12).
We found 610 PAVs potentially under selection in the Mesoamerican
population (FST ≥0.30) and 497 in the Andean population (FST ≥
0.27).Moreover, functional annotationof the candidate PAVs revealed
the enrichment of genes associated with domestication syndrome and
adaptive traits such as dormancy, floral transition, light acclimation,
defense, and symbiotic interactions (Supplementary Data 13 and 14).
Importantly, the candidate Phvul.003G265200 (Chr03: 50,365,995-
50,368,501) is orthologous to 11 members of the plant Rho GTPase

subfamily (ROP), including ROP6 encoding a small Rho-like GTP
binding protein. This GTPase subfamily is required for symbiotic
interactions22–24, and in theplasmamembraneof Lotus japonicus cells it
interacts directly with NOD FACTOR RECEPTOR 5, one of two nodu-
lation factor receptors essential for nodule formation during
symbiosis25. From our analysis, Phvul.003G265200 is a putative
selected PAV (FST = 0.50) for the Mesoamerican gene pool, whose
presence declined bymore than 60%during progression from thewild
(0.94) to the domesticated (0.25) population (Supplementary Data 11).
Specificity is one possible explanation for the biological importance of
the loss of Phvul.003G265200 in Mesoamerican domesticated geno-
types. In common bean populations, different genotypes pre-
ferentially associate with specific strains of nitrogen-fixing bacteria.
Consequently, the absence of Phvul.003G265200 in domesticated
genotypes may increase the flexibility of symbiotic interactions,
enabling adaptation to diverse environmental conditions and facil-
itating interactions with a broader range of symbiont partners. This
hypothesis parallels the cost–benefit trade-off commonly observed
among resistance genes. Similar to resistance genes, the absence of
Phvul.003G265200 may confer advantages by mitigating potential
fitness costs associated with specific symbiotic interactions. By
losing specificity and expanding the spectrum of symbiotic partners,
common bean populations lacking this gene may achieve greater
adaptability and resilience in fluctuating environments. As for
Phvul.003G265200, 72% of PAVs putatively under selection (437
genes) in the Mesoamerican population (Fig. 6a) and 80% (398 genes)
in the Andean one (Fig. 6b), were present with a lower frequency in
domesticated than wild populations. When considering all PAVs, the
percentage of genes present at lower frequencies in domesticated
populations fell significantly to 28% (p < 2.2 × 10−16) for the Mesoa-
merican gene pool and 43% (p < 2.2 × 10−16) for the Andean one
(Fig. 6a, b). On the other hand, we observed no significant differences
in absences between the wild and domesticated populations for both
gene pools (Fig. 6a, b). Overall, these findings suggest that selection
during domestication led to a reduction in gene presence. But unlike
the range expansion of wild populations, wherewe found footprints of
selection for absences, we did not find any evidence of complete gene
loss due to selection during domestication. This may reflect the dif-
ferent evolutionary timescales involved: wild differentiation occurred
~150,000 years ago whereas domestication was much more recent at
~8000 years ago. These findings are consistent with previous obser-
vations that selection during the domestication of common bean in
Mesoamerica has directly affected the transcriptome, leading to a
~20% decrease in gene expression levels attributed to loss-of-function
mutations19. We also detected 29 PAVs with high FST values in com-
mon between the Mesoamerican and Andean gene pools, and these
are mainly associated with the tryptophan metabolic pathway. Tryp-
tophan is a precursor of key secondary metabolites such as auxin,
serotonin, andmelatonin. These compounds play diverse roles inplant
physiology, influencing processes such as seed germination, root
development, senescence, andflowering. Additionally, they contribute
to biotic and abiotic stress responses26. We found that ~86% of these
PAVs in both gene pools declined in terms of presence during the
progression from wild to domesticated accessions (Supplementary
Table 8). This may indicate a pattern of genomic convergence for the
loss of key adaptive genes between the Mesoamerican and Andean
populations during their parallel domestication events.

Fig. 2 | Population structure of P. vulgaris. a Neighbor-joining (NJ) phylogenetic
tree constructed using only SNPs located in core genes (bootstrap = 1000). b PAV-
based principal component analysis (PCA). c Violin plots showing the analysis of
variance (ANOVA) for the first principal component representing days to flowering
and photoperiod sensitivity (PC1_DTF) in the M1/Jalisco-Durango races by splitting
the accessions into two clusters based on PCA and the NJ tree. The PC1_DTF trait
was derived from the multivariate PCA analysis of days to flowering and

photoperiod sensitivity data collected in 10 different environments13. Box plots
represent minimum, first quartile, median, third quartile, and maximum. Sample
sizes (n) for each category are as follows: Jalisco n = 7, Durango n = 8. Statistical
significance was determined by applying a two-sided Student’s t test. Detailed
statistics are available inSupplementary Table4.dBar chart showing thenumber of
PAVs per genetic group, representing the number of genes present across the
sampled genotypes. Source data are provided as a Source Data file.
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Implications for legume research and breeding
The genotypes selected for this study encompass wild and domes-
ticated forms, ensuring that the pan-genome comprehensively cap-
tures the extensive genetic variation within this species. PAV analysis
provided insight into the evolutionary dynamics of pan-genome
adaptation, including signatures of selection for complete gene loss

during wild differentiation between the Mesoamerican and Andean
gene pools, contributing to the smaller pan-genome of the Andean
population.We also identified selection footprints for gene loss during
Mesoamerican and Andean domestication, causing reductions in gene
presence in domesticated populations compared to their wild coun-
terparts. Interestingly, candidate genes that have been entirely or
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partially lost appear to be involved in important adaptive mechan-
isms, such as flowering time, symbiosis, biotic and abiotic stress
tolerance, and root hair growth. Gene loss is considered functionally
equivalent to other loss-of-function mutations, such as premature
stop codons, providing an important and abundant source of adap-
tive phenotypic diversity19,27–32. Moreover, variations in genome size
have been described between different populations of microorgan-
isms and plants33–35. For example, in contrast to their European native
counterparts, invasive plants have smaller genomes resulting in
phenotypic effects that could enhance their invasive potential36.
Similarly, genome size variations within the Zea mays species during
the post-domestication process revealed that maize landraces have
significantly smaller genomes than their closest wild relatives, the
teosintes37. However, it is still unclear to what extent genome size
variation is shapedby natural selection. Here, our results suggest that
under the influence of specific and diverse agro-ecological pressures,
the relinquishment of particular genes can confer a selective
advantage. This may be relevant when populations face selective
pressure from radical environmental changes, such as the expansion
of wild common bean from Central Mexico’s warm and humid cli-
mate to higher and cooler altitudes in the Andes. Our research
establishes a paradigm in which natural selection drives gene loss,
favoring adaptation over stochastic responses. Mutations are more
likely to cause a loss rather than a gain of function, so adaptive gene
loss provides a rapid evolutionary response to environmental chan-
ges. This could have profound implications for our understanding of
crop adaptation in response to climate change. The common bean
pan-genome is a valuable starting point that will lead to a deeper
understanding of the genetic variations and genome dynamics
responsible for key adaptive traits in food legumes, and will accel-
erate breeding programs to improve food legume crops.

Methods
Sources of genetic diversity
The pan-genome was constructed from five high-quality genomes
representing wild and domesticated forms belonging to the Mesoa-
merican and Andean gene pools. The P. vulgaris reference genome
G19833 v2.1 was downloaded from Phytozome38, the genomes of
BAT93 and JaloEPP558 were provided by the INRAE Institute, and the
genomes of MIDAS and G12873 were sequenced and assembled de
novo specifically for this study (Supplementary Table 9). We also
integrated 339 representative low-coverage WGS common bean gen-
otypes, including 220 domesticated and 10 wild accessions from pre-
vious studies11,13. The remaining 109 accessions were multiplied in the
greenhouse, and DNA extracted from young leaves was used for
sequencing (Supplementary Data 15). See “Data availability” statement.

Plant growth and DNA extraction
MIDAS and G12873 single seed descent (SSD) genotypes were multi-
plied in the greenhouse. For both samples, high-molecular-weight
(HMW) DNA was extracted from 2g of young leaves following the
method described in ref. 39. Briefly, tissue grounded in liquid nitrogen
was resuspended in MEB extraction buffer (1M 2-methyl-2,4-pentane-
diol (MPD), 10mMPIPES-KOH, 10mMMgCl2, 2% polyvinylpyrrolidone
(PVP10), 10mM sodium metabisulfite, 5mM β-mercaptoethanol, 0.5%
sodiumdiethyldithiocarbamate, 6mMEGTA, 200mML-lysine-HCl, pH

5.0) and filtered through 100 µm and 40 µm cell strainers. After the
addition of Triton X-100 (0.5%), the homogenate was incubated 30′ on
ice and then centrifuged at 800× g for 20′ at 4 °C. Nuclei were washed
four times in MPDB buffer (0.5M 2-methyl-2,4-pentanediol, 10mM
PIPES-KOH, 10mM MgCl2, 0.5% Triton X-100, 10mM Sodium metabi-
sulfite, 5mM β-mercaptoethanol, pH 7.0) and purified through a gra-
dient of 37.5% Percoll (centrifugation at 650 × g for 1 h). Purified nuclei
were washed twice in MPDB buffer, collected by centrifugation at
2500 × g for 10′ at 4 °C, and finally resuspended in TE buffer (10mM
Tris-HCl, 1mM EDTA, pH 8). DNA was extracted from the isolated
nuclei pellets using theQiagenGenomic tip-100 (Qiagen) following the
manufacturer’s instructions. DNA quality was evaluated according to
Oxford Nanopore Technologies (ONT) requirements. Specifically,
purity was assessed using a NanoDrop 1000 spectrophotometer
(Thermo Fisher Scientific), the concentration was determined using a
dsDNA Broad Range Assay Kit with Qubit 4.0 (Thermo Fisher Scien-
tific), and the fragment size (≤400 kb) was determined using the CHEF
Mapper electrophoresis system (Bio-Rad Laboratories). Fragments
<25 kb were removed using the Short Reads Eliminator kit (Circu-
lomics) leaving 75% of the DNA from theMIDAS samples and 95% from
the G12873 samples. P. vulgaris genotypes of BAT93 and JaloEEP558
were sowed in soil and grown in a growth chamber at 23 °C and 75%
humidity with a 16-h photoperiod under fluorescent tubes (166lE).
Young trifoliate leaves of BAT93 and JaloEEP558 genotypes were col-
lected and flash-frozen in liquid nitrogen. Three days before sampling,
plants were dark-treated to optimize the extraction of HMWDNA. The
109 SSD accessions were multiplied in the greenhouse and young
leaves were collected in silica gel for drying and subsequent DNA
extraction using the DNeasy 96 Plant kit (Qiagen) according to the
manufacturer’s instructions. For each sample, 50–70mg of dried leaf
material was pulverized with a Tissue-Lyser II (Qiagen) at 30Hz for
6min. The DNA quality and quantity were evaluated using a Nano-
Photometer NP80 (Implen), and the concentration was determined
using a Qubit BR dsDNA assay kit (Thermo Fisher Scientific).

Sequencing of low-coverage WGS accessions
DNA libraries for all samples were prepared using a KAPA Hyper Prep
kit and PCR-free protocol (Roche). For each genotype, 200ng of DNA
was fragmented by sonication using a Covaris S220 device (Covaris).
WGS DNA libraries were generated using a 0.7–0.8× ratio of AMPure
XP beads for final size selection. Libraries were quantified using the
Qubit BRdsDNAassay kit, and equimolarpoolswerequantifiedby real-
time PCR against a standard curve using the KAPA Library Quantifi-
cation Kit (Kapa Biosystems). Libraries were sequenced on the Nova-
Seq 6000 Illumina platform, producing 15–30 million 150-bp paired-
end reads per sample.

Sequencing and assembly of the MIDAS and G12873 genomes
Following quality control and priming according to ONT specifica-
tions, libraries were sequenced on aMinIONdevicewith a SpotON flow
cell (FLO-MIN106 R9.4.1-Rev D). Two libraries were prepared for each
genotype according to the SQK-LSK109 ligation sequencing protocol
(ONT) with minor adjustments. Each library was loaded twice, and the
flow cell was washed using the FlowCellWash Kit (ONT). Illumina PCR-
free libraries were prepared starting with 1 µg of fragmented genomic
DNA using the KAPA Hyper prep protocol. This process involved

Fig. 3 | Case study of Phvul.003G185200. a PAV-basedGWAS for flowering time in
American and European domesticated genotypes. The complex PCA3_DTF was
derived from the multivariate PCA analysis of days to flowering and photoperiod
sensitivity data collected in 10 different environments13. The most significant PAV-
trait association, located on chromosome 3 (Phvul.003G185200), was accom-
panied by threeminor associations, spanning chromosomes 3 and 5, as well as non-
reference regions (NRRs).bBoxplots of the trait “PCA3_DTF” by PAVs (1 = presence;
0 = absence) at locus Phvul.003G185200. Box plots represent minimum, first

quartile,median, third quartile, andmaximum. Higher values of PCA3_DTF indicate
late flowering phenotypes whereas lower values indicate early flowering pheno-
types. The significant difference between groups carrying the 0 allele (n = 85) and
the 1 allele (n = 114) was tested by applying a two-sided Wilcoxon test. c Bar chart
showing the proportions of presence/absence for Phvul.003G185200 in the
Mesoamerican and Andean gene pools. Source data are provided as a Source
Data file.
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extending the adapter ligation time to 30min and conducting post-
clean-up size selection using 0.7× AMPure XP beads. Library con-
centration and size distribution were assessed using a Bioanalyzer
2100 with high-sensitivity DNA reagents and chips. Sequencing
was performed on a NovaSeq6000 instrument to generate 150-bp
paired-end reads. MIDAS and G12873 whole-genome assemblies were

generated by nanopore sequencing based on 26Gb (50-fold coverage)
and 36Gb (69-fold coverage), respectively. Raw nanopore reads were
corrected using Canu v2.140 and the resulting corrected reads were
assembled de novo using wtdbg2 v2.541. Draft assemblies were refined
by iterative polishing using long reads (Racon v1.4.3 and Medaka
v1.0.3)42 and short reads (three rounds of Pilon v1.23)43. Completeness
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was assessed using BUSCO v4.1.244 and the Fabales_odb10 dataset
(Supplementary Table 10).

Sequencing and assembly of the BAT93 and JaloEEP558
genomes
HMW DNA from genotypes BAT93 and JaloEEP558 was sequenced
using the PacBio Sequel II system by GENTYANE (INRAE Clermont-
Ferrand, France). A total of 21.09 and 29.35 Gb of PacBioHiFi readswas
generated from BAT93 and JaloEEPP558, respectively. The PacBio HiFi
reads were assembled de novo into contigs using HiFiasm v0.9.0 with
default parameters45.

Orthologous/paralogous analysis and clustering threshold
settings
To incorporate the Andean and theMesoamerican gene pools into the
pan-genome, precise differentiation between orthologous and para-
logous genes required a meticulous strategy to preserve solitary
orthologs and all paralogous counterparts. The relationship between
orthologous genes was calculated using minimap2 v2.1746 to align the
MIDAS and G12873 genome assemblies using the open reading frames
(ORFs) of 2,330 complete single-copy Benchmarking Universal Single-
Copy Orthologs (BUSCO) genes in common between the reference
genome G19833 v2.1, MIDAS, and G12873 (Supplementary Data 16).
The percentage identity was calculated for each ORF based on the
number of matches in the alignments as a proportion of ORF length.
The relationship between paralogous genes was calculated using the
three most abundant gene families (OG0000273, OG0000328 and
OG0000085) in the P. vulgaris G19833 v2.1 reference genome, com-
posed of 26, 37 and 42 genes, respectively. An all-versus-all compar-
ison between themembers of the same family was implemented using
minimap2.Thepercentage identitywas calculated for eachgene family
by dividing the number of matches in the alignments by the reference
gene ORF length and then averaging the identity percentages for each
family. Finally, the results of both tests were used to establish a clus-
tering threshold of 90% to retain only one orthologous and all para-
logous genes in the pan-genome (Supplementary Data 17).

Pan-genome construction
We used a paired genome alignment strategy47 involving a non-
iterative approach (independent alignment of the reference genome
to the other high-quality genomes). This ensured the preservation of
information regarding the origins of the NRRs. Specifically, the G19833
v2.1 reference genomewas independently mapped onto the four high-
quality genomes (MIDAS, G12873, BAT93 and JaloEPP558) with mini-
map2 v2.17 using the alignment pre-set -x asm5, which considers
regions with an average divergence <5%. Subsequently, the resulting
bam files from the four alignments were converted to delta files, and
structural variants were identified using Assemblytics v1.2.148. Among
these variants, only deletions were selected asNRRs47. Additionally, we
used samtools depth v1.149 on the bam files to identify uncovered
contigs unique to the four high-quality genomes, which were then
extracted and also classified as NRRs. Then, deletions and uncovered
contigs were independently filtered for a minimum length of 1 kb and
clustered using CD-HIT-EST v4.8.150 with a sequence identity of 90% (-c
90), as described above for the orthologous and paralogous genes. To
validate the accuracy of the detected NRRs and ensure they reflect
gene content rather than allelic variation, we conducted a comparative

analysis using highly conserved BUSCO genes. In detail, we examined
the entire set of 4,947 MIDAS and 4,812 G12873 BUSCO genes, shared
with the reference genome G19833 v2.1, within the NRRs using
BLASTp. The outcome revealed that few genes (seven inMIDAS and 37
in G12873) were identifiable within the NRRs, confirming the reliability
and accuracy of our NRRs detection method. The NRRs were incor-
porated into the P. vulgarisG19833 v2.1 reference genome to provide a
preliminarypan-genome. Subsequently, Illuminadata representing the
339 low-coverage WGS common bean accessions were trimmed with
fastp v0.21.051 and aligned to the preliminary pan-genome using
bowtie2 v2.3.5.152 with default parameters. The unmapped reads were
extracted using samtools v1.11, pooled, assembled using MaSuRCA
v3.4.253 with default parameters, and added to the preliminary pan-
genome. The integration of the reference genomewith the NRRs from
the four high-quality genomes, in conjunction with the NRRs derived
from the 339 WGS genotypes, led to the development of the final
common bean pan-genome. To exclude putative contaminants and/or
organelle sequences, NRRswere compared to theNCBI non-redundant
nucleotide database using BLASTn, considering a minimum of
80% identity and 25% coverage, leading to the removal of
1194 sequences. Overall, we identified 61,680 added sequences, 88% of
which reflected themapping of the 339 low-coverageWGS accessions.
The remaining 12% were identified by comparing the reference
genome G19833 v2.1 independently with the other four high-quality
genomes (Supplementary Table 1).

RNA sequencing
RNA sequencing (RNA-Seq) was conducted on leaf tissues obtained
from genotypes G12873 and MIDAS cultivated under controlled
greenhouse conditions (relative humidity ~70% and an average night/
day temperatureof 25 °C). Leaf sampleswere collected at two stages of
pod development, specifically at 5 and 10 days. RNA was extracted
from frozen tissues19 and non-directional Illumina RNA-Seq libraries
were prepared and sequenced using the IlluminaHiSeq 2500platform,
generating 125-bp paired-end reads.

Pan-genome annotation
Repetitive sequences were identified and soft-masked using Repeat-
Modeler v2.0.254 and RepeatMasker v4.1.2-p155, respectively. For pan-
genome annotation, we adopted a hybrid approach. This involved the
ab initio prediction of protein coding genes with Augustus v3.3.356,
complemented by extrinsic supporting evidence in the form of
P. vulgaris RNA-Seq data from this study and elsewhere19 as well as
protein sequences from P. vulgaris and closely related species such as
Medicago truncatula andGlycine soja. The protein sequences andRNA-
Seq data were aligned to the pan-genome with Hisat2 v2.2.157 and
Genome Threader v1.7.158, respectively. BUSCO genes in the Fabale-
s_odb10 database were used to train the model for the Augustus pre-
dictor. The predicted genes were then scanned with InterProScan
v5.46-81.059 for the presence of protein domains. The InterProScan
results were filtered to remove genes with transposon-related
domains, ensuring that only those with at least one recognized pro-
teindomainwere retained in the annotation. Thefilteredproteinswere
compared to thepan-genomewithBLASTpv2.12.060 andfilteredby the
best hits. The predicted genes were clustered with the proteins of all
species considered in the annotation using OrthoFinder v2.5.461.
Finally, functional annotationwas achieved by integrating information

Fig. 4 | Evolution of the common bean pan-genome. a Heat map illustrating the
distribution of 10,840 PAVs across the final pan-genome, distinguishing between
those mapped on the reference genome Phaseolus vulgaris v2.1 G19833 and those
located on non-reference regions (NRRs). The distribution is displayed in relation
to the common bean subgroups. Orange indicates gene presence and blue indi-
cates gene absence. b Scatterplot showing the number of PAVs per individual (y-
axis), representing the number of genes present across the sampled genotypes, in

relation to the coverage (x-axis) of each genotype. c Violin plots representing the
analysis of variance (ANOVA) for the number of PAVs per individual by genetic
group. Sample sizes (n) for each group are as follows: Wild M n = 16, M1 n = 15, M2
n = 21, Wild A n = 16, A1 n = 11, A2 n = 14, and A3= 5. Box plots represent minimum,
first quartile, median, third quartile, and maximum. Statistical significance was
determined by applying a two-sided Wilcoxon test. Supplementary Table 6 con-
tains detailed statistics. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-51032-2

Nature Communications |         (2024) 15:6698 9



about orthologous genes and identifying functional domains using a
custom script.

PAV calling
We developed a specific threshold for PAV calling, termed the MIN
threshold, as an alternative to the commonly used 0.05 threshold

based on gene coverage62,63. The MIN threshold is based on the mini-
mum coverage value of 1000 randomly selected BUSCO genes (ORFs)
for each accession, allowing for the definition of an accession-specific
threshold for calling genes as present. Specifically, Illumina data
representing the 339 low-coverageWGSaccessionswere aligned to the
pan-genome using bowtie2 v2.3.5.1 and the coverage of 1000

Fig. 5 | Selection for adaptive gene loss during the expansion of wild
common bean. a Violin plots showing the analysis of variance (ANOVA) for the
number of PAVs per individual based on grouping the wild Mesoamerican and
Andean accessions according to latitude coordinates. Wild Mesoamerican geno-
types are colored orange, while wild Andean genotypes are green. Sample sizes (n)
for each category are as follows: Mexico n = 11, Guatemala, Honduras, Costa Rica, El
Salvador, and Colombia n = 5, Peru n = 6, Bolivia and Argentina n = 9. Box plots
representminimum, first quartile, median, third quartile, andmaximum. Statistical
significance was determined by applying a two-sided Tukey–Kramer HSD post hoc

test. Detailed statistics are available in Supplementary Table 7. b Spatial inter-
polation of wild common bean genotypes based on the number of PAVs per indi-
vidual. Dark red regions indicate a higher number of PAVs and blue regions a lower
number of PAVs. Latitude and longitude values are indicated in degrees using the
geographic coordinate system. c Bar charts showing the proportions of absences
found for the subset of PAVs putatively under selection during the wild expansion
(white) and for the entire variable genome (black). Source data are provided as a
Source Data file.
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randomly selected BUSCO genes (ORFs) was calculated for each
accession using samtools v1.11 (Supplementary Data 18). PAV calling
thresholds were defined for each accession according to theminimum
coverage value of the 1000 BUSCO genes. To avoid bias caused by a
few underrepresented BUSCO genes, the 10 least-covered genes in
each accession were discarded. The identified genes were classified
based on their frequency as core genes if present in all the accessions
or PAVs if partially shared or private to a single genotype (Supple-
mentary Table 2 and Supplementary Data 1).

Pan-genes and core genes size calculation
The curves describing the pan-genome and core genome sizes were
evaluated by considering 1000 random orders of the 339 genotypes
with a custom script. The orders were chosen randomly among all
possible permutations (n!, where n = [1339]). For each ordering, the
gene sets of the accessions were progressively added to the total
genome sizewithout considering the genes already present in the total
set. The sameprocedure was applied for the core genome size, but the
gene sets were intersected when each genome was added, thus

keeping only the genes in common for each iteration (Supplementary
Data 19 and 20).

Variant calling
SNVs and InDels were called with bcftools v1.10.264 based on the
alignment of 339 accessions with the pan-genome using bowtie2
v2.3.5.1. We used bcftools mpileup v1.10.2 to generate a genotype
likelihood table. Variants were identified using bcftools call v1.10.2 and
thepileup table, producing the rawVCFfile. During the pileup step, the
filtering parameter for minimum mapping quality (-q) was set to 2047.

Data analysis
Pan-genome analysis focused on a representative subset of 99 well-
characterized accessions among the original 339, including wild
and American domesticated forms. In some cases, we also analyzed
the subset of 114 European domesticated accessions (Supplementary
Data 15).

For GO enrichment, the annotated core genes and PAVs in the
pan-genome were analyzed using the buildGOmap R function to infer

Fig. 6 | Adaptive reduction effects during the domestication of the
common bean. a Bar chart showing the proportions of presence/absence in the
Mesoamerican gene pool for the entire variable genome (left) and for the subset of
PAVs putatively under selection (right) between wild and domesticated popula-
tions (right). b Bar chart showing the proportions of presence/absence in the

Andean gene pool for the entire variable genome (left) and for the subset of PAVs
putatively under selection between wild and domesticated populations (right). In
both charts, the presence values are divided based on frequency (≥/<) in the
comparisonbetweenwild anddomesticated populations. Source data are provided
as a Source Data file.
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indirect annotations and generate data suitable for clusterProfiler65,66.
Diagnostic genes were analyzed using Metascape67. A. thaliana
orthologs were identified using OrthoFinder61 and by comparing
all protein sequences from P. vulgaris (v2.1) and A. thaliana (TAIR10).
For PCA, the PAV matrix (1/0) was analyzed using the logisticPCA
package in R68.

ANOVA within subgroup M1 was carried out using the first prin-
cipal component related to days-to-flowering and photoperiod sensi-
tivity (PC1_DTF) as a representative phenotypic trait. The PC1_DTF trait
was derived from a multivariate PCA analysis on days to flowering and
photoperiod sensitivity data collected in 10 different environments13.

The Ka/Ks ratio was computed using KaKs calculator v2.069. For
each gene, the consensus sequence of each accession was extracted
using bcftools consensus v1.10.2. The calculator compares the pan-
genome gene sequence with the gene sequence of each accession to
identify non-synonymous and synonymous variants and then com-
putes the ratio. The calculator reported NA when there were no
variants in a specific accession or when the denominator of the Ka/Ks
ratio was zero. It was possible to compute the analysis for 30,484 of
34,338 genes. Sometimes the length of one of the two compared
sequences was not divisible by three so the sequence could not be
read in triplets (Supplementary Data 4). The average Ka/Ks value per
gene was used to assess the significance of the sample median
(Supplementary Table 3).

FST analysis involved the separate testing of PAVs in the Mesoa-
merican and Andean gene pools by comparing the frequency of each
PAV between wild and domesticated forms. Each PAV was considered
as a single locus (0/1) and FST was calculated by applying the formula
FST = (H total −H within)/H total, where H is the heterozygosity70. The
same procedure was applied to wild accessions when comparing the
Mesoamerican and Andean gene pools. Only PAVs in the top 5% of the
FST distribution were considered as candidates.

The functions of interesting PAVs and those associated with A.
thaliana orthologs detected by OrthoFinder61 were investigated
manually in the NCBI database (https://www.ncbi.nlm.nih.gov/).

Phylogenetic analysis was conducted using bcftools64, by first
extracting SNPs from core genes and PAVs, followed by filtering. We
applied the following filtering parameters: excluded insertions and
deletions (--exclude-types indels), included only biallelic variants (--min-
alleles 2 --max-alleles 2), included variants where the proportion of
missing data was less than or equal to 0.5 (--include “F_MISSING≤0.5”),
excluded variants withminor allele frequency less than or equal to 0.01
(--exclude “MAF ≤0.01”), and excluded monomorphic sites that were
homozygous for the reference (--min-ac 1). This process resulted in two
final datasets: 1,451,663 SNPs for the core genes and 338,212 SNPs for
the PAVs. The two filtered datasets were used to calculate the genetic
distance between individuals and compute maximum composite like-
lihood values with 1000 bootstraps for the NJ tree in MEGA1171. The
resulting trees were visualized in FigTree (http://tree.bio.ed.ac.uk/
software/figtree/).

The filtered dataset of SNPs in core genes was also used to
quantify the genetic diversity within each genetic group by estimating
π. The --window-pi vcftools flag was used to obtain measures of
nucleotide diversity in 250-kb windows. The windowed-pi estimates
were then divided by the total number of SNPs to calculate a global
estimate for each genetic group.

PAV-based Fisher’s exact test with the false discovery rate cor-
rected for multiple comparisons was applied in R to identify PAVs that
differed significantly in frequency between the Mesoamerican and
Andean gene pools for the American and European accessions.

The principal components related to days-to-flowering and pho-
toperiod sensitivity (PC_DTF), derived fromamultivariate PCA analysis
on days to flowering and photoperiod sensitivity data collected in 10
different environments13, were used for PAV-based GWAS using both
the mixed linear model (MLM)72 and the fixed and random model

circulating probability unification (FarmCPU) model73 implemented in
the R package GAPIT v374. The threshold for each scan was determined
by the Bonferroni corrected p value at α =0.05 (p ≤ 7.07E−06). The
kinship matrix (IBS method) calculated with Tassel 575 and the popu-
lation structure at K213 were included in the models as fixed factors.
Quantile–quantile (Q–Q) plots were obtained by plotting the observed
−log10(p values) against the expected -log10(p values) under the null
hypothesis of no association.

The spatial interpolation on wild common bean genotypes in
relation to the number of PAVs per individual was performed using the
gstat package in R. We applied ordinary Kriging to create an inter-
polationmodel. The geographic coordinates andnumber of PAVswere
merged into a single dataset. A prediction grid was generated over the
study area. The output GeoTIFF file was imported into QGIS for map
visualization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 109 rawWGS reads generated in this study have been deposited in
the National Center of Biotechnology Information (NCBI) Sequence
Read Archive (SRA) under BioProject number PRJNA1042929. Addi-
tionalWGS data, comprising 10 and 220 rawWGS reads, were sourced
from BioProject numbers PRJNA910538 and PRJNA573595, respec-
tively. The RNA-Seq data from this study have been deposited in the
NCBI SRA under BioProject number PRJNA1042929. Additionally, 21
RNA sampleswere sourced fromBioProject number PRJNA212729. The
reference genome G19833 v2.1 is available on Phytozome at [https://
phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1]. The other four high-
quality genomes have been deposited in the NCBI SRA under BioPro-
ject number PRJNA1042929. The pan-genome assembly and its anno-
tation have been deposited in Figshare [https://doi.org/10.6084/m9.
figshare.24573874]. Source data are provided with this paper.

Code availability
Custom codes used in this study have been deposited on GitHub
[https://doi.org/10.5281/zenodo.12191159].
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