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A B S T R A C T

Inland navigation is one of the most sustainable transport alternatives to help decarbonise the world economy. 
However, the likely impacts of intensifying inland navigation on freshwater ecosystems are difficult to predict. A 
global map of knowledge that considers both abiotic and biotic responses to increasing shipping traffic and 
developing infrastructures is lacking. Deriving general evidence-based assessments is challenging, because most 
studies on inland navigation impacts are merely descriptive and either consist of local case studies, or address 
single navigation stressors or specific taxa only. We conducted a systematic mapping of the published literature 
(1908–2021) to provide a global synthesis of the effects of inland navigation on the biotic and abiotic compo-
nents of freshwater ecosystems. We show that only half of the reported navigation-related impacts were statis-
tically tested. Navigation itself (vessel operation) had mainly negative effects on native taxa (57%), followed by 
waterway management (40%), and navigation infrastructures (35%). Navigation has direct negative impacts 
caused by physical disturbances such as vessel-induced waves, and indirect impacts that facilitate the spread of 
aquatic invasive species, and altering the abiotic habitat conditions. Thirty percent of the tested relationships 
showed non-significant impacts on the biotic environment, while in 10% of cases impacts were context- 
dependent. We identified the main gaps of knowledge, namely (i) impacts of waterway management on com-
munities, (ii) underlying processes of navigation impacts on river ecosystems; and (iii) interactions between 
multiple navigation factors and cascading effects on multi-taxa responses. These future research directions 
should improve the diagnosis, mitigate the negative impacts of navigation on rivers and provide guidelines for 
improving navigated river management.
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1. Introduction

Inland freshwater navigation is promoted as one of the most sus-
tainable transport alternatives in the world (Rohács and Simongáti, 
2007; Terziev et al., 2023) and a way to achieve carbon neutrality by 
2050 (Barros et al., 2022; INE, 2020; Sys et al., 2020). For instance, in 
Europe, the European Union Green Deal aims to intensify and promote 
“green shipping” by improving, restoring or creating new Inland Navi-
gation Infrastructures (INIs) such as canals, sluices, dams, locks, and 
ports (INE, 2019, 2014). Yet, the extent to which intensified inland 
navigation will impact river integrity and aquatic biodiversity globally is 
not clear.

Inland navigation can potentially affect all aspects of river integrity 
as well as the surrounding landscape (Némethy et al., 2022). It has direct 
and indirect consequences on ecosystem components by triggering 
secondary mechanisms that affect ecosystems. Indeed, the five major 
threats for freshwater biodiversity (Dudgeon et al., 2006) can directly or 
indirectly be driven by inland navigation and the construction and 
management of inland navigation infrastructures (INIs) - namely, water 
pollution (Floehr et al., 2013; Maguire, 1991; Weijters et al., 2009), flow 
modification (Bunn and Arthington, 2002; Tales and Boët, 2005; Wolter 
et al., 2004; Yang et al., 2023), habitat degradation (Blanton and Mar-
cus, 2013; Wolter, 2001), loss of river connectivity (Belletti et al., 2018; 
Jones et al., 2020; Poff et al., 2007), and introduction of invasive species 
(Leprieur et al., 2008; Leuven et al., 2009; Magliozzi et al., 2020). Vessel 
operation directly disturbs aquatic species, by wake wash (Gabel et al., 
2017), draw down (Holland, 1986), return currents (Wolter et al., 
2004), propeller wash (Killgore et al., 2011), boat collisions (Miranda 
and Killgore, 2013), water pollution such as plastics (Climo et al., 2022), 
hydrocarbons (Gao et al., 2024; González et al., 2024), or salts from 
ballast water (Duan et al., 2023a), and noise (Duan et al., 2023b; Gra-
ham and Cooke, 2008). In addition, infrastructures supporting naviga-
tion (e.g., canals, sluices, and boat ramps) as well as waterway 
management and maintenance (e.g., water level regulation or dredging 
activities) impact the environment (Cowx and Welcomme, 1998; Lepori 
et al., 2005; Simons et al., 2001; Staentzel et al., 2020) and facilitate the 
spread of invasive species (Rodríguez-Rey et al., 2021). For example, 
while groynes and rip-rap change habitat for aquatic species (Bischoff 
and Wolter, 2001; Fischer et al., 2018), dams, weirs and sluices will 
influence their mobility and dispersal (Duarte et al., 2021; Robinson 
et al., 2019).

On the other hand, INIs can also support selected species and com-
munities, by providing artificial habitats (Harvolk et al., 2015; Horsák 
et al., 2009), dispersal corridors (Ouédraogo et al., 2020), and pre-
venting the spread of some aquatic exotic species (Favaro and Moore, 
2015; Rahel, 2013). Thus, the relative effects of these three main types 
of navigation-related pressures (namely navigation activity, 
related-infrastructures and their management), and how they influence 
both biotic and abiotic components of the river environment are still 
unclear (but see Wolter et al., 2004) and are difficult to disentangle. 
Therefore, these effects deserve more attention to better identify and 
prioritise mitigation actions.

Further intensifying inland navigation will require the creation of 
new INIs as well as the restoration and upgrading of existing ones 
(EIWTP, 2021). To minimize impacts on riverine biodiversity a better 
understanding is needed on how such infrastructures modify water flow, 
alter habitats, affect river connectivity, and shape species communities 
by invasions and extirpations. Until now, most studies that addressed 
navigation impacts focussed on selected INIs, single taxa, or particular 
components of river integrity (Villemey et al., 2018; Zajicek et al., 2018) 
which makes it difficult to draw conclusions.

To provide a comprehensive assessment of the global impact of 
navigation, we carried out a systematic mapping of the scientific liter-
ature to provide a global knowledge map of the effects of navigation- 
related factors on biotic and abiotic components in river ecosystems 
while considering the robustness of the analysed relationships. The 

systematic map of knowledge “collates, describes and catalogues avail-
able evidence on the topic” and allows addressing open-framed ques-
tions (James et al., 2016) such as here, the links between navigation 
factors and river components. Our specific aims were to: (i) assess and 
summarise direct and indirect effects of navigation and INIs on river 
integrity, while explicitly differentiating between evidenced (i.e., sta-
tistically tested) vs. asserted (i.e., with no statistical support) results; (ii) 
comparatively analyse effects of all three navigation-induced pressures – 
navigation, infrastructures, and waterway management – on abiotic and 
biotic components of river ecosystems including native and exotic taxa; 
(iii) identify main gaps in knowledge and propose future research fields 
to make mitigation actions more effective.

2. Material and methods

2.1. Literature search and articles selection

A systematic literature search was done on the September 16, 2021 
in ISI Web of Science Core Collection and Scopus, which are considered 
the main reference sources (Mongeon and Paul-Hus, 2016). The litera-
ture search focused on articles published in English between 1900 (first 
selected paper in 1908 according to Scopus, and in 1983 according to 
WOS) and 2021. Following methodological recommendations for sys-
tematic mapping (e.g. Foo et al., 2021; James et al., 2016), the literature 
search was conducted using the PECO strategy for systematic search that 
is considered to be the most powerful and reproducible approach for 
formulating research questions (Miller and Forrest, 2001; Sordello et al., 
2019). The PECO method (Population Exposure Comparator Outcomes) 
requires the formulation of the research equation including four main 
aspects: the Population object of the study (here inland freshwater 
ecosystems), the Exposure (here navigation), a Comparator (here any 
comparator that can reflect a relationship), and the Outcomes or focus of 
the effects (here biodiversity in the broad sense). The literature search 
was applied on titles and abstracts using the search equation shown in 
Fig. 1a (see also Appendix S1).

The initial literature search returned 15,058 published articles in 
Web of Science (5,696) and Scopus (9,362). To analyse and filter this 
corpus of articles, we then used the PRISMA approach (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses; Page et al., 
2021) (Fig. 1b). After removing duplicates, article titles and abstracts 
were manually screened and articles were included for further analysis if 
they met the following eligibility criteria: (1) peer-reviewed (journal 
articles, reviews and book chapters), (2) dealing with inland navigation, 
i.e. excluding marine and coastal ecosystems, and (3) having mentioned, 
discussed and/or analysed a relationship between any navigation factor 
(i.e. inland navigation, navigation-related infrastructures, or their 
management and maintenance) and any river biotic response (e.g., 
biodiversity, vegetation, fish) in the abstract. Articles that focused their 
analyses on the abiotic response of the river were kept as long as they 
highlighted the implications of their findings for the biotic response of 
the river. This first screening retained 506 articles. Then, a second 
screening was carried out excluding (1) articles that did not directly 
analyse the impacts of inland navigation rather than evaluate the effects 
of measures to mitigate or rehabilitate navigation effects were excluded 
from the analyses (N = 39 papers); and (2) articles dealing with recre-
ational boating, because its impact on the river environment is not 
comparable to the impact of commercial navigation (Söhngen et al., 
2008) and the topic has already been analysed at large scale by Zajicek 
and Wolter (2019) as well as synthesized by Schafft et al. (2021). All the 
manual screening was carried out by a team of 18 researchers, experts in 
freshwater ecology (NAVIDIV consortium). A final cross random 
screening procedure was carried out by two of the experts to check the 
inclusion consistency (i.e. each member was assigned two papers 
initially screened by another member and had to check the inclusion 
validity – in case of conflict, the member initially in charge of this paper 
had to verify again their list of papers and revise it following the 
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inclusion rules of the group). The final number of articles included in the 
systematic review after full-text analysis was 243 (Fig. 1b).

2.2. Information extraction

2.2.1. Geographic and sampling context
The final 243 articles retained were full-text analysed for informa-

tion synthesis. We recorded geographic origin and sampling context, 
including: (1) country and catchment, (2) type of hydrosystems (river, 
canal, lake, reservoir, floodplain, and pond as the most frequent options) 
and, its name, (3) spatial extent of the study, and geographic coordinates 
when available, (4) number of sampling observations, (5) length of river 
stretch that was sampled and/or analysed by the papers (based on maps 
and/or protocols provided within the original papers, when applicable), 
and (6) duration and frequency of sampling.

2.2.2. Navigation-related factors
We then identified the navigation-related pressures analysed and 

found 22 navigation-related factors. These were further classified into 
three main groups: navigation itself, navigation-related infrastructures 
and waterway management (Table 1). Navigation itself, hereafter nav-
igation, refers to vessel operation and its direct physical consequences, 
such as wake wash, draw down, return currents, or noise generation. 
Navigation-related infrastructures, hereafter inland navigation in-
frastructures (INIs), refer to those pressures caused by the constructed 
infrastructures needed to enable or facilitate the navigation, such as 
locks, canals, channelised rivers, or ports. Finally, waterway manage-
ment refers to those actions needed to maintain the adequate conditions 
for navigation such as dredging activities, regular vegetation cutting or 
water level management. Because some articles analysed combined 
navigation-related factors, such as the ensemble of shipping activity in 
canals, or of lock existence plus lock operations, a fourth category was 
created as the mix of multiple navigation-related factors (Table 1).

2.2.3. Biotic and abiotic responses
Biotic and abiotic responses analysed in the articles were identified. 

For biotic responses, we extracted information such as the taxonomic 
group (e.g., fish, macrophyte, or invertebrates); the level of organisation 
at which the analysis was carried out (e.g., individuals, populations, or 
communities); and the response metric analysed in the navigation- 
response relationship (e.g., mortality, abundance, or species richness; 

Fig. 1. Literature search and analysis. a) Literature search equation used for Web Of Science following the PECO search strategy. Note that $ should be replaced by * when 
search is performed in SCOPUS database (see Appendix S1). b) PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram (Page et al., 
2021) showing the procedure of article selection applied after the literature search.

Table 1 
Classification of the 22 navigation-related factors into four main groups: navi-
gation itself and its direct physical consequences (NAVI), navigation in-
frastructures (INI), waterway management and maintenance (MANAG), and the 
mix of multiple navigation-related factors (MULTI).

Group/navigation- 
related factor

Definition

Inland Navigation (NAVI)
SHIP Shipping activity as a general factor, presence of ships
TRAF Traffic as a quantitative measure of navigation activity, 

number of ships per time unit
WAVE Waves, propeller wash and drawdown due to boat 

passage (WAVE + PROP + DRAW)
STRIK Strikes by boats or boat propellers
POLL Chemical pollution
AC.POLL Acoustic pollution
BALL Ballast water and solid ballast (BALL + SOLID.BALL)
MULTI_NAVI Mix of multiple navigation-related factors
Inland Navigation Infrastructures (INI)
CAN Canals - as new river connections
CHA Channelised river - as modified river stretch to allow for 

navigation
MODIF Large-scale river bed modification to allow for 

navigation, including both channelisation, floodplain 
modifications and infrastructure development

LOC Locks and sluices (LOC + SLU)
DAM Navigation dams, weirs and bridges (DAM + WEI + BRI)
EMB Embankment
IMP Impoundment
PORT Ports
YARD Shipyards
MULTI_INI Mix of multiple INIs
Waterway Management and Maintenance (MANAG)
DRE Dredging for building or maintaining waterway 

navigability
LEV Water level regulation
FLOW Flow regulation
BWTS Ballast water treatment
VEGCUT Vegetation cutting
LOCOP Lock operations for ship passage
MULTI_MANAG Mix of multiple waterway management or maintenance 

factors
Multiple Navigation-related Factors (MULTI)
MULTI Mix of multiple navigation-related factors across NAVI, 

INI and MANAG (e.g. SHIP + CAN, LOC + LOCOP, etc.)
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full table available here: https://doi.org/10.57745/N6Y6QR; Jeliazkov, 
2024).

In particular, we carefully considered the status of the taxa analysed, 
namely either (1) natives, (2) exotics (including invasives), (3) both (for 
communities mixing both natives and exotics), and (4) unknown.

For abiotic responses, we noted the variables of interest (e.g., 
salinity, water temperature, conductivity) and their units. Given the 
high diversity of variables studied, we grouped them for synthesis into 
eight broad categories: 1) acoustic environment or noise, 2) flow con-
ditions, 3) geomorphological conditions, 4) habitat characteristics, 5) 
soil characteristics, 6) water conditions, 7) bank characteristics, and 8) 
mixed (a mix of several responses) (Table 2).

2.2.4. Characteristics and testedness of the relationships analysed
Each individual relationship between a navigation-related factor and 

a river component analysed was listed along with the particular 
response metric analysed (fish species richness, vegetation composition, 
dissolved oxygen, etc.). In addition, evidence of impact was assessed 
based on statistical testing procedures reported in the paper. An effect 
was considered evidenced if it was statistically tested; otherwise, the 
purported effect was considered asserted (i.e., without statistical sup-
port). All statistically tested relationships were coded as “negative” 
(NEG), “positive” (POS), “non-significant” (NS), “change” (CHANGE) 
when the relationship significance or sign varied depending on a third 
factor, e.g. location, river, level of alteration, species considered, 
nonlinear behaviour, etc., or “unclear” (UNK) when the sign of the 
relationship was ambiguous, not reported or inappropriately interpreted 
(e.g., a discussion affirming an effect that is not supported by the raw 
figures). All asserted relationships were similarly coded as “negative” 
(NEG), “positive” (POS), “no effect” (NS) when authors explicitly discuss 
neutral effect/absence of effect, “change” (CHANGE) when authors 
explicitly mention that the relationship depends on other factors, or 
“unclear” (UNK) when the authors remain elusive about the effect 
discussed.

Each individual relationship was the statistical unit of observation in 
the present study, and the main focus of the following analyses. 

Although some papers analysed and presented multiple relationships, 
75% of the papers analysed less than five relationships (Fig. S1). All 
information was extracted and compiled into a single data table (see 
original data available in Jeliazkov, 2024).

2.3. Data analysis and synthesis

The final corpus of 243 articles included 89% empirical research 
articles (including 10% experimental articles), 8% review/synthesis/ 
opinion articles, and 3% simulation/analytical modelling articles. These 
articles reported in total 1103 navigation-river ecosystem relationships, 
which constituted our dataset for assessing and synthesising the current 
knowledge on the effect of navigation-related factors on river 
ecosystems.

First, to assess the knowns and the unknowns about navigation ef-
fects on river ecosystem, i.e. the potential imbalance in actual evidences, 
we counted and graphically compared the proportions of relationships 
evidenced vs. asserted across the different types of navigation-related 
factors, response types (biotic vs. abiotic), biotic compartment (non- 
natives, natives, or both), and taxa (fish, invertebrates, etc.).

Second, to quantitatively synthesize the evidence of navigation-bi-
otic relationships, we focused only on the statistically tested relation-
ships (N = 564 relationships) for each biotic compartment (natives, 
exotics, and both) and calculated the proportion of relationships re-
ported as negative, positive, non-significant, unknown, and changing 
across the four categories of navigation-related factors INI, NAVI, 
MANAG, and MULTI. All data analyses were performed in R (R4.3.0, R 
Core Team, 2023). To assess whether there is significant imbalance of 
effect signs across navigation factors, we statistically compared these 
proportions using Pearson’s goodness-of-fit Chi-squared tests for count 
data (function ‘chisq.test’ in package {stats}) with a threshold p-value of 
0.05. We further tested the relative dominance of the effect signs 
(negative [NEG] vs. positive [POS] vs. changing [CHANGE] vs. 
non-significant [NS]) with separate Chi-squared tests on each combi-
nation of navigation factor by biotic response when the sample char-
acteristics allowed it (i.e., expected counts for each factor 
combination≥5, which excluded all UNK effects). Given the limited 
sample size for the evidenced abiotic responses (77 evidenced re-
lationships for 8 categories), we only explored the number and signs of 
the relationships graphically for each combination of navigation factors 
and abiotic responses.

Finally, to draw the map of knowledge, that is, the schematic rep-
resentation of the hypothesised causal relationships between navigation 
factors and biotic components, we used the proportions of relationships 
calculated above and kept the two most supported ones for each factor- 
response couple to facilitate figure reading. For instance, 40%, 21%, 
19%, 15%, and 5% of NAVI-Exotics relationships were reported as POS, 
NS, NEG, CHANGE, and UNK, respectively. Then we included the two 
most frequently observed links on the map, i.e. POS and NS.

It is worthy of note that first, we are creating a systematic map of 
knowledge and not a meta-analysis. To synthesize data that are mainly 
textual and/or categorical, and to more deeply review the broad topic of 
navigation effects on rivers, the principle of systematic mapping was the 
best compromise between a fully narrative, qualitative literature review, 
and a quantitative analysis fulfilling the strict constraints of a meta- 
analysis (Haddaway et al., 2016; Miake-Lye et al., 2016). Especially as 
we already know there are too few papers fulfilling these constraints on 
our topic (Ouédraogo et al., 2020; Villemey et al., 2018). The systematic 
map allows us to use our evidence collection to address an open-framed 
question (Haddaway et al., 2016; James et al., 2016) - namely the im-
pacts of navigation on river ecosystems - and does not target effect sizes 
analysis. Therefore, our analyses are contingent on the categories (or 
‘knowledge clusters’ (James et al., 2016)) that emerged from our evi-
dence collection, such as the three main types of navigation factors, or 
the eight types of abiotic responses of the river environment. Second, we 
used a ‘vote counting’ approach (Koricheva and Gurevitch, 2013; 

Table 2 
The eight categories of abiotic responses considered in the synthesis and ex-
amples of response variables included in these categories.

Category of abiotic response 
(label)

Examples of responses studied

Acoustic environment/noise 
(Acoustic)

Sound duration; sound frequency; mean number of 
sounds per day; spectral density

Flow conditions (Flow) Wave energy; wave height; flow velocity; water 
level fluctuation; Indicators of Hydrologic 
Alteration; bed shear stress

Geomorphological conditions 
(Geomorpho)

Water depth; river width; geomorphological 
dynamics; river bed erosion; morphology; fluvial 
forms

Soil characteristics (Soil) Organic matter content; sediment size; silt-clay 
fraction; contaminant concentrations; 
sedimentation rate

Water conditions (Water) Water turbidity; water quality indices; pH; 
dissolved oxygen; temperature; conductivity; ionic 
concentrations

Bank characteristics (Bank) Bank erosion rate, retreat, stability; riverine 
habitats; sand bar size (excluding in-water habitats 
and mainly taxon-unspecific environmental 
characteristics)

Habitat characteristics 
(Habitat)

Habitat availability; habitat structure; habitat 
suitability; environmental change; floodplain area; 
spawning area (including both riverine and in- 
water habitats and mainly taxon-specific 
environmental characteristics)

Mix of several responses (Mix) Habitat and substrate; water and river bed 
conditions; soil, topographical, flooding dynamics, 
biotic and abiotic parameters (Note: Usually, these 
fuzzy responses are not tested but mainly 
discussed.)
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Siddaway et al., 2019), where we synthesized the counts of positive, 
negative, and non-significant navigation-environment relationships. 
This can be problematic when one does not account for potential dif-
ferences across studies in statistical power nor reliability of the methods 
used to test these relationships (Haddaway et al., 2020). In our case, the 
differentiation we made between evidenced vs. asserted relationships 
allowed us at least to distinguish two levels of reliability among the 
examined studies. In addition, we did not detect many papers with 
noticeably low statistical power; the rare ones that aroused severe 
doubts were classified as “unknown/unclear” (UNK). Thus, the positive 
and negative counts – focus of the map – should not be severely biased 
by the ‘vote counting’ approach. The count of non-significant effects is 
interpreted with caution (see Discussion), that is not necessarily as an 
evidence of absence of effect, but rather as insights on the knowledge 
gaps and study limitations. Questioning further the validity of the 
studies would equate discrediting the peer-review process that these 
studies underwent, which seemed rather counter-productive given our 
objective of first attempt of comprehensive, qualitative knowledge 
mapping. Furthermore, the extensive metadata information provided in 
the synthesis table, such as sample size, methods of analysis and com-
ments we made (see original data in Jeliazkov, 2024) will allow the 
readers to easily check the studies and make their own critical appraisal 
about those. Finally, another limit classically criticised in any literature 
syntheses (including meta-analyses) is the reporting bias, where 
non-significant results would be under-reported, resulting in biased 
conclusions about the importance of the effect studied (e.g., Kotiaho and 
Tomkins, 2002). Our approach of dissecting each study and extracting 
each individual relationship evidenced vs. asserted precisely allowed us 
to detect the many instances of non-significant results, and even the 
unexpected ones, which are reported in the figures but not necessarily 
put in the front by the authors. Therefore, we can be confident that our 
literature synthesis has managed to detect a substantial and represen-
tative part of the complexity and depth of the topic. Due to this relatively 
good representativeness, our focus on the academic evidences, and the 
difficulty to access and process non-academic evidences without any 
country/language bias, we did not add grey literature to our systematic 
map (Livoreil et al., 2017).

Data accessibility statement:
The data and code supporting the results have been archived on the 

public repository recherche.data.gouv and are available at: https://doi. 
org/10.57745/N6Y6QR.

3. Results

3.1. General overview of navigation-environment studies

Studies of navigation-environment interactions were published 
across the globe with highest numbers from North America, Europe, and 
China (Fig. 2). Still, we noted four inter-continental studies that covered 
mainly Europe and North America (Audzijonyte et al., 2008; Czernie-
jewski et al., 2012; Marescaux et al., 2016; Nagrodski et al., 2012).

The total river length studied varied from several metres to 100,000 
km (Fig. 3a). The temporal extent in terms of monitoring years varies 
from “snapshots” (single observation in time) to more than 100 years 
with historical data (Fig. 3c). Most relationships involved a biotic 
response (85%), while 14% evaluated an abiotic response, and 1% a 
mixed response (Fig. 3d). The majority of navigation-biotic relationships 
concerned fish and invertebrates (Fig. 3e), mainly native species 
(Fig. 3f). A wide range of responses were used to assess the biotic re-
sponses to navigation, across all levels of biological organisation (from 
individuals to populations to communities to ecosystems), including 
DNA damage, organism’s metabolism, behaviour, movement, abun-
dance, area or percentage of cover, mortality, distribution, presence/ 
absence, taxonomic and functional diversity and composition (alpha and 
beta diversities). The majority of the navigation-abiotic relationships 
were about water quality (32% of the relationships) and hydrological/ 
flow conditions (21%) (Fig. S2).

The studied navigation-environment relationships, including both 
biotic and abiotic responses, investigated effects of navigation itself 
(47%), navigation infrastructures (35%), waterway management (10%), 
or a mixture of two (9%) (Fig. 3b). Three quarters of the navigation was 
represented by shipping activity, traffic, and waves; slightly more than 
half of the infrastructures were represented by canals, locks and dams; 
and more than half of the waterway management was represented by 
dredging, and flow regulation (Fig. S3).

3.2. Navigation effects on river ecosystems

Half (52%) of the 1103 navigation-environment relationships were 
statistically tested, the other 48% were asserted or only narratively 
discussed without any statistical test. We observed the highest pro-
portions of tested relationships from studies that analyse the effects of 
navigation (Fig. S4a), and the responses of mixed communities pooling 
both exotics and natives (Fig. S4c). We observed the smallest pro-
portions of tested relationships from studies that analyse the effects of 

Fig. 2. Global distribution of navigation effects studies. Geographical map of the number of papers per country that study navigation effects on the river 
environment (country of the study area, not of the author’s affiliation). Uncoloured countries are countries with no paper on navigation according to our literature 
search. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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infrastructures (Fig. S4a), the responses of exotic taxa (Fig. S4c), and the 
responses of macrophyte and riparian vegetation (Fig. S4d). We also 
noticed that integrative influences such as multiple navigation effects 
(Fig. S4a) and integrative responses such as multiple taxa (Fig. S4d) or 
whole ecosystems (represented by the mix of biotic and abiotic re-
sponses in Fig. S4b) are less statistically investigated than their indi-
vidual components. Finally, most of the statistically tested navigation 
effects were evidenced negative or non-significant, while most of the 
asserted effects were considered negative or positive (Fig. S6).

3.2.1. Navigation effects on the biotic components of the river
Focussing on the tested effects of navigation on the biotic compo-

nents, separate analyses were carried out for native, exotic and mixed 
compartments. In case of native taxa, most effects were negative, with 
highest proportions of negative relationships found for navigation itself 
(55%) and the combination of multiple pressures (52%) (Fig. 4a). In 
addition, positive relationships between native taxa and navigation- 
related factors were also found, in particular with infrastructures and 
waterway management.

For exotic taxa most navigation-related effects were positive, with 

Fig. 3. Metadata of the navigation-river environment relationships studied. Distribution of the number of studied navigation-river environment relationships 
across: a) the river length studied (the blue transparent box represent the number of relationships that are local studies, i.e. single site studies of less than 1 km 
length); b) the four categories of navigation-related factors (navigation, infrastructures, waterway management, and multiple factors); c) the time span of the studies 
in years with starting and ending years of study (on Y-axis, relationships are represented by ticks, only every 10 are shown to facilitate visualization); the insert 
represents the distribution of the study durations; d) the type of river response (biotic, abiotic, and both); e) the taxonomic group (FISH = fish, INV = invertebrates, 
VEG_MAC = macrophytes, MAM = mammals, PLANK = plankton, AMP = amphibians, VEG_RIP = riparian vegetation, MULTI = multiple taxa, VEG = multiple 
vegetation strata, ALGAE = algae, BIRD = birds, BRIOZOO = bryozoans, ENVIR = general biotic environment, REP = reptiles), and f) the biotic compartment 
(natives, exotics or mix of both). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Tested effects of navigation on biota. Chi-square analyses of the tested effects of navigation-related factors on the different biotic compartments of the 
river, namely a) native taxa/communities, b) exotic or invasive taxa/groups, and c) mix of both native and exotic taxa. For the association degree and significance 
between relationship sign and navigation factor, see Fig. S7.
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the highest interpretable proportion of positive relationships from 
navigation itself (70%) (Fig. 4b). Effects from infrastructures and 
waterway management were harder to discern. Infrastructures effects 
were mostly non-significant or contingent on other factors. Waterway 
management effects were statistically balanced between negative, pos-
itive, non-significant and unknown (Fig. 4b).

Finally, regarding the navigation-related effects on the mix of both 
native and exotic taxa, most of the effects were negative, except from 
waterway management where relationships were either non-significant 
or contingent on other factors (Fig. 4c).

Overall, we observed the highest amount of unknown effects be-
tween the waterway management and the exotic taxa (Fig. 4b); the 
highest amount of non-significant effects between the waterway man-
agement and the mix of native and exotic taxa (Fig. 4c); and the highest 
amount of contingent/changing effects between the infrastructures and 
the mix of native and exotic taxa (Fig. 4c).

3.2.2. Navigation effects on the abiotic components of the river
Given the small amount of statistically tested relationships between 

navigation factors and abiotic components (only 77 out of the 160 when 
including combined responses such as “habitat”, “environment”, “na-
ture”, etc.) and the diversity of abiotic responses studied (8 categories; 
Table 2), we only could explore the results graphically. In general, more 
categories of abiotic responses were asserted rather than actually tested, 
with acoustic environment, water quality and hydrological conditions 
being most often statistically tested (Fig. 5). Negative effects of navi-
gation were reported on almost all responses, and contrasting effects 
(both positive and negative) for the response of water quality and hy-
drological conditions to infrastructures (Fig. 5).

3.2.3. Map of knowledge
Based on the synthesis of statistically tested relationships and 

selecting only the significant associations obtained from individual Chi- 
squared tests of navigation-biota relationships (Table S8), we created a 
map of knowledge that draws and compares causal links supported by 
the scientific literature. These causal links relate the four types of nav-
igation pressure Navigation, Infrastructures, Management and Multiple 
with the native, exotic and abiotic ecosystem components (Fig. 6). 
Navigation has the strongest positive relationship with the exotic taxa 
that are mainly represented by invertebrates. Both navigation, man-
agement and combination of multiple navigation pressures have the 

strongest negative relationship with the native taxa that are mainly 
represented by invertebrates and fish. The prevalent signs of the other 
relationships are less distinct according to our analyses (Fig. 6; 
Table S8).

4. Discussion

Inland navigation has a long and rich history, from the Lingqu Canal 
(China), one of the oldest canals of the world (2300 years ago, Qian, 
2023), to nowadays. Here, our synthesis had to start at the 18th century, 
following two centuries of major development of canal construction to 
connect interior countries to sea, or sea to sea (e.g. in Europe, Ketelaars, 
2004; Rijkswaterstaat, 2011). Water transport has prospered through 
the 18th-19th centuries, as being the cheapest mode of transport for 
people, materials and goods. It then temporarily declined due to the 
advent of the railway freight and was finally revived in the 20th century 
(Crompton, 2004). The replacement of steam ships with first motorised 
vessels and push barges, the invention of radars, the popularization of 
containers and bow thrusters, all contributed to the improvement and 
expansion of inland navigation over the last decades (Crompton, 2004; 
Rijkswaterstaat, 2011). This has led to the change of vessel fleets to-
wards larger (lowest cost per freight) and more powerful ships (better 
manoeuvrability and safety of operation). As a result, and in parallel of 
navigation development, the regulation and legislation of inland navi-
gation on rivers had to evolve from localized, rudimentary controls to 
sophisticated, internationally coordinated frameworks. Several com-
missions have born with the role of setting the rules for inland naviga-
tion regulation and ensuring its durability in a context of international 
cooperation, e.g. the CCNR (Central Commission for the Navigation of 
the Rhine, created in 1815), the European waterway network, and the 
International Joint Commission (between Canada and the USA). This 
evolution reflects broader societal changes, technological advance-
ments, and a growing recognition of the need for sustainable and envi-
ronmentally responsible navigation practices (Wiegmans and Konings, 
2016). Indeed, navigation development came with adverse effects from 
the ecological point of view, including physical impacts of vessel oper-
ation, and the need to enlarge, deepen and reinforce bank protections of 
the fairways (Söhngen et al., 2008). To guide further activities and 
development of inland navigation, our synthesis provides a 
knowledge-based assessment of the impacts that inland navigation has 
exerted on river ecosystems globally over the last decades and proposes 

Fig. 5. Abiotic effects of navigation. Distribution of tested (evidenced) vs. narratively discussed (asserted) effects of navigation factors on the abiotic responses of 
river environment.
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future research directions for sustainable inland navigation.

4.1. Effects of navigation-related factors on the river environment

Our literature synthesis shows that, on average, half of the evidenced 
relationships between commercial inland navigation-related factors and 
riverine biota were negative for native taxa and positive for exotic taxa 
and highlights the generalisation of these impacts at the global scale. 
This assessment confirms impacts of navigation stressors on native biota 
reported by many empirical, local-scale studies from all over the globe 
(e.g., Dey et al., 2019; Huckstorf et al., 2011; Killgore et al., 2011; 
Leclere et al., 2012; Luttenton et al., 1986; Luttenton and Rada, 1986; 
Moog et al., 2018; Peng et al., 2020; Rivero et al., 2013) or by 
continental-scale studies mainly from Europe (e.g., Leitner et al., 2021; 
Zajicek and Wolter, 2019). The general assessment of positive effects of 
navigation-related stressors on exotic biota results from the synthesis of 
previous studies reporting significant effects of shipping intensity, 
ballast water and inland navigation infrastructures on the spread or 
diversity of exotic and regularly becoming invasive species, such as 
Ponto-Caspian gobies in Germany (Tavares et al., 2020), zebra and 
quagga mussels (Allen and Ramcharan, 2001; Rodríguez-Rey et al., 
2021), Silver carp (Fritts et al., 2021) and fishhook waterflea (Maxson 
et al., 2023) in the USA, and several exotic invertebrate species all over 
Europe (Bij de Vaate et al., 2002; Leitner et al., 2021; Leuven et al., 
2009).

In particular, our study supports that navigation impacts native river 
biodiversity directly and indirectly. Direct impacts include shipping 
disturbance (e.g., otter, Gomez et al., 2014), propeller wash/wake 
wash/waves produced by boat passage leading to fish drift and stranding 
(Gabel et al., 2011; Kucera-Hirzinger et al., 2009; Schludermann et al., 
2014), invertebrate dislodgment from preferred habitats (Gabel et al., 
2008, 2012), injuries resulting from boat collisions including dolphins 
(Bechdel et al., 2009), sturgeons (Hondorp et al., 2017), and other fish 
species (Killgore et al., 2001). Navigation activities further impact 
native biodiversity indirectly. It does so first through facilitating the 

spread of invasive species via the transport of macrophytes, fish and 
invertebrates propagules by boats themselves (Jacobs and Keller, 2017) 
or by their ballast water (Adebayo et al., 2014 for invertebrates; Tavares 
et al., 2020 for fish) that might in turn affect native species (Gallardo 
et al., 2016; Gaye-Siessegger et al., 2022). Second, navigation activities 
lead to the changes in the abiotic conditions of the river, such as the 
alteration of acoustic environment (Putland et al., 2021; Rountree et al., 
2020) potentially affecting mammals (Dey et al., 2019; Duan et al., 
2023b) and fish (Graham and Cooke, 2008; Wysocki et al., 2006), the 
decrease of water quality (Henry Ogbuagu et al., 2013; Wehr et al., 
1997) potentially affecting benthic invertebrates (Arbačiauskas et al., 
2008; Xu et al., 2014), and disturbance of hydrological conditions 
potentially affecting all groups (Habersack et al., 2016). However, only 
37 out of the 243 studies actually analysed both the abiotic and biotic 
responses of the river ecosystem to navigation stressors. Among those, 
even fewer explicitly analysed the links between the two components in 
a context of navigation pressures, although they are expected to influ-
ence many groups (Niimi, 1982). In particular, vessel traffic and waves 
influence water turbidity, hydrological conditions, and habitat suit-
ability that in turn affect fish diversity (Gutreuter et al., 2006; Hanafiah 
et al., 2013; Kano et al., 2013; Koel and Stevenson, 2002), and in-
vertebrates’ attachment to their substrate (Fleit et al., 2016). Similarly, 
vessel traffic results in short-term flow velocity changes and draw down, 
bed shear stress, bank erosion, sediment alteration and water quality 
alteration that in turn affect both macrophyte and riparian vegetation 
(Ali et al., 1999; Karle et al., 2005; Racine et al., 1998; Thunnissen et al., 
2019). However, the rarity of comprehensive studies plus limitations of 
study designs (e.g., difficulty to cross multiple effects in situ) challenge 
drawing general causal conclusions on underlying processes of direct 
and indirect effects of navigation on biodiversity (see next section Gaps 
of knowledge & future research avenues).

Although navigation itself was the main factor influencing both 
native and exotic taxa, we showed that inland navigation infrastructures 
certainly indirectly add to this impact. In particular, navigation dams 
negatively influence fish, invertebrates and phytoplankton communities 

Fig. 6. Map of knowledge of navigation effects on river ecosystem. Evidence-based causal map of knowledge of navigation-related factors effects on river 
environment. Left panel: The dominant relationships (i.e. the ones showing significant imbalance from proportion analyses) are represented with plain arrows. The 
secondary relationships (i.e. the ones showing no significant imbalance from proportions analyses for the biotic component, and not testable for the abiotic 
component) are represented with dot-dashed arrows. Thickness of the arrows is proportional to the percentages revealed by the proportion analysis and colour of the 
arrows indicate the sign of the relationship. Right panel: treemaps showing the relative representativeness of the main taxa and the types of abiotic responses into the 
map of knowledge. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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and populations via habitat modification and connectivity loss (Arai 
et al., 2019; Argent et al., 2016; Brewer et al., 1995; Wehr and Thorp, 
1997; Yi et al., 2010), and channelization and embankment negatively 
influence riparian vegetation and fish diversity mainly due to habitat 
loss (Harvolk et al., 2015; Kano et al., 2013; Valová et al., 2014). Most of 
the effects of inland navigation infrastructures on river biota are 
potentially mediated by their primary effects on different abiotic aspects 
of the river environment, such as water quality (Wehr et al., 1997), flow 
conditions (Mirza, 1997; Rivero et al., 2013), and geomorphological and 
sediment characteristics (Brewer et al., 1995). However, considering 
both direct and indirect effects, infrastructures and waterway manage-
ment may not be more impactful than navigation alone. This is also 
supported by studies reporting successful mitigation of 
navigation-induced impacts, such as by regulating boat traffic (Bradbury 
et al., 1995; Grant; Lewis, 2010; Rüdel et al., 2007) and ballast water 
(Ricciardi and MacIsaac, 2022), or by restoring more natural flow con-
ditions (Collas et al., 2018; Schorg and Romano, 2018; Theiling et al., 
1996). However, it must be noted that most INIs were constructed, and 
impacted riverine communities decades before the first studies of 
navigation-induced environmental impacts. One example being the 
documented historical extinction of diadromous fish as a result of earlier 
dam construction (e.g., Le Pichon et al., 2020; Merg et al., 2020). The 
rarity of evidence-based studies at this time scale probably resulted in an 
underestimation of the impacts of INIs on aquatic biota in the present 
synthesis.

More surprisingly, INIs and waterway management sometimes 
showed positive effects on native taxa (26% and 14% of the tested re-
lationships, respectively). This could be observed for instance when 
studies analysed the abundance of generalist or highly-tolerant native 
species, or the diversity of communities that shifted from small, highly- 
specialised communities to bigger, more generalist communities, 
reflecting an overall homogenisation of the river ecosystem (Angradi 
et al., 2009). In addition, INIs such as groynes or dams could tend to 
favour some invertebrate and phytoplankton taxa through the creation 
of impounded habitats (Buczyński et al., 2017; Wehr and Thorp, 1997) 
and waterway management such as specific lock operations could favour 
fish passage (Fritts et al., 2021; Turney et al., 2022).

Notwithstanding, 30% of the statistically tested relationships be-
tween navigation stressors and river ecosystems were not statistically 
significant. This may be due to lack of power of some of the studies on 
the topic (e.g., difficulty in obtaining high enough sample sizes, or in 
defining proper baselines (Moog et al., 2018; Xiong et al., 2021). 
However, in fact, it is more likely that this number comes from rather 
well-designed studies that test multiple relationships among which only 
some turned out significant (see large-scale studies with numerous 
spatio-temporal replicates such as (Leitner et al., 2021; Rountree et al., 
2020; Zajicek et al., 2018); for more information, see the synthesis table 
in Jeliazkov, 2024). Detecting effects of navigation-related pressures 
also seems more difficult in naturally highly variable environments (e.g., 
in a delta, Liashenko et al., 2022) or under the influences of complex 
hydrological connectivity (e.g., river-lake connectivity, Xiong et al., 
2023). This leaves open the question of navigation impacts, especially 
for the quantitative effects of shipping intensity (Leitner et al., 2021; 
Xiong et al., 2021, 2023) but see (Sexton et al., 2024), shear stress 
(Gabel et al., 2012), lock operations (Fritts et al., 2021), and embank-
ments (Brabender et al., 2016) on a number of fish and invertebrates 
species or communities.

Finally, around 10% of the relationships depended on one or more 
covariates, i.e., where the sign of the effect depended on the effect of a 
third variable. This figure is likely underestimated given that in the 
present synthesis, we consider each relationship separately while the 
articles analysing several relationships are likely to find different re-
sponses for each depending on a third factor, such as the type of response 
analysed, the study design used, etc. We here highlight the context- 
dependent nature of some navigation effects on biodiversity, particu-
larly in relation to river (Harnish et al., 2012), mesohabitat of the river 

(Rountree et al., 2020; Scharf and Brunke, 2013), taxa or functional 
groups (Munawar et al., 1991; Zajicek and Wolter, 2019), season 
(Zadnik et al., 2009), or river uses and climate change (Templeton et al., 
2024). We further noticed that this context-dependency might play a 
stronger role in the study of INIs effects on exotic taxa (33%), and of the 
combination of multiple stressors on native taxa (26%). Therefore, we 
advocate that context-dependency likely shapes the impacts of inland 
navigation on river integrity and deserves further attention (Sexton 
et al., 2024).

Our literature synthesis approach provides a comprehensive litera-
ture review on the topic of navigation effects on river ecosystems (243 
papers), a certain accuracy in the information extracted, a substantial 
amount of data collected (1103 navigation-environment relationships), 
a relatively fine degree of interpretation and generalisation (see the 
Results), a good degree of repeatability (data and R codes available at htt 
ps://doi.org/10.57745/N6Y6QR) and has been successfully used in 
other synthesis works in freshwater ecology (Jackson et al., 2016; Lange 
et al., 2018). While it does not have the strength of a strict meta-analysis 
(neither its weaknesses, Kotiaho and Tomkins, 2002) and is limited by 
the ‘vote counting’ perspective (Koricheva and Gurevitch, 2013; Sidd-
away et al., 2019), our approach was appropriate and more performant 
than a traditional narrative review to achieve our objectives, that were 
to summarise and reinterpret the knowledge on the topic, and to identify 
potential gaps in this knowledge.

4.2. Gaps of knowledge and future research avenues

When considering the total number of relationships studied between 
navigation-related factors and river components, we showed that 
waterway management - e.g., ballast water treatment and vegetation 
cutting - is the least studied effect of navigation (but see Ricciardi and 
MacIsaac, 2022). The lack of evidence on waterway management effects 
is a result of the fine classification we proposed between different drivers 
of navigation impacts. This driver is less investigated than the others, 
maybe because this requires an elaborative monitoring design such as 
before-after intervention (e.g., dredging, cutting, McCabe et al., 1998; 
Moog et al., 2018), developing holistic frameworks to account for other 
stressors (Suedel et al., 2024), and interviewing navigators or operators 
on their practices (e.g., ballast water treatment, Locke et al., 1993), 
which can be more complicated, long and costly than measuring navi-
gation intensity or infrastructure density, for instance.

Thanks to the separation of asserted vs. evidenced effects of navi-
gation, and to the report of unknown effects from tested relationships, 
we have been able to further characterise the gaps of knowledge in the 
topic of navigation-environment relationships. For instance, we have 
three times less evidence (in both absolute and relative terms) on exotic 
taxa responses to navigation factors than on native taxa, despite the 
widely advertised influence of the former on the latter (Byers, 2002; 
Havel et al., 2015; Leppäkoski et al., 2013). To better understand the 
effect of navigation on native communities and isolate the indirect effect 
precisely due to the navigation-induced spread of invasive taxa, it would 
be worthwhile to systematically analyse both parts of the communities’ 
responses and check the links between those responses instead of 
pooling those. This could be done for example by analysing species as-
sociation matrices from joint species distribution modelling 
(Ovaskainen et al., 2019; Pollock et al., 2014; Zurell et al., 2020). In 
addition, although infrastructure effects are relatively well studied, they 
are almost twice less strictly tested. This may be due to the high number 
of studies that describe local biotic responses (e.g., number of fish pas-
sage) around one particular infrastructure (e.g., one weir or one lock 
system), which allows addressing the question descriptively but not 
statistically. Many studies lack control and historical baseline informa-
tion, especially in multiple-pressure contexts (e.g., Christie et al., 2019). 
Such underpowered assessments result in a certain difficulty to clarify 
the role of navigation infrastructures in river ecosystems, which is re-
flected in our synthesis where positive and negative effects come out as 
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balanced.
Although our search equation was mainly centred on the response of 

the biotic component of the river environment to navigation factors, we 
detected a certain amount of evidence about the effects on the abiotic 
component, as long as these were addressed in relation with any biotic 
response. However, this amount remained quite low (15%). This sug-
gests that among studies addressing the effects of navigation on biodi-
versity, relatively few of them actually investigate the potential 
processes underlying these effects, including the modification of the 
abiotic conditions that allow species to persist (but see Fischer and 
Claflin, 1995; Flinn et al., 2008; Kano et al., 2013; Peng et al., 2020; 
Wolter et al., 2004). Although many studies analyse the links between 
biotic and abiotic conditions in the context of navigated rivers (47 pa-
pers), the main driver as traffic intensity, dam or channelisation is often 
assumed and not systematically measured neither actually linked with 
the abiotic response (e.g., Ali et al., 1999; Best et al., 2001; Freund and 
Hartman, 2005). A couple of recent works make the exception that strive 
to apprehend this causality chain from navigation pressure to abiotic 
response to biotic response. They deduce these chains empirically, such 
as the effect of waterway construction and ship traffic on water quality 
that in turn affects benthic invertebrates (Dou et al., 2022), the effect of 
ballast water on water salinity that in turn affects freshwater phyto-
plankton (Duan et al., 2023a), or the effects of boat traffic on acoustic 
pollution that in turn affects porpoise survival (Duan et al., 2023b). The 
low amount of investigation of the abiotic component in relation with 
the biotic response to navigation may also be due to a historical legacy 
effect where the abiotic components drastically changed immediately 
after river regulation (Mossa and Chen, 2022) and thus, already formed 
baseline conditions for later navigation impact studies (“shifting base-
lines”; Humphries and Winemiller, 2009; Soga and Gaston, 2018). We 
thus need further investigation and evidence-based assessment to un-
derstand direct and indirect effects of navigation on the river environ-
ment, including the role of historical river modifications. Here, we 
explore hypothetical causal relationships, which opens new questions of 
research and methodological challenges such as: how to assess direct-
ness of the navigation effect; how to disentangle biotic and abiotic 
processes involved in river environment response to navigation pres-
sures; and how to design sampling schemes to address these questions.

We generally lack knowledge about the influence of combined nav-
igation pressures as well as the mix of responses (abiotic and biotic, 
exotics with native, and mixed taxa) and more than 75% of the current 
knowledge relies only on fish and invertebrates. This suggests a need for 
more integrative studies where interaction effects of multiple navigation 
factors could be analysed on biotic responses that may be representative 
of the whole river ecosystem, e.g., metacommunities with several tro-
phic levels (e.g., Borthagaray et al., 2015). The potential feedback loops 
between, for instance, the navigation and riparian vegetation that in 
turn may affect aquatic communities through habitat changes or trophic 
interactions modifications are not studied (Hohensinner et al., 2018). 
We need to scale up to metacommunities and metaecosystems (Cid et al., 
2021; Gounand et al., 2018; Heino, 2013; Schiesari et al., 2019) in order 
to better account for the spatialized and functional effects of navigation 
on river biodiversity and ecosystems. Such studies allow important 
progress, such as showing, for instance, that more natural waterway 
management practices can enhance trophic functioning of freshwater 
communities (Brauns et al., 2022). We need these more integrative 
studies, also because the river functions as a continuum with lateral and 
longitudinal connectivities (Boulton et al., 2017; Manfrin et al., 2020; 
Ward, 1989). Very few studies address the effects of navigation on river 
connectivities, except local specific ones tagging fishes and monitoring 
their movement and behaviour around and through a given sluice-lock 
system (Fritts et al., 2021; Garrone Neto et al., 2014; Vergeynst et al., 
2019). We do not know for instance the cumulative effects of navigation 
locks and dams on biodiversity at the watershed scale, although this 
scale is considered as relevant for river restoration (Fausch et al., 2002; 
Friberg et al., 2017). In the context of future inland navigation 

development, we need approaches to better anticipate collateral dam-
ages and avoid adverse effects of waterway construction on freshwater 
ecosystems (Dou et al., 2022), such as prospective work (Wantzen et al., 
2024) and simulation modelling (Yin et al., 2022).

New technologies play a crucial role in enhancing the tracking and 
monitoring of river navigation (Bandini et al., 2023). The implementa-
tion of advanced Global Positioning Systems (GPS), remote sensors, and 
real-time data management platforms has revolutionized the way river 
routes are supervised. These tools enable continuous and precise sur-
veillance of maritime traffic, improving the safety and efficiency of 
transportation. The integration of these technologies also supports 
environmental protection by enabling more stringent control over ac-
tivities that could negatively impact river ecosystems. The combination 
of high spatiotemporal resolution satellite imagery and deep learning 
methods offers great opportunities for the monitoring of human foot-
print in inland waterways, which can improve local and regional 
assessment of environmental impacts of anthropogenic activities on 
riverine ecosystems (Guan et al., 2023; Smigaj et al., 2023).

We have also noticed a strong geographical bias in the knowledge 
available in the English-speaking, white scientific literature, with an 
overrepresentation of China, Europe, and North America. Com-
plementing this work with a synthesis of the grey literature in national 
languages would help fill this gap. It remains nonetheless that increasing 
navigation is a global phenomenon. While for some rivers there are in-
ternational conventions and committees dealing with conservation as-
pects (e.g., International Commission for the Protection of the Rhine), 
for others, there are transboundary treaties that mostly focus on navi-
gation and water use for damming and irrigation (e.g., Niger), while 
many rivers are increasingly used for navigation but lack any consid-
eration for the potential impact of both INIs and shipping on the riverine 
ecosystem services (e.g., the Paraguay River in Brazil, Wantzen, 2023; 
see also Jähnig et al., 2022). If we are to plan future inland navigation 
management in coherence with other environmental policies (Conven-
tion on Biodiversity, Aïchi targets, European Framework Directives), we 
have to develop a more sustainable navigation (Plotnikova et al., 2022) 
and to adapt the management strategies to functional scales for a better 
resilience of the ecosystems in the face of global change.

5. Conclusions

Our literature synthesis organises, summarizes and reinterprets the 
great but scattered amount of knowledge on the topic of navigation ef-
fects on river ecosystems by proposing an original classification of 
navigation-related pressures – namely navigation itself, infrastructures 
and waterway management – and by analysing the literature through 
this novel prism.

Our synthesis shows the generalised negative impacts of inland 
navigation on native biodiversity and its positive effects on exotic taxa. 
The strongest impacts are due to navigation itself (such as shipping in-
tensity and wave drawing) and to the combination of multiple naviga-
tion factors (i.e. navigation, infrastructures, and waterway management 
or maintenance). This suggests that inland navigation policies will need 
to reinforce regulation on boat traffic to limit erosion and nuisances, e. 
g., by limiting boat speed and/or access (Bradbury et al., 1995; Kuhajda 
and Rider, 2016), on lock operations to improve connectivity, e.g., by 
increasing the frequency of opening (Arai et al., 2019; Simcox et al., 
2015), and on ballast water to avoid contamination, e.g., by water 
treatment (Elskus et al., 2015) (and see more recommendations in 
PIANC, 2003). Waterway management will need to minimize or 
conceive environment-friendly dredging activities (Mossa et al., 2020; 
Pledger et al., 2021; Suedel et al., 2022) and to apply creative suites of 
restoration actions to mitigate the impacts of navigation (Flores et al., 
2022; Schmitt et al., 2018; Söhngen et al., 2018; Weber et al., 2012). 
Waterway policies will have to account for the importance of in-
teractions between multiple navigation impacts by adopting a more 
integrative view of the river ecosystems (Cid et al., 2021; Friberg et al., 

A. Jeliazkov et al.                                                                                                                                                                                                                               Journal of Environmental Management 370 (2024) 122474 

10 



2017). The future inland navigation regulation will further need to 
adapt to the context of global change where some rivers are and will be 
increasingly exposed to flow modifications (Olsen et al., 2012), and 
species invasions (Rahel and Olden, 2008).

Our synthesis nevertheless reveals that in half of the cases, some 
impacts of navigation-related pressures remain unclear, either due to 
lack of evidence/proper testing or contradicting responses. This reflects 
the current absence of consensus and hence, the remaining gaps of 
knowledge in the topic that need to be addressed in order to better guide 
river management planning. The main research priorities we identified 
are to investigate (i) the effects of waterway management on commu-
nities, (ii) the indirect effects of navigation pressures on biodiversity 
through the analysis of abiotic responses that condition the biotic re-
sponses to gain deeper understanding of the underlying processes of 
navigation impacts on river ecosystems; and (iii) the interaction be-
tween multiple navigation factors and their effects on multi-taxa 
responses.

This and future research provide policy makers and waterway 
managers with more evidence-based and large-scale guidance that will 
help build and coordinate inland navigation management policies and 
fulfil the objectives of transboundary consistency of inland navigation.
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reservoirs and channelization on lowland river macroinvertebrates: A case study 
from Central Europe. Limnologica 39, 140–151. https://doi.org/10.1016/j. 
limno.2008.03.004.

Huckstorf, V., Lewin, W.-C., Mehner, T., Wolter, C., 2011. Impoverishment of YOY-fish 
assemblages by intense commercial navigation in a large Lowland river. River Res. 
Appl. 27, 1253–1263. https://doi.org/10.1002/rra.1420.

Humphries, P., Winemiller, K.O., 2009. Historical Impacts on River Fauna, Shifting 
Baselines, and Challenges for Restoration. Bioscience 59, 673–684. https://doi.org/ 
10.1525/bio.2009.59.8.9.

INE, 2020. Naiades, COVID | Inland Navigation Europe [WWW Document]. Inland 
Navigation Europe. URL. http://www.inlandnavigation.eu/news/policy/nai 
ades-programme-for-post-covid-growth/. accessed 6.25.20. 

INE, 2019. Naiades 3 | Inland Navigation Europe [WWW Document]. URL. http://www. 
inlandnavigation.eu/news/events/naiades-3-brainstorm-workshop/. (Accessed 7 
July 2020).

INE, 2014. EU waterway infrastructure | Inland Navigation Europe [WWW Document]. 
Inland Navigation Europe. URL. http://www.inlandnavigation.eu/news/infrastruct 
ure/eu-waterway-infrastructure-priorities-for-2014-2020/. accessed 6.25.20. 

Jackson, M.C., Loewen, C.J.G., Vinebrooke, R.D., Chimimba, C.T., 2016. Net effects of 
multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biol. 22, 
180–189. https://doi.org/10.1111/gcb.13028.

Jacobs, A.I., Keller, R.P., 2017. Straddling the divide: invasive aquatic species in Illinois 
and movement between the Great Lakes and Mississippi basins. Biol. Invasions 19, 
635–646. https://doi.org/10.1007/s10530-016-1321-0.
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