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Abstract
Wheat’s nutritional value is critical for human nutrition and food security. However, more
attention is needed, particularly regarding the content and concentration of iron (Fe) and zinc
(Zn), especially in the context of climate change (CC) impacts. To address this, various controlled
field experiments were conducted, involving the cultivation of three wheat cultivars over three
growing seasons at multiple locations with different soil and climate conditions under varying Fe
and Zn treatments. The yield and yield attributes, including nutritional values such as nitrogen
(N), Fe and Zn, from these experiments were integrated with national yield statistics from other
locations to train and test different machine learning (ML) algorithms. Automated ML leveraging a
large number of models, outperformed traditional ML models, enabling the training and testing of
numerous models, and achieving robust predictions of grain yield (GY) (R2 > 0.78), N
(R2 > 0.75), Fe (R2 > 0.71) and Zn (R2 > 0.71) through a stacked ensemble of all models. The
ensemble model predicted GY, N, Fe, and Zn at spatial explicit in the mid-century (2020–2050)
using three Global Circulation Models (GCMs): GFDL-ESM4, HadGEM3-GC31-MM, and
MRI-ESM2-0 under two shared socioeconomic pathways (SSPs) specifically SSP2-45 and SSP5-85,
from the downscaled NEX-GDDP-CMIP6. Averaged across different GCMs and SSPs, CC is
projected to increase wheat yield by 4.5%, and protein concentration by 0.8% with high variability.
However, it is expected to decrease Fe concentration by 5.5%, and Zn concentration by 4.5% in the
mid-century (2020–2050) relative to the historical period (1980–2010). Positive impacts of CC on
wheat yield encountered by negative impacts on nutritional concentrations, further exacerbating
challenges related to food security and nutrition.

1. Introduction

Food and nutrition security are the primary motiv-
ators for sustainable development by avoiding both
visible and hidden hunger (Wood et al 2018, Willett

et al 2019, Wang et al 2023). During the mid of
20th century the green revolution tripled the pro-
duction outputs with the aid of various technolo-
gical advances (Gould 2017). Such efforts have con-
tinued into the twenty-first century to produce more
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food and reduce hunger (Tilman et al 2011, Asseng
et al 2018, Springmann et al 2018, Van Dijk et al
2021), but nourishment issues (malnutrition) still
require greater attention under the global food secur-
ity agenda. Significant attention should be focused
on increasing crop production by 60% by 2050 to
meet food demand and minimize hunger caused by
high population growth (Godfray et al 2010, Asseng
et al 2020). Another global crisis, hidden hunger, is
a type of undernutrition associated with a lack of
micronutrients, particularly iron (Fe) and zinc (Zn),
affects 2 billion people (Wang et al 2023). Inadequate
levels of Fe and Zn not only reducing yield by slowing
down the rate of photosynthesis (Roosta et al 2018),
but they can also adversely affect human health by
leading to various ailments like tuberculosis, human
immunodeficiency virus, andmalaria (Zimmermann
and Hurrell 2007). Crop grain protein contributes
to wheat flour’s nutritional quality, end-use value,
and baking qualities (Shewry and Halford 2002).
However, research on the interplay impacts of nitro-
gen as a source of grain protein, Fe, and Zn on wheat
yield and quality has received little attention thus far.
Furthermore, climate change (CC) has had a signi-
ficant detrimental impact on crop output (Kheir et al
2019, Liu andDai 2020, Zheng et al 2020, Li et al 2021,
Abbas et al 2023, Watts et al 2023), with little stud-
ies on protein (Asseng et al 2019), while much less
emphasis has been placed on Fe and Zn as key com-
ponents in food and nutritional security (Nelson et al
2014, 2018, Tilman and Clark 2014).

The relationships between amounts and concen-
trations of nutritional values under CC remain uncer-
tain, requiring further attention. These concentra-
tions mainly depend on different combinations of
soil, weather, genotype, and management practices
(Triboi et al 2006, Yan et al 2022), which need to
be considered on the respective approach exploring
future impacts. This letter helps to address such gaps,
reporting results on exploring the impacts of climate
scenarios projected to 2050 that span a wide range of
potential futures onwheat yield as well as on amounts
and concentrations of protein, Fe and Zn.

To study the historical and future impacts of CC
on crop production and nutritional values, an appro-
priate predictive approach is required. Process-based
models have been widely utilized to study and assess
the CC impact on crop growth and development
from local to global scales (Chen et al 2023, Tan
et al 2023, Kheir et al 2023b), but considerably less
emphasis has been placed on nutritional values, des-
pite the fact that this is an important part of food
security (Haddad et al 2016). The main reason of
this less attention is the need to develop such mod-
els in sub-routines by including additional factors
such as Fe and Zn, which require time and high-
quality experimental dataset from multiple environ-
ments. Machine learning (ML) approaches can fill
this gap by linking inputs to responses, allowing

flexible future predictions of nutritional values under
CC scenarios. ML has shown robust performances in
different applications, among them crop yield pre-
dictions (Kheir et al 2022, Udristioiu et al 2023,
Hailegnaw et al 2024), and CC impacts (Prodhan
et al 2022, Gao et al 2024) with limited studies on
nutrient estimation (Ma et al 2021, You et al 2023).
ML techniques can be either traditional (Attia et al
2022, Kheir et al 2023a) or automatic (Waring et al
2020, Xu et al 2022), which permits training a large
number of algorithms at simultaneously in a short
period and with less computing power. Automatic
ML can compare and deploy high-performance ML
models automatically (Kheir et al 2024), but it has
still received less attention so far. Coupling both tradi-
tional and automatic routines may improve the pre-
diction robustness and reduce uncertainty. For that,
we used hybridML approaches (traditional and auto-
mated) to explore the past and future impacts of
CC scenarios from the NASA Earth Exchange Global
Daily Downscaled Projections (Thrasher et al 2022),
from Coupled Model Intercomparison Project Phase
6 (CMIP6) (Eyring et al 2016) on wheat yield and
nutritional values and concentrations (protein, Fe
and Zn) in arid regions. To our knowledge, this is the
first paper investigate the impact of latest CC scen-
arios on crop production and nutritional values (i.e.
protein, Fe and Zn) using hybrid ML approach.

The main objectives to achieve this goal are (I)
investigate the impact of different Fe and Zn treat-
ments on wheat production and grain quality for dif-
ferent genotypes cultivated in varied environments;
(II) train and test hybrid ML technique to predict
wheat yield, protein, Fe and Zn using multi-year
national actual grain yield (GY) (t ha−1), soil char-
acteristics, weather conditions, and topography over
Egypt; and (III) deploy the trained stacked ensemble
of all models (the best model) to predict the histor-
ical (1980–2010) and the future (2020–2050) yield
and nutritional values using three Global Circulation
Models (GCMs) (GFDL-ESM4, HadGEM3-GC31-
MM, and MRI-ESM2-0) and two shared socioeco-
nomic pathways (SSPs) (SSP2-45 and SSP5-85).

2. Materials andmethods

Since determining crop yield nutritional values neces-
sitates controlled experiments under varied soil and
weather circumstances, the methodology is divided
into two main sections. The first section is about
field experiments to explore the interrelationships
between GY, yield attributes, and grain nutritional
values for different cultivars grown in multiple loca-
tions and growing seasons. The second part is related
to training, and testing hybrid ML algorithms using
5 years actual dataset of GY and N content in grains
(2015–2019), and deploying the trained models for
predicting yield and nutritional values in historical
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Figure 1. Flowchart summarizes the respective steps for exploring climate change’s impacts on wheat grain nutrition (i.e. N, Fe
and Zn). The field experiments included growing 3 new wheat cultivars (Giza171, Misr2 and Shandweel1), in three agroclimatic
locations (Sakha, Menoufia and Luxor) (figure 2), and different growing seasons (2018/2019, 2019/2020 and 2020/2021) using
four treatments with different forms of foliar application from Fe (200 ppm) and Zn (150 ppm) as control, EDTA, citric, and
mineral. The recommended N fertilizer (180 kg N ha−1) was added at three doses for all treatments. Regression analysis used to
develop functions of estimating Fe and Zn from N. The spatial actual yields from statistics (GY) and N content in grains of 2400
sites over 5 years (2015–2019) were collected from country statistics (Ministry of Agriculture and Land Reclamation 2021) and
used as response in machine learning algorithms (ML). Other responses as nitrogen content (N), iron (Fe) and Zn were calculated
from regression analysis (supplementary figures 3 and 4). Soil physical and chemical dataset were extracted from ISRIC at 250 m
resolution and bias corrected by observations of various location measurements. Daily climate data for 2400 locations during the
5 years included the variables of temperatures, and solar radiation were extracted from reanalysis ERA5 dataset and used along
with soil dataset, elevation, and years as predictors in ML. The trained best estimator of ML algorithm was deployed to predict
GY, N, Fe and Zn using CMIP6 climate scenarios two SSPs (SSP2-45 and SSP5-85) and three GCMs (MRI-ESM2-0,
HadGEM3-GC31-MM and GFDL-ESM4) for historical (1980−2010), and future (2020–2050) time periods.

and future time periods using different CMIP6 cli-
mate scenarios. Detailed information of each section
is explained here and, in the flowchart, (figure 1).

2.1. Field experiments and actual spatial yield
Three-field experiment were conducted over Egypt
(area of interest), at different agroclimatic zones such
as Sakha (high latitude, low elevation, and moderate
temperature), Menoufia (middle delta), and Luxor
(low latitude, high elevation and high temperature),
more details are presented in supplementary file and
S. Figure 1).

Actual yield from various places in Egypt
was acquired from national statistics (Ministry of
Agriculture and Land Reclamation 2021) for the
years (2015–2019) and used in conjunction with the
experimental dataset to train and test ML methods
(figure 2). To maintain the consistency of the spatial
dataset used to train the ML models, regression ana-
lysis was performed to create functions for estimating
Fe and Zn elements from N, based on the relevant

measurements from field experiments. Incorporating
principal component analysis (PCA) into our analysis
not only streamlines the dataset but also enhances
the robustness and interpretability of the findings,
identify and highlight the most influential variables
(principal components) affecting wheat yield and
nutritional content. This helps in understanding the
underlying patterns and relationshipswithin the data,
providing clearer insights into how climate variables
impact wheat production.

2.2. ML approaches (training and testing)
2.2.1. Dataset
A diverse dataset of soil, weather, and topography, as
well as various responses such as GY, grain N con-
tent, grain Fe content, and grain Zn content, were
utilized to train and test the ML techniques during
a five-year period (2015–2019). For more than 2000
sites, soil properties (i.e. sand, silt, clay, soil organic
carbon, pH, and bulk density) were downloaded from
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Figure 2.Wheat controlled field experiments (triangles), statistics points of actual yield (points), and temperature gradient along
the Nile. Growing seasons mean temperature at 10 km grid resolution and averaged over last 10 years (2010–2020) for Egypt. The
experimental locations were used for exploring the non-linear correlations between yield, nitrogen, iron and zinc content and
concentration over three growing seasons, 2018/19, 2019/20 and 2020/21. Wheat cultivated area were extracted from winter crop
type mapping in the region and used for masking the spatial distribution of yield and nutritional values.

International Soil Reference and Information Centre
(ISRIC) dataset at 250 m resolution (www.isric.org/
explore/isric-soil-data-hub) and calibratedwith some
observed dataset over the region. Topography data-
set for the same points were downloaded by MODIS
at 250 m resolution. Because the experimental sites
involved just three locations, and ML trained over
2000 sites that requiremeteorological dataset for each
site, the average maximum temperature, minimum

temperature, and solar radiation were retrieved from
the ERA5 global reanalysis at 10 km resolution
(Hersbach et al 2020).

2.2.2. ML approaches
Two approaches were considered in the current
work, including traditional ML and automated ML
(AutoML), creating a hybrid approach.
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Traditional ML and AutoML are two techniques
to developing predictive models, but they differ
in terms of their processes, complexity, and level
of human intervention. For the traditional ML we
developed four algorithms such as artificial neural
networks (ANN) (van Klompenburg et al 2020), ran-
dom forest (RF) (Xu et al 2020), Support Vector
Regressor (SVR) (Paryani et al 2022), and k-nearest
neighbors (KNN). The ANNs are computational
models that mimic the network of neurons in the
human brain. They consist of layers of nodes (neur-
ons), with each layer connected to the next, and the
output of a neuron y is calculated as:

y= f

(
n∑

i=1

WiXi + b

)
(1)

where, Xi are the input features, Wi are the weights,
b is the bias, and f is the activation function (e.g. sig-
moid, ReLU).

RF is an ensemble learning method that con-
structs multiple decision trees during training and
outputs the average prediction of the individual trees,
and the prediction for an input (X) is given by:

y= 1/T
T∑

t=1

ht(X) (2)

where T is the number of trees, and ht is the predic-
tion of the tth tree

The SVR is used for regression problems, aim-
ing to find a hyperplane that best fits the data while
maintaining a margin of tolerance ϵ, and the object-
ive function for SVR is:

min1

2||W||2
+C

n∑
i=1

max(0, |yi − (W.Xi + b)| − ε (3)

where C is the regularization parameter, and
ϵ\epsilonϵ is the margin of tolerance.

KNN predicts the value of a new data point based
on the average of the values of its KNN according the
following equation:

y= 1/k
k∑

i=1

yi (4)

where yi are the target values of the KNN.
In Automatic ML (H2OAutoML) (Ledell and

Poirier 2020), we automatically compared and
deployed high-performance and large number of ML
models. AutoML streamlines the process of applying
ML by automating the se-lection and tuning of mod-
els. H2O AutoML incorporates XGBoost Gradient
Boosting Machines (GBM), H2O GBM, RFs (Default
and Extremely Randomized Tree), deep neural net-
works, and Generalized LinearModels. H2OAutoML
includes a wrapper for the popular XGBoost pro-
gram, allowing us to use this third-party method. We

utilized H2OAutoML in our study which automates
the model training process by evaluating multiple
algorithms and their hyperparameters, ultimately
selecting the best-performing model according to the
following equation,

Best Model=arg maxm∈MPerformance (m, D) (5)

where M is the set of models and hyperparameters,
D is the dataset, and Performance is a metric such as
accuracy or root mean square error (RMSE).

For hybridization, we followed the ensemble
learning approach, which combines predictions from
multiple models to create a more robust and poten-
tially more accurate model. This method leverages
the strengths of different models to improve overall
performance. Specifically, by combining predictions
from AutoML models with those from traditional
models, we harnessed the diverse strengths of both
approaches, thereby enhancing the overall predict-
ive performance and robustness of the final model.
This integration led to a superior model that effect-
ively capitalized on the strengths of both traditional
and AutoML techniques. The best estimator (stacked
ensemble model) of all models was considered for
future predictions.

2.2.3. Data processing, feature selections and hyper
parameter tuning
To avoid the impacts of different scaling, the scikit-
learn StandardScaler algorithm uses the means and
standard deviation of the variables was considered as
the first stage of pre-processing in the data to stand-
ardize them. The developed data include only topo-
graphy, weather, and soil which is considered enough
for training and testing ML approaches with suitable
fitting, thus feature selection is not necessary here.
The default approach was used to test the ML mod-
els by randomly splitting the whole dataset to 80% for
training and 20% for testing. To optimize the hyper-
parameters of theML algorithms (Zeng et al 2022) the
grid search technique with a 5-fold cross-validation
approach (Pedregosa et al 2011) is used. Grid search
is a comprehensive strategy that can attempt to locate
all potential hyperparameter combinations in order
to secure the best decision (appendix A).Maintaining
high performance and showcasing diversity are essen-
tial for choosing the ideal model. Despite needing
more hyper-parameter tuning, neural networks often
yield better performance, so we used them in both
automated and conventional ML techniques.

2.2.4. Assessment of ML models
To assess the trained ML model, different equations
were used and included determination coefficient
(R2), RMSE, relative bias (RB), and mean absolute
error (MAE). The R2 value shows the degree to which
the fitted regression line and the data are similar. In
multiple regression, it is sometimes referred to as the
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coefficient of determination or the coefficient of mul-
tiple determination. It can be defined as the propor-
tion of the response variable’s variance that a linear
model can account for. It is always in the range of
0–1, with numbers closer to 1 denoting increased
accuracy,

(R)2 = 1−
∑

(Y−Y1)2∑
(Y−Y1)2

(6)

where Y, Y1, and n are actual, estimated, and a num-
ber of data points respectively.

Bias in RB considers the influences on the out-
come that happen at any point during the analyt-
ical process and are systematic over time. It is helpful
when the absolute bias is proportionate to the ana-
lyte concentration, and it is intended to use the pre-
cise bias estimate at various concentration levels,

RB=
Y1−X

X
× 100 (7)

where Y1 is the estimated andX is the observed value.
The MAE provides a measure of the average

magnitude of errors between predicted and true
values, the lower value the robust model accur-
acy. The formula for calculating the MAE is as
follows:

MAE= n1
∑

i = 1n |X−Y1| . (8)

MAE calculates the absolute difference between
each predicted value X and its corresponding true
value Y1, averages these absolute differences across
all observations, and provides a single, interpretable
value.

The RMSE is another commonly used metric to
measure the accuracy of predictions by quantifying
the average magnitude of errors. It is particularly
useful for assessing the predictive performance of a
model, and it is closely related to the mean squared
error. The formula for calculating the RMSE is as fol-
lows:

RMSE=

√∑
(X−Y)2

n
(9)

where n is the number of observations,X is the estim-
ated and Y is the observation.

2.3. CC scenarios
To explore the future impact of CConwheat yield and
nutritional values, two SSPs (SSP245 and SSP585)
and three GCMs (MRI-ESM2-0, HadGEM3-GC31-
MM and GFDL-ESM4) for historical (1980–2010),
and future (2020–2050) were used. We chose these
three GCMs (MRI-ESM2-0, HadGEM3-GC31-MM,
and GFDL-ESM4) due to their extensive use in stud-
ies focusing on the Middle East and North Africa
region, including Egypt, albeit under CMIP5 scen-
arios (Asseng et al 2018). By applying these models

with the most recent CMIP6 scenarios, we enhance
the relevance and reliability of our projections and
findings. Additionally, these models cover a range
of climate sensitivities, offering a comprehensive
spectrum of potential future climate scenarios. This
diversity ensures that our analysis accounts for a
wide array of possible impacts on wheat produc-
tion and nutritional quality, thereby strengthening
the robustness and applicability of our results. The
scenarios were extracted from the downscaled NEX-
GDDP-CMIP6 at 25 km resolution. The R package
(RclimChange) was used to download daily GCM
data from NCCS THREDDS NEX-GDDP-CMIP6.

2.4. Uncertainty and structural equationmodels
Uncertainty was calculated using the coefficient of
variation by means and standard deviation between
observations (Asseng et al 2013). To test the pres-
ence of collinearities among variables, the variance
inflation factor (VIF) analysis was applied and vari-
ables with VIF > 5 were excluded. We employed
SEM to investigate how wheat GY is influenced by
plant nutrient concentration (e.g. grain N and Zn) as
well as environmental factors (e.g. latitude, slope, and
minimum and maximum temperatures). The con-
ceptual SEM included the direct impacts of grain
N and Zn concentrations, latitude, slope, minimum
temperature, and maximum temperature on wheat
GY and the indirect impacts where latitude, slope,
minimum temperature, and maximum temperature
affected wheat GY via changing grain N and Zn
concentrations. The conceptual SEM also included
the indirect impacts of latitude on wheat GY and
its N and Zn concentrations via altering minimum
and maximum temperatures. The ‘lavaan’ package
in R was applied to test the SEM, and the con-
ceptual model was evaluated by the goodness- of-
fit statistics [comparative fit index (CFI) = 0.999,
and Tucker–Lewis index = 0.996, and RMSE of
Approximation= 0.039].

3. Results

3.1. Wheat yield and nutritional values from
controlled field experiments
The PCA revealed significant correlations between
treatments (EDTA and Citric) and various wheat
yield and nutritional values, including GY, biomass
yield, and grain nutrient content (figure 3). Grain Fe
and Zn were significantly correlated with each other
but less so with grain N across different seasons, loc-
ations, and cultivars (supplementary figures 3 and 4).
Regression analysis supported these findings (supple-
mentary figures 5–7), enabling equations to estimate
Fe andZn frommeasuredNwith acceptable accuracy.
Rising mean temperatures during the growing season
reduced GY and contents of N, Fe, and Zn, with vari-
ability between cultivars and treatments. The cultivar
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Figure 3. Principal component analysis (PCA) of wheat yield and yield attributes subjected to different variables. The variables
include (a) three different treatments of Fe and Zn (EDTA, citric and mineral) for (b) three wheat cultivars (Giza171, Misr2 and
Shandweel1) in (c) three successive growing seasons (2018/2019, 2019/2020 and 2020/2021), and (d) three locations (Sakha,
Menoufia and Luxor). The figure contains the first two principal components, PC1 and PC2, and their respective scores
explaining variation within the data. The variables included grain yield (GY), biomass yield (BY), grain number per m2 (G#m2),
grain N content (GN), maximum leaf area index (LAIx), chlorophyll content (Chol), grain weight (GZ), grain Fe content (GFe),
grain Zn content (GZn), anthesis date (Anth) and maturity date (Mat).

Giza171 and the use of Fe and Zn as EDTA mitigated
the negative effects of rising temperatures.

3.2. Training and testing hybridML
The traditional ML algorithms including ANN, RF,
SVR, and KNN showed robust training and valida-
tion to estimate GY, grain N content, grain Fe content
and grain Zn content (supplementary figures 10–13).
The trained ML had a higher R2 (>0.65) and lower
RMSE, RB, and MAE for predicting yield and nutri-
tional values (N, Fe and Zn), whereas ANN and RFR
outperformed SVR and KNN. On the other hand,
H2O AutoML presently provides the same automatic
data preprocessing as all H2O supervised learning
algorithms. This contains automatic imputation, nor-
malizing (when needed), and one-hot encoding for
XGBoost models. H2O tree-based models (GBM,
RFs) accept categorical variable grouping, allowing
categorical data to be handled natively. This also
enables GPU-accelerated training. To achieve robust
accuracy, we combined AutoML and traditional ML

by incorporating the same traditional models into
AutoML, resulting in a hybrid approach. TheAutoML
approach used approximately 180 models (appendix
A), selecting the best 30 models with higher accuracy,
and aggregating them into a single ensemble model,
which attained the highest accuracy. Compared with
traditional ML models, the stacked ensemble model
from the hybrid approach showed higher accuracy of
predicting wheat GY (R2 = 0.78), grain protein con-
tent (R2 = 0.75), grain Fe and Zn contents (R2 = 0.71)
(figure 4). This suggests that this approach has the
potential to be used to predict wheat production and
nutritional attributes in a variety of spatiotemporal
ways even under CC, as current models are trained
on diverse locations and years of data across Egypt.

3.3. CC impacts on wheat GY, and nutritional
values
The trained stacked ensemble ML model was
deployed to predict wheat GY, grain N content, grain
Fe and Zn contents across the historical (1980–2010)
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Figure 4. Predicted against observed wheat grain yield (a), wheat grain N content (b), wheat grain Fe content (c), and wheat grain
Zn content (d) using the ensemble hybrid machine learning model. Across 2006 sites five years of actual yield (2015–2019) and
nitrogen were used as response while soil, weather and topography were used as predictors. Values of Fe and Zn were estimated
from N (supplementary figure 7) and used herein also as response for training ML models. The default training approach was
used by randomly splitting 80% from the whole dataset for training and 20% for testing.

and future (2020–2050) time periods considering
3 GCMs and two SSPs. The concentration of grain
protein, Fe and Zn were calculated from the main
contents and GY and considered hereinafter in the
analysis.

The SEM analysis revealed that grain N and
Zn concentrations were the key factors controlling
wheat GY, whereby wheat GY increased signific-
antly with increasing grain N concentration but
decreased significantly with increasing grain Zn con-
centration (figure 5). Wheat GY increased signific-
antly with increasing the slope and decreasing the
maximum temperature. Our SEM also showed that
increasedmaximum temperature and decreasedmin-
imum temperature indirectly enhanced wheat GY
by increased grain N concentration and decreased
grain Zn concentration (p < 0.001). Higher latitude

also increased wheat GY through reducing the max-
imum temperature, but also can decrease wheat GY
through increasing grain Zn concentration directly
or indirectly by increasing theminimum temperature
(p < 0.001). The controlling factors in combination
explained the 99%, 87%, and 24% variation of wheat
GY, grain N concentration, and grain Zn concentra-
tion, respectively. In general, climatic change had a
beneficial impact on wheat yield, protein yield, and
protein concentration, while negatively affecting Fe
and Zn concentrations (figures 6 and 7). The Shared
Socioeconomic Pathway scenario, SSP8.5, which is
distinguished by high population growth, slow eco-
nomic development, and a high reliance on fossil
fuels, resulted in a greater reduction in yield and pro-
tein content but a lower reduction in Fe and Zn con-
centrations than the scenario SSP45 (figure 7).
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Figure 5. Structural Equation Model (SEM) depicting the multiple relations of latitude, maximum temperature, minimum
temperature, slope, grain yield, grain nitrogen concentration and grain Zn concentration. The black and red lines are the positive
and negative relationships, respectively. Arrows represent a directional influence of one variable on another. The numbers beside
the arrows are standardized path coefficients. The thickness of the arrows is proportional to the magnitude of the standardized
path coefficients. R2 conditional (R2 C) and R2 marginal (R2 M) indicate the combination from the random and fixed effect, and
the amount of variation of the variable interpreted by all paths from the single fixed effects, respectively. The significance level was
set at α= 0.05, based on two-tailed tests. Data averaged over all GCMs, SSPs and Years for historical and future time periods.

Iron and zinc concentrations declined by 4.8%
and 4.5% respectively under SSP45 and SSP85
(figure 7) with less uncertainty between GCMs
under historical and future decades (figures 8–10).
The overall uncertainty in yield, and concentra-
tions of protein, Fe and Zn during the historical
period (figure 8), was higher than that in the future
under SSP85 (figure 10) scenario, passing by that
in the SSP45 scenario (figure 9). During the his-
torical decades, uncertainty ranged (15.6%–30.5%),
(5.9%–6.7%), (15.8%–26.3%), and (12.5%–18.6%)
for GY, protein concentration, Fe concentration, and
Zn concentration respectively (figure 8). Such values
decreased to (5.1%–11.5%), (3.7%–4.9%), (8.8%–
15.6%), and (7%–11%) under SSP45 (figure 9), while
SSP85 showed moderate uncertainty between histor-
ical and future SSP45 (figure 10). The spatial change
maps (S. figure 18) reveal a pronounced reduction
in GY, protein, and micronutrient concentrations (Fe
and Zn) across key agricultural areas, particularly
under the SSP5-85 scenario. Under both SSP2-45 and

SSP5-85 scenarios, there is a consistent spatial pattern
of decline in crop nutritional quality, with significant
hot spots of nutrient loss concentrated in the south-
ern and central regions, underscoring the potential
impact of future CC on food security.

CC has a more variable impact on grain pro-
tein concentration, which is affected by both grain
and protein yield (figure 11(a)). Impact of CC on
the concentrations of Fe and Zn (figures 11(b) and
(c)) was less variable than protein concentration.
Distribution densities confirmed the positive impacts
of CC on yield (figure 11(d)), and protein concen-
tration (figure 11(f)), and the negative impacts on
Fe concentration (figure 11(e)) and Zn concentration
(figure 11(g)).

4. Discussion

At the center of the global agenda for food and nutri-
tion security is the elimination of both overt and cov-
ert hunger (Wang et al 2023). However, the overall
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Figure 6. Circular chord diagram illustrating the impacts of climate change on wheat yield and nutritional content: This diagram
visualizes the relationships between climate change variables and scenarios and wheat yield, protein yield, protein concentration,
iron (Fe) concentration, and zinc (Zn) concentration. Panel (a) represents the GCMs, and panel (b) represents the SSPs scenarios.
The arcs around the perimeter represent different variables, including climate variables (average maximum temperature [tasmax],
minimum temperature [tasmin], solar radiation [rsds]), agronomic parameters (grain yield [GY], nitrogen [N]), and nutritional
content (protein yield [PC], protein concentration [Pcn], Fe concentration [Fecn], Zn concentration [Zncn]). The color of each
arc corresponds to a specific variable for easy identification. The bands connecting the arcs illustrate the relationships between
these variables. The thickness and color intensity of the bands indicate the strength of these relationships. Positive correlations are
shown by bands connecting climate variables to GY, PC, and Pcn, whereas negative correlations are shown by bands connecting
climate variables to Fecn and Zncn. The diagram clearly shows that increased tasmax, tasmin, and rsds (climate variables) are
positively correlated with higher GY (wheat yield), PC (protein yield), and Pcn (protein concentration). This is indicated by the
strong, brightly colored bands connecting these variables. Conversely, the negative impacts on Fe and Zn concentrations are
highlighted by the bands connecting tasmax, tasmin, and rsds to Fecn and Zncn. These bands indicate a reduction in these
micronutrients as a result of increased temperature and solar radiation.

security of nourishment underCC remains uncertain.
Few studies have investigated the nutritional value
of wheat crops (Asseng et al 2019), focusing mainly
on wheat protein and overlooking essential elements
like Fe and Zn. This study emphasizes the impact of
recent CMIP6 climate scenarios on wheat yield, pro-
tein, Fe, and Zn in Egypt through the mid-century.
Field trials validated prediction tools by demonstrat-
ing the interrelationships between yield, yield attrib-
utes, phenology, and nutritional values. Foliar applic-
ation of Fe and Zn improved wheat yield and qual-
ity, as Zn and Fe are vital for regulating cellular pro-
cesses in plants (Zou et al 2012, Cakmak and Kutman
2018). To explore yield and nutritional values spa-
tially, we supplemented experimental datasets with
national statistics from 2015 to 2019.

Further, regression analysis was used to develop
functions of predicting Fe and Zn from N in the
other locations to be consistent with the yield data-
set. In our initial analysis, we assumed a linear rela-
tionship between nitrogen (N) and zinc (Zn)/iron
(Fe) concentrations, based on preliminary empir-
ical evidence and existing literature (Caliskan et al
2008, Singh et al 2018) suggesting a correlation under
controlled experimental conditions. To investigate
the validity of this assumption further, we conduc-
ted additional analyses exploring potential non-linear
relationships. Specifically, we employed polynomial

regression models and compared their performance
against the linear models by calculating and analyz-
ing the respective residuals (supplementary figures 8
and 9). This approach enabled us to visualize resid-
uals, deviations and inspect the differences between
themodels. Our findings revealed that while the poly-
nomial regression models slightly improved predict-
ive accuracy for certain datasets, the overall trends
remained consistent with those captured by the lin-
ear models. The linear models provided a satisfact-
ory fit under the controlled conditions of our experi-
ments, capturing the essential dynamics without sig-
nificant loss of generality. However, we acknowledge
the potential limitations of assuming a linear rela-
tionship. This assumption may not reliably gener-
alize across different spatial and temporal dimen-
sions, especially in future scenarios. Therefore, we
emphasize the importance of validating these rela-
tionships with more diverse datasets encompassing
various regions and time periods as well as exper-
iments under elevated CO2. Such efforts will be
crucial for confirming the robustness and applic-
ability of our findings in broader contexts. While
iron and zinc content share a strong linear relation-
ship with protein content, our use of ML aimed to
explore whether CC introduces non-linear effects or
complex interactions that could influence nutrient
content beyond protein levels alone. By modeling
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Figure 7. Changes of wheat grain yield, protein yield, protein concentration, iron concentration and zinc concentration in the
mid century (2020–2050) relative to historical period under different GCMs as GFDL-ESM4 (GCM1), HadGEM3-GC31-MM
(GCM2), and MRI-ESM2-0 (GCM3) and SSPs (SSP2-45, left and SSP5-85, right). Predictions were done using the stacked
ensemble machine learning algorithm (best of family).

nutrient content directly, we aimed to capture these
potential variations, providing a more comprehens-
ive understanding of climate impacts on crop nutri-
tion. This approach ensures that subtle but significant
climate-induced changes in nutrient uptake are not
overlooked.

CC impacts could be studied using different
tools including crop models (Asseng et al 2020,
Fan 2023) which showed robust predictions with

less uncertainty. However, such studies focused only
on crop production and protein, neglecting other
important nutritional values such as Fe and Zn. The
main reason for such limitation is that all crop mod-
els including only nitrogen factor, while Fe and Zn are
absent in themodel sub-routine. Furthermore, devel-
oping Fe and Zn models needs a global, high-quality
dataset from diverse environments and cultivars, a
time-consuming and costly process requiring global
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Figure 8. Uncertainty of predicting grain yield, protein concentration, Fe concentration, and Zn concentration during the
historical period (1980–2010) under 3 GCMs, GFDL-ESM4 (upper row), HadGEM3-GC31-MM (middle row), and MRI-ESM2-0
(lower row).

funding. We bridged this gap by incorporating ML
technologies that might be successfully employed for
similar goals while saving time and money. Here,
the trained stacked ensemble of ML from the hybrid
approach demonstrated robust prediction of GY pro-
tein content, Fe content and Zn content. ML has
recently been employed to predict crop yields under
CC consequences (Grell et al 2021, Tsai et al 2021).
Nonetheless, expanding the application of ML on

investigating CC impacts on crop nutritional values
has received less attention thus far.

Another merit of this work is employing the
most recent climatic scenarios (CMIP6) in Egypt,
rather than using CMIP5 previously (Ali et al 2020,
Asseng et al 2018). CMIP6 represents a more recent
set of simulations, covering a broader time have
higher spatial resolution, providing more detailed
information about regional climate patterns. Thus,
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Figure 9. Uncertainty of predicting grain yield, protein concentration, Fe concentration, and Zn concentration during the
mid-century decades (2020–2050) under 3 GCMs, GFDL-ESM4 (upper row), HadGEM3-GC31-MM (middle row), and
MRI-ESM2-0 (lower row) and SSP2-45.

CMIP6 builds on CMIP5 with improved models,
higher resolution, and a more integrated framework.
These improvements aim to enhance our under-
standing of future CCs and their impacts (Tebaldi
et al 2021). In Egypt, where spring-irrigated wheat
is prevalent, prior CC studies based on CMIP5 scen-
arios indicated favorable benefits on wheat yield in
the mid-century (2050) relative to baseline (Asseng
et al 2018). The same trend has been observed here
with CMIP6 scenarios, demonstrating an increase

of wheat yield in response to CC. This aligns with
global studies showing CC benefits for crop produc-
tion, especially in irrigated and high-latitude regions
(Rosenzweig et al 2014). Grain protein, Fe, and Zn
concentrations, the ratio of grain quantities to GY,
are significant characteristics influencing nutritional
quality, although their behavior under CC remains
unknown. Here, ML approach estimated an increase
in GY and protein concentration. The increase in
protein concentration under CC may be attributed
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Figure 10. Uncertainty of predicting grain yield, protein concentration, Fe concentration, and Zn concentration during the
mid-century decades (2020–2050) under 3 GCMs, GFDL-ESM4 (upper row), HadGEM3-GC31-MM (middle row), and
MRI-ESM2-0 (lower row) and SSP5-85.

to reduced starch accumulation under rising tem-
peratures (Triboi and Triboi-Blondel 2002). Other
factors that influence grain protein concentrations
include crop genotype, soil, cropmanagement, atmo-
spheric CO2 concentration, and weather conditions.
Accordingly, grain protein concentrations differ in
spring wheat than winter wheat and in irrigated than
rainfed wheat. In the present study, a spring irrig-
ated wheat with unlimited N fertilization, consider

a virtual adaptation which enhanced grain protein
concentration under CC. Unlike, protein concentra-
tion which increased with CC, iron and zinc concen-
trations decreased with CC. A diluting effect, gen-
erated by a greater rise in grain production than
in grain nutrient accumulation, might result in a
drop in Fe and Zn concentrations (Oury et al 2006,
Morgounov et al 2007, Fan et al 2008). The observed
increase in wheat yields and the concurrent decrease
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Figure 11. Impact of climate change on the relationship between grain yield and protein Concentration (a), grain yield and iron
concentration (b), grain yield and zinc concentration (c). Projections of annual wheat grain yield and grain protein concentration
are shown for baseline period 1980–2010 (light red), for SSP45 climate change impact in 2020–2050 (green) and for SSP85
climate change impact in 2020–2050 (pink). Medians across GCMs using the stacked ML model were plotted. The ellipses capture
95% confidence levels of data in each scenario or time. Distributions of values for grain yield (d), iron concentration (e), protein
concentration (f), and zinc concentration (g).

in Fe and Zn concentrations under CC can be attrib-
uted to several physiological and ecological mechan-
isms. Elevated temperatures accelerate wheat growth,
shortening the grain-filling period and reducing the
time for nutrient accumulation in grains (Zahra et al
2023). Higher CO2 levels enhance photosynthesis,

carbon assimilation and biomass production, poten-
tially increasing GYs but at the same time dilut-
ing micronutrient concentrations due to the ‘CO2

fertilization effect (Gojon et al 2023).’ Soil micro-
bial activity, essential for nutrient cycling, may also
impacted byCC, altering Fe and Zn availability. Faster
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organic matter decomposition rates in warmer con-
ditions may initially increase nutrient release but
could lead to long-term depletion (Robinson et al
2022). Moreover, nutrient interactions, such as high
nitrogen levels, can enhance growth while diluting
micronutrient concentrations. To address these chal-
lenges, future research should focus on breeding
nutrient-efficient wheat varieties, optimizing fertil-
ization strategies, and improving soil management
to ensure micronutrient availability. These strategies
can help mitigate the negative impacts of CC on
wheat nutritional quality. The ML uncertainty varied
across locations, while the GCM uncertainty showed
less spatial variation, due to the higher heterogeneity
between locations in soil properties and temperature
gradient.

The study highlights the impact of CC on key
nutritional elements using ML but notes some lim-
itations for future consideration. While increased
atmospheric CO2 can enhance photosynthesis and
plant growth, its effect on wheat’s nutritional value,
especially Fe and Zn concentrations, remains uncer-
tain and needs further investigation. CC increased
wheat and protein yields but reduced Fe and Zn
levels, requiring adaptation efforts like integrating
Genotype × Environment × Management interac-
tions. Combining process-based models with ML
approaches could improve understanding of Fe and
Zn dynamics in soil and plants, though this integra-
tion needs development to include these elements as
currently done with N.

5. Conclusion

In the current study, coupling high quality observa-
tions with national dataset helped to develop differ-
ent functions for wheat yield and nutritional values,
developing a hybrid ML approach for future predic-
tions. The hybrid ML approached was trained and
tested using diverse dataset, showed robust predic-
tion of wheat yield, protein, Fe and Zn concentrations
under different CC scenarios. Although CC increased
wheat and protein yields, it reduced Fe and Zn con-
centrations, putting further pressures on food secur-
ity and nutrition. Further adaptations are required to
enhance wheat nutritional values in a country suf-
fering from rapid population growth and increasing
food demand.
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Cakmak I and Kutman U Á 2018 Agronomic biofortification of
cereals with zinc: a review Eur. J. Soil Sci. 69 172–80

Caliskan S, Ozkaya I, Caliskan M E and Arslan M 2008 The effects
of nitrogen and iron fertilization on growth, yield and
fertilizer use efficiency of soybean in a Mediterranean-type
soil Field Crops Res. 108 126–32

Chen C, Ota N, Wang B, FU G and Fletcher A 2023 Adaptation to
climate change through strategic integration of long fallow
into cropping system in a dryland Mediterranean-type
environment Scil Total Environ. 880 163230

Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J
and Taylor K E 2016 Overview of the coupled model
intercomparison project phase 6 (CMIP6) experimental
design and organization Geosci. Model Dev. 9 1937–58

Fan M-S, Zhao F-J, Fairweather-Tait S J, Poulton P R, Dunham S J
and Mcgrath S P 2008 Evidence of decreasing mineral
density in wheat grain over the last 160 years J. Trace Elem.
Med. Biol. 22 315–24

Fan Y 2023 Unequal effects of climate intervention on agriculture
Nat. Food 4 835–6

Gao Y, Dong K and Yue Y 2024 Projecting global fertilizer
consumption under shared socioeconomic pathway (SSP)

16

https://zenodo.org/doi/10.5281/zenodo.11304509
https://zenodo.org/doi/10.5281/zenodo.11304509
https://orcid.org/0000-0001-9569-5420
https://orcid.org/0000-0001-9569-5420
https://orcid.org/0000-0001-9569-5420
https://orcid.org/0000-0002-7121-4220
https://orcid.org/0000-0002-7121-4220
https://orcid.org/0000-0002-7121-4220
https://orcid.org/0000-0002-0276-7497
https://orcid.org/0000-0002-0276-7497
https://orcid.org/0000-0002-0276-7497
https://orcid.org/0000-0003-0373-888X
https://orcid.org/0000-0003-0373-888X
https://orcid.org/0000-0003-0373-888X
https://orcid.org/0000-0003-0548-7447
https://orcid.org/0000-0003-0548-7447
https://orcid.org/0000-0003-0548-7447
https://orcid.org/0000-0002-4096-7588
https://orcid.org/0000-0002-4096-7588
https://orcid.org/0000-0002-4096-7588
https://orcid.org/0000-0002-1978-9473
https://orcid.org/0000-0002-1978-9473
https://doi.org/10.1016/j.agrformet.2023.109674
https://doi.org/10.1016/j.agrformet.2023.109674
https://doi.org/10.1007/s11707-019-0806-4
https://doi.org/10.1007/s11707-019-0806-4
https://doi.org/10.1038/nclimate1916
https://doi.org/10.1038/nclimate1916
https://doi.org/10.1111/gcb.14481
https://doi.org/10.1111/gcb.14481
https://doi.org/10.1073/pnas.2002655117
https://doi.org/10.1073/pnas.2002655117
https://doi.org/10.1088/1748-9326/aada50
https://doi.org/10.1088/1748-9326/aada50
https://doi.org/10.3390/w14223647
https://doi.org/10.3390/w14223647
https://doi.org/10.1111/ejss.12437
https://doi.org/10.1111/ejss.12437
https://doi.org/10.1016/j.fcr.2008.04.005
https://doi.org/10.1016/j.fcr.2008.04.005
https://doi.org/10.1016/j.scitotenv.2023.163230
https://doi.org/10.1016/j.scitotenv.2023.163230
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1016/j.jtemb.2008.07.002
https://doi.org/10.1016/j.jtemb.2008.07.002
https://doi.org/10.1038/s43016-023-00861-3
https://doi.org/10.1038/s43016-023-00861-3


Environ. Res. Lett. 19 (2024) 104049 A M S Kheir et al

scenarios using an approach of ensemble machine learning
Scil Total Environ. 912 169130

Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D,
Muir J F, Pretty J, Robinson S, Thomas S M and Toulmin C
2010 Food security: the challenge of feeding 9 billion people
Science 327 812–8

Gojon A, Cassan O, Bach L, Lejay L and Martin A 2023 The
decline of plant mineral nutrition under rising CO2:
physiological and molecular aspects of a bad deal Trends
Plant Sci. 28 185–98

Gould J 2017 Nutrition: a world of insecurity Nature 544 S6–S7
Grell M, Barandun G, Asfour T, Kasimatis M, Collins A S P,

Wang J and Güder F 2021 Point-of-use sensors and machine
learning enable low-cost determination of soil nitrogen Nat.
Food 2 981–9

Haddad L, Hawkes C, Webb P, Thomas S, Beddington J, Waage J
and Flynn D 2016 A new global research agenda for food
Nature 540 30–32

Hailegnaw N S, Bayabil H K, Berihun M L, Teshome F T, Shelia V
and Getachew F 2024 Integrating machine learning and
empirical evapotranspiration modeling with DSSAT:
implications for agricultural water management Sci. Total
Environ. 912 169403

Hersbach H et al 2020 The ERA5 global reanalysis Q. J. R.
Meteorol. Soc. 146 1999–2049

Kheir A M S, Ammar K A, Amer A, Ali M GM, Ding Z and
Elnashar A 2022 Machine learning-based cloud computing
improved wheat yield simulation in arid regions Comput.
Electron. Agric. 203 107457

Kheir A M S, Elnashar A, Mosad A and Govind A 2023a An
improved deep learning procedure for statistical
downscaling of climate data Heliyon 9 e18200

Kheir A M S, Govind A, Nangia V, Devkota M, Elnashar A,
Omar M E D and Feike T 2024 Developing automated
machine learning approach for fast and robust crop yield
prediction using a fusion of remote sensing, soil, and
weather dataset Environ. Res. Commun.
6 041005

Kheir A M S, Mkuhlani S, Mugo J W, Elnashar A, Nangia V,
Devare M and Govind A 2023b Integrating APSIM model
with machine learning to predict wheat yield spatial
distribution Agron. J. 115 3188–96

Kheir A, M S, El Baroudy A, Aiad M A, Zoghdan M G, Abd
El-Aziz M A, Ali M GM and Fullen M A 2019 Impacts of
rising temperature, carbon dioxide concentration and sea
level on wheat production in North Nile delta Sci. Total
Environ. 651 3161–73

Ledell E and Poirier S 2020 H2O AutoML: scalable automatic
machine learning 7th ICML Workshop on Automated
Machine Learning

Li N, Li Y, Biswas A, Wang J, Dong H, Chen J, Liu C and Fan X
2021 Impact of climate change and crop management on
cotton phenology based on statistical analysis in the
main-cotton-planting areas of China J. Clean. Prod.
298 126750

Liu Y and Dai L 2020 Modelling the impacts of climate change
and crop management measures on soybean phenology in
China J. Clean. Prod. 262 121271

Ma P, Li A, Yu N, Li Y, Bahadur R, Wang Q and Ahuja J K 2021
Application of machine learning for estimating label
nutrients using USDA Global Branded Food Products
Database, (BFPD) J. Food Compos. Anal. 100 103857

Ministry of Agriculture and Land Reclamation 2021 Agricultural
Bulletin Part 1. Reclamation ed MOAAL (The Egyptian
Economic Affairs Sector)

Morgounov A, Gómez-Becerra H F, Abugalieva A,
Dzhunusova M, Yessimbekova M, Muminjanov H,
Zelenskiy Y, Ozturk L and Cakmak I 2007 Iron and zinc
grain density in common wheat grown in Central Asia
Euphytica 155 193–203

Nelson G C et al 2014 Climate change effects on agriculture:
economic responses to biophysical shocks Proc. Natl Acad.
Sci. USA 111 3274–9

Nelson G et al 2018 Income growth and climate change effects on
global nutrition security to mid-century Nat. Sustain.
1 773–81

Oury F X, Leenhardt F, Rémésy C, Chanliaud E, Duperrier B,
Balfourier F and Charmet G 2006 Genetic variability and
stability of grain magnesium, zinc and iron concentrations
in bread wheat Eur. J. Agron. 25 177–85

Paryani S, Neshat A, Pourghasemi H R, Ntona MM and
Kazakis N 2022 A novel hybrid of support vector regression
and metaheuristic algorithms for groundwater spring
potential mapping Scil Total Environ. 807 151055

Pedregosa F et al 2011 Scikit-learn: machine learning in Python J.
Mach. Learn. Res. 12 2825–30

Prodhan F A, Zhang J, Pangali Sharma T P, Nanzad L, Zhang D,
Seka A M, Ahmed N, Hasan S S, Hoque M Z and
Mohana H P 2022 Projection of future drought and its
impact on simulated crop yield over South Asia using
ensemble machine learning approach Scil Total Environ.
807 151029

Robinson S I, O’gorman E J, Frey B, Hagner M and Mikola J 2022
Soil organic matter, rather than temperature, determines the
structure and functioning of subarctic decomposer
communities Glob. Change Biol. 28 3929–43

Roosta H R, Estaji A and Niknam F 2018 Effect of iron, zinc and
manganese shortage-induced change on photosynthetic
pigments, some osmoregulators and chlorophyll
fluorescence parameters in lettuce Photosynthetica
56 606–15

Rosenzweig C et al 2014 Assessing agricultural risks of climate
change in the 21st century in a global gridded crop model
intercomparison Proc. Natl Acad. Sci. 111 3268–73

Shewry P R and Halford N G 2002 Cereal seed storage proteins:
structures, properties and role in grain utilization J.
Experim. Botany 53 947–58

Singh B R, Timsina Y N, Lind O C, Cagno S and Janssens K 2018
Zinc and iron concentration as affected by nitrogen
fertilization and their localization in wheat grain Front.
Plant Sci. 9 307

Springmann M et al 2018 Options for keeping the food system
within environmental limits Nature 562 519–25

Tan L et al 2023 Assessment of the sustainability of groundwater
utilization and crop production under optimized irrigation
strategies in the North China Plain under future climate
change Scil Total Environ. 899 165619

Tebaldi C et al 2021 Climate model projections from the scenario
model intercomparison project (ScenarioMIP) of CMIP6
Earth Syst. Dyn. 12 253–93

Thrasher B, Wang W, Michaelis A, Melton F, Lee T and Nemani R
2022 NASA global daily downscaled projections, CMIP6 Sci.
Data 9 262

Tilman D, Balzer C, Hill J and Befort B L 2011 Global food
demand and the sustainable intensification of agriculture
Proc. Natl Acad. Sci. 108 20260–4

Tilman D and Clark M 2014 Global diets link environmental
sustainability and human health Nature 515 518–22

Triboi E, Martre P, Girousse C, Ravel C and Triboi-Blondel A-M
2006 Unravelling environmental and genetic relationships
between grain yield and nitrogen concentration for wheat
Eur. J. Agron. 25 108–18

Triboi E and Triboi-Blondel A-M 2002 Productivity and grain or
seed composition: a new approach to an old
problem—invited paper Eur. J. Agron. 16 163–86

Tsai W-P, Feng D, Pan M, Beck H, Lawson K, Yang Y, Liu J and
Shen C 2021 From calibration to parameter learning:
harnessing the scaling effects of big data in geoscientific
modeling Nat. Commun. 12 5988

Udristioiu M T, El Mghouchi Y and Yildizhan H 2023 Prediction,
modelling, and forecasting of PM and AQI using hybrid
machine learning J. Clean. Prod. 421 138496

Van Dijk M, Morley T, Rau M L and Saghai Y 2021 A
meta-analysis of projected global food demand and
population at risk of hunger for the period 2010–2050 Nat.
Food 2 494–501

17

https://doi.org/10.1016/j.scitotenv.2023.169130
https://doi.org/10.1016/j.scitotenv.2023.169130
https://doi.org/10.1126/science.1185383
https://doi.org/10.1126/science.1185383
https://doi.org/10.1016/j.tplants.2022.09.002
https://doi.org/10.1016/j.tplants.2022.09.002
https://doi.org/10.1038/544S6a
https://doi.org/10.1038/544S6a
https://doi.org/10.1038/s43016-021-00416-4
https://doi.org/10.1038/s43016-021-00416-4
https://doi.org/10.1038/540030a
https://doi.org/10.1038/540030a
https://doi.org/10.1016/j.scitotenv.2023.169403
https://doi.org/10.1016/j.scitotenv.2023.169403
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.compag.2022.107457
https://doi.org/10.1016/j.compag.2022.107457
https://doi.org/10.1016/j.heliyon.2023.e18200
https://doi.org/10.1016/j.heliyon.2023.e18200
https://doi.org/10.1088/2515-7620/ad2d02
https://doi.org/10.1088/2515-7620/ad2d02
https://doi.org/10.1002/agj2.21470
https://doi.org/10.1002/agj2.21470
https://doi.org/10.1016/j.scitotenv.2018.10.209
https://doi.org/10.1016/j.scitotenv.2018.10.209
https://doi.org/10.1016/j.jclepro.2021.126750
https://doi.org/10.1016/j.jclepro.2021.126750
https://doi.org/10.1016/j.jclepro.2020.121271
https://doi.org/10.1016/j.jclepro.2020.121271
https://doi.org/10.1016/j.jfca.2021.103857
https://doi.org/10.1016/j.jfca.2021.103857
https://doi.org/10.1007/s10681-006-9321-2
https://doi.org/10.1007/s10681-006-9321-2
https://doi.org/10.1073/pnas.1222465110
https://doi.org/10.1073/pnas.1222465110
https://doi.org/10.1038/s41893-018-0192-z
https://doi.org/10.1038/s41893-018-0192-z
https://doi.org/10.1016/j.eja.2006.04.011
https://doi.org/10.1016/j.eja.2006.04.011
https://doi.org/10.1016/j.scitotenv.2021.151055
https://doi.org/10.1016/j.scitotenv.2021.151055
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1016/j.scitotenv.2021.151029
https://doi.org/10.1016/j.scitotenv.2021.151029
https://doi.org/10.1111/gcb.16158
https://doi.org/10.1111/gcb.16158
https://doi.org/10.1007/s11099-017-0696-1
https://doi.org/10.1007/s11099-017-0696-1
https://doi.org/10.1073/pnas.1222463110
https://doi.org/10.1073/pnas.1222463110
https://doi.org/10.1093/jexbot/53.370.947
https://doi.org/10.1093/jexbot/53.370.947
https://doi.org/10.3389/fpls.2018.00307
https://doi.org/10.3389/fpls.2018.00307
https://doi.org/10.1038/s41586-018-0594-0
https://doi.org/10.1038/s41586-018-0594-0
https://doi.org/10.1016/j.scitotenv.2023.165619
https://doi.org/10.1016/j.scitotenv.2023.165619
https://doi.org/10.5194/esd-12-253-2021
https://doi.org/10.5194/esd-12-253-2021
https://doi.org/10.1038/s41597-022-01393-4
https://doi.org/10.1038/s41597-022-01393-4
https://doi.org/10.1073/pnas.1116437108
https://doi.org/10.1073/pnas.1116437108
https://doi.org/10.1038/nature13959
https://doi.org/10.1038/nature13959
https://doi.org/10.1016/j.eja.2006.04.004
https://doi.org/10.1016/j.eja.2006.04.004
https://doi.org/10.1016/S1161-0301(01)00146-0
https://doi.org/10.1016/S1161-0301(01)00146-0
https://doi.org/10.1038/s41467-021-26107-z
https://doi.org/10.1038/s41467-021-26107-z
https://doi.org/10.1016/j.jclepro.2023.138496
https://doi.org/10.1016/j.jclepro.2023.138496
https://doi.org/10.1038/s43016-021-00322-9
https://doi.org/10.1038/s43016-021-00322-9


Environ. Res. Lett. 19 (2024) 104049 A M S Kheir et al

van Klompenburg T, Kassahun A and Catal C 2020 Crop yield
prediction using machine learning: a systematic literature
review Comput. Electron. Agric. 177 105709

Wang X et al 2023 Global food nutrients analysis reveals alarming
gaps and daunting challenges Nat. Food 4 1007–17

Waring J, Lindvall C and Umeton R 2020 Automated machine
learning: review of the state-of-the-art and opportunities for
healthcare Artif. Intell. Med. 104 101822

Watts M, Mpanda M, Hemp A and Peh K S H 2023 The potential
impact of future climate change on the production of a
major food and cash crop in tropical (sub)montane
homegardens Sci. Total Environ. 865 161263

Willett W et al 2019 Food in the Anthropocene: the EAT–Lancet
Commission on healthy diets from sustainable food systems
Lancet 393 447–92

Wood S A, Smith M R, Fanzo J, Remans R and Defries R S 2018
Trade and the equitability of global food nutrient
distribution Nat. Sustain. 1 34–37

Xu J-X, Ma J, Tang Y-N, WuW-X, Shao J-H, WuW-B, Wei S-Y,
Liu Y-F, Wang Y-C and Guo H-Q 2020 Estimation of
sugarcane yield using a machine learning approach based on
uav-lidar data Remote Sens. 12 2823

Xu R-Z, Cao J-S, Ye T, Wang S-N, Luo J-Y, Ni B-J and Fang F 2022
Automated machine learning-based prediction of
microplastics induced impacts on methane production in
anaerobic digestionWater Res. 223 118975

Yan H et al 2022 Crop traits enabling yield gains under more
frequent extreme climatic events Sci. Total Environ.
808 152170

You H, Zhou M, Zhang J, Peng W and Sun C 2023 Sugarcane
nitrogen nutrition estimation with digital images and
machine learning methods Sci. Rep.
13 14939

Zahra N, Hafeez M B, Wahid A, Al Masruri M H, Ullah A,
Siddique K H and Farooq M 2023 Impact of climate change
on wheat grain composition and quality J. Sci. Food Agric.
103 2745–51

Zeng H, Elnashar A, Wu B, Zhang M, Zhu W, Tian F and Ma Z
2022 A framework for separating natural and anthropogenic
contributions to evapotranspiration of human-managed
land covers in watersheds based on machine learning Sci.
Total Environ. 823 153726

Zheng J, Wang W, Ding Y, Liu G, Xing W, Cao X and Chen D 2020
Assessment of climate change impact on the water footprint
in rice production: historical simulation and future
projections at two representative rice cropping sites of China
Sci. Total Environ. 709 136190

Zimmermann M B and Hurrell R F 2007 Nutritional iron
deficiency Lancet 370 511–20

Zou C et al 2012 Biofortification of wheat with zinc through zinc
fertilization in seven countries Plant Soil
361 119–30

18

https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1038/s43016-023-00851-5
https://doi.org/10.1038/s43016-023-00851-5
https://doi.org/10.1016/j.artmed.2020.101822
https://doi.org/10.1016/j.artmed.2020.101822
https://doi.org/10.1016/j.scitotenv.2022.161263
https://doi.org/10.1016/j.scitotenv.2022.161263
https://doi.org/10.1016/S0140-6736(18)31788-4
https://doi.org/10.1016/S0140-6736(18)31788-4
https://doi.org/10.1038/s41893-017-0008-6
https://doi.org/10.1038/s41893-017-0008-6
https://doi.org/10.3390/rs12172823
https://doi.org/10.3390/rs12172823
https://doi.org/10.1016/j.watres.2022.118975
https://doi.org/10.1016/j.watres.2022.118975
https://doi.org/10.1016/j.scitotenv.2021.152170
https://doi.org/10.1016/j.scitotenv.2021.152170
https://doi.org/10.1038/s41598-023-42190-2
https://doi.org/10.1038/s41598-023-42190-2
https://doi.org/10.1002/jsfa.12289
https://doi.org/10.1002/jsfa.12289
https://doi.org/10.1016/j.scitotenv.2022.153726
https://doi.org/10.1016/j.scitotenv.2022.153726
https://doi.org/10.1016/j.scitotenv.2019.136190
https://doi.org/10.1016/j.scitotenv.2019.136190
https://doi.org/10.1016/S0140-6736(07)61235-5
https://doi.org/10.1016/S0140-6736(07)61235-5
https://doi.org/10.1007/s11104-012-1369-2
https://doi.org/10.1007/s11104-012-1369-2

	Impacts of climate change on spatial wheat yield and nutritional values using hybrid machine learning
	1. Introduction
	2. Materials and methods
	2.1. Field experiments and actual spatial yield
	2.2. ML approaches (training and testing)
	2.2.1. Dataset
	2.2.2. ML approaches
	2.2.3. Data processing, feature selections and hyper parameter tuning
	2.2.4. Assessment of ML models

	2.3. CC scenarios
	2.4. Uncertainty and structural equation models

	3. Results
	3.1. Wheat yield and nutritional values from controlled field experiments
	3.2. Training and testing hybrid ML
	3.3. CC impacts on wheat GY, and nutritional values

	4. Discussion
	5. Conclusion
	References


