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Summary: The development of sensors in several fields of activity opens new avenues. With regard to agricultural

crops, complex combination of agri-environmental dynamics, such as soil and climate variables, are now commonly

recorded. These new kinds of measurements are an opportunity to improve knowledge on the drivers of yield and

quality at harvest. This involves renewing statistical approaches to take into account the combined variations of

these dynamic variables, which are considered here as temporal variables. The objective of the paper is to infer an

interpretable model to study the influence of the two combined inputs on a scalar output. A Sparse and Structured

Procedure is proposed to Identify Combined Effects of Formatted temporal Predictors, denoted SPICEFP. It is based

on a transformation of both temporal variables into categorical variables by defining joint modalities, from which

a collection of multiple regression models is derived. The regressors are the frequencies associated to the joint class

intervals. Selection of class intervals and related regression coefficients are performed through a Generalized Fused

Lasso. SPICEFP is a generic and exploratory approach. Simulations performed show that it is flexible enough to select

the non null or impacting modalities of values. A motivating example for grape quality is also presented.
Key words: Generalized Fused Lasso, information criteria, interpretable coefficient, joint distribution, penalized

linear regression
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1. Introduction

Nowadays, several fields of activity are being revolutionized by the emergence of sensor data.

With regard to agricultural crops, the setting up of harvest management can now be based

on monitoring with the aim of including/modelling the influence of multiple environmental

conditions. Specifically, water scarcity and temperature increase are two major factors which

have long been analyzed and considered to be determining factors causing huge variations

in crop yield. However, relationships between fluctuating climatic conditions and quality of

the harvest are still poorly understood and modelling approaches are still lacking.

A recent European project Innovine has funded research for combining innovation (like an

increased use of sensor and non destructive measurements) in vineyard management for a

sustainable European viticulture. Our motivating example on the quality of the grape berry

comes from this context. Results and Expert knowledge indicate a multi-factor impact of

the climate. As for the composition of anthocyanin, a determinant of grape berry colour, it

often results from a complex system of ordinary differential equations (Dai et al., 2017)

and complex interaction with abiotic factors (temperature and irradiance mainly). This

complexity has prevented the emergence of an anthocyanin composition model equivalent

to the growth model. There is a need for methods able to explore which combination of

climatic variables influences the quality of harvest and at which stage of plant development.

Climate variables constitute multivariate temporal data which can be input of supervised

learning black box tools. All these black box tools are based on complex combinations of the

regressors whose individual or combined effects are difficult to interpret.

The objective of the present paper is to infer an interpretable model to study the combined

influence of two temporal variables on a scalar output.

A classical approach could be to consider these temporal data as a classical multivariate

sample. In this case, LASSO-type regularisation methods (Tibshirani, 1996) allow the se-
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lection of the most relevant explanatory variables, even for data sets where the number of

explanatory variables can be greater than the number of individuals (Zhang and Huang,

2008; Meinshausen and Yu, 2009; Fan and Tang, 2012). In the context of temporal data,

such methods allow to select, for each variable, the time instants during which this variable

had an influence on the scalar output (Zhou, Wang, and Wang, 2013; Grollemund et al.,

2019; Centofanti et al., 2022). But they are not suitable to study the combined influence of

two variables when we are more concerned with the time spent in specific combinations of

values (to be identified) taken by both variables rather than with the dates at which these

values were observed.

We propose a Sparse and Structured Procedure to Identify Combined Effects of Formatted

temporal Predictors, denoted SPICEFP. The temporal predictors are formatted based on the

assumption that the relationship between the variable to be explained and the predictors is

stable over time, i.e. we assume the same additive relation between output and input variables

during the whole period/time of observation. We also assume sparsity, i.e. that only some

ranges of cross-values of these variables have an impact on the scalar output and only the time

spent in these ranges is important. This type of relationship is often observed in agronomy,

particularly in the ripening of grapes. The literature (Fernandes de Oliveira et al., 2015;

Spayd et al., 2002; Downey, Dokoozlian, and Krstic, 2006) suggests that high temperatures

over a long period have a negative impact on the biosynthesis pathway and that, conversely,

low temperatures associated with high irradiation favour the accumulation of anthocyanins

(Cohen, Tarara, and Kennedy, 2008).Thus, the temporal data set can be viewed as repeated

measurements of two explanatory variables. We performed a transformation of the temporal

data and proposed a model that is close to a sparse scalar-on-image type regression, where

the so-called image is a bivariate count of cross-values of the two explanatory variables.

Scalar-on-image regression models aim to control the smoothness of non-zero estimated
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coefficients. This is consistent with usual biological processes that adapt or react progressively

(up to a point) to environmental conditions. Different approaches are used to control the

smoothness, among which Bayesian approaches (Li et al., 2015; Goldsmith, Huang, and

Crainiceanu, 2014), total variation penalizing approaches (Wang and Zhu, 2017), neighbor-

hood taken into account in the selection of variables (Li et al., 2020) inspired by the Fused

Lasso, etc. Kang, Reich, and Staicu (2018) proposed an approach based on the Gaussian

process and compared it to the Fused Lasso. Other studies on scalar-on-image regressions

are inspired by, used in or compared to models involving different L1 regularization. Following

this trend, we chose to use the fused Lasso, and more specifically its implementation via the

genlasso package (Arnold and Tibshirani, 2019), for identifying parsimonious and structured

coefficients. The selection of the coefficients is performed using information criteria instead

of cross-validation, as proposed in Zhou and Li (2014).

This paper is organised as follows: a motivating example in Section 2, the SPICEFP model

in Section 3 followed by the SPICEFP selection approach in Section 4, then to illustrate the

interest of SPICEFP, simulations in Section 5 followed by the motivating example results in

Section 6, eventually a discussion in Section 7.

2. Motivating example

Experts in viticulture assume that the accumulation of chemical compounds affecting the

quality of the grape berry is jointly influenced by micro-climate variables. This assumption

is reinforced by results of Tarara et al. (2008), which underlined that the anthocyanin com-

position, a major criterion that determines technological maturity at harvest in red grapes,

was influenced by a complex combined effect of berry temperature and solar irradiation.

These results motivated an experimental design of INNOVINE, which enabled the decoupling

of temperature and irradiance values and also the observation of the climatic conditions
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expected with global warming. This experiment conducted in Montpellier in 2014 (Syrah

vines) stimulated the development of the SPICEFP procedure.

The challenge was to identify precisely the ranges of temperature and irradiance values

that jointly influence or not the accumulation of anthocyanins between sunrise and noon

thanks to the use of sensors (non destructive high-throughput measurements).

The experimental plot was made of three rows of vines within the vineyard, each with eight

vines equipped with open-top chambers to warm the base of the plant (Sadras, Bubner,

and Moran, 2012), and eight under control conditions (without open-top chambers). The

greenhouse effect created during the day in the chambers generated a flow of warm air that

escaped through the open top, raising the temperature of the bunches by 2 to 3 °C, mimicking

global warming.

The microclimate was recorded through the measurement of temperature and irradiance.

Irradiance was separately measured on bunches located on the east and west side of the

row. The temperature sensors were positioned at the bunch scale, two sensors by vine: one

in the east, the other in the west. Temperature and irradiance were recorded every twelve

minutes throughout the maturation period when anthocyanins are known to accumulate.

Anthocyanin contents were measured weekly via the Ferari Index (FI) obtained from the

Multiplex optic sensor (Ben Ghozlen et al., 2010; Bramley et al., 2011). This is a non-

destructive measure of anthocyanin content in berries at the bunch scale (Agati et al., 2007).

One originality of our approach was to transform both explanatory temporal variables

into categorical variables by defining joint modalities using class intervals (with bins of

equal size). Temperature and Irradiance are variables of different natures. Temperature is a

variable whose variations are regular enough to be partitioned according to a linear scale.

Observed on a one-day scale, Irradiance increases exponentially from sunrise to a daily

peak (observation time tmax), decreases until sunset, and remains almost constant until the
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next sunrise. Irradiance primarily influences plant photosynthesis in a nonlinear way with

a maximal reached at high irradiance. Therefore, the Irradiance variable was partitioned

according to a logarithmic scale. The logarithmic transformation has consistently been used

in the development of models involving solar radiation (Salminen et al., 1983; Bergqvist,

Dokoozlian, and Ebisuda, 2001).

3. The SPICEFP modelling

3.1 Transformation of both temporal variables: a contingency table for a given partition

Suppose that we observe n triplets (Ai(.),Bi(.), yi)i=1,...,n, where n is the number of statistical

individuals, Ai and Bi are the explanatory temporal variables and yi is the response variable.

Both A and B are supposed to be observed on the same set T of fixed equidistant observation

times, with no missing values. These practical conditions of use can be relaxed with pre-

processing of the data e.g., interpolation, smoothing and imputation; see Section 7 for more

details.

The values taken by the temporal variables A and B are partitioned into, respectively, nA

and nB class intervals. The partition for A generates nA + 1 breaks denoted LA(v, nA), v =

1, . . . , nA + 1. We chose to have equidistant breaks, as defined in Equation (3.1):

LA(v, nA) = A+
v − 1

nA

(
A−A

)
, v = 1, . . . , nA + 1, (3.1)

with A ∈ R and A ∈ R the minimum and maximum observed values of A taking into account

all individuals. The bins used for partitioning all (Ai)i=1...n are IA(v, nA) = [LA(v, nA), LA(v+

1, nA)], v = 1, . . . , nA. The partition is the same for all i, i = 1, . . . , n. Using the same

approach for partitioning the second explanatory variable B, we obtain nB + 1 breaks

LB(w, nB) and corresponding IB(w, nB) = [LB(w, nB), LB(w + 1, nB)], w = 1, . . . , nB. The

numbers of class intervals nA and nB have to be set before computing the breaks.

For all individual i, we construct the contingency table CnAnB
i , of dimension nA × nB,
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whose component in row v, and column w is a frequency count obtained through:

C nAnB
i,(v,w) = Card {t ∈ T |Ai(t) ∈ IA(v, nA),Bi(t) ∈ IB(w, nB)}, (3.2)

for all v = 1, . . . , nA , w = 1, . . . , nB and each (nA, nB), with:
nA∑
v=1

nB∑
w=1

C nAnB
i,(v,w) = Card(T ).

The frequency C nAnB
i,(v,w) is the number of times that the observations of Ai and Bi are at the

same time in IA(v, nA) and IB(w, nB) respectively.

Figure 1 shows the transformation of the temporal explanatory variables A and B for the

partition (nA, nB) = (4, 3).

[Figure 1 about here.]

3.2 Regression model for a given partition

The SPICEFP model is defined, for each partition (nA, nB) and each individual i, by:

yi =

nA∑
v=1

nB∑
w=1

C nAnB
i,(v,w) β(v,w) + εi, (3.3)

where C nAnB
i,(v,w) is given in Equation (3.2), β(v,w) is the coefficient of regression of the joint class

(IA(v, nA) × IB(w, nB)) and εi ∼ N(0, σ2) is an independent, identically distributed (i.i.d)

Gaussian error. This model is a linear multiple regression model where the regressors are the

frequencies of the contingency table CnAnB
i .

We remark that the i.i.d. Gaussian error assumption is usual for a continuous variable and

reasonable for the motivating example where the individuals are observations from different

vines on the same plot (same soil, same genetic and so on) and with no spatial correlations

observed between them.

From the contingency tables, we construct the design matrix X (n,nAnB) associated to model

(3.3) as follows. After vectorization (stacking column by column) and transposition of the

contingency table CnAnB
i (see Matrix X in Figure 1), we obtain, for a partition (nA, nB), a

row vector Xi ∈ RnAnB of length nAnB:

Xi = Vect(CnAnB
i )T , (3.4)
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which represents the number of observation times during which an individual i has been

observed in each of the nA × nB joint classes of the contingency table. The n stacked row

vectors form the matrix X(n,nAnB) = (X1, X2, . . . , Xn)
T ∈ Rn×nAnB . The regression parameter

β(nAnB)
is a vector of length nAnB obtained by stacking all the coefficients β(v,w) in the same

order as the vectorization of the contingency table. The dimensions of the matrix X and of

the parameter vector β are given in brackets as subscripts as a reminder of their dependencies

on the partition dimension (nA, nB).

The process of transformation generates missing data for some joint classes which are not

observed in the dataset. The corresponding columns of X(n,nAnB) and coefficients β(v,w) are

therefore removed from the model. The position and number of columns and coefficients to

be removed depends on the size of the partition (nA, nB). A higher dimension results in more

missing data for joint classes.

4. The SPICEFP feature selection approach

4.1 Generalized Fused Lasso to select variables in the regression model (3.3) for a given

partition

For a given partition, the objective of the approach is to infer an interpretable and biologically

realistic model thanks to sparsity and smoothness constraints on the parameter β(nAnB)
.

This objective can be addressed with the Generalized Lasso model introduced by Tibshirani

and Taylor (2011) as an encapsulation of statistical models using the L1 norm to impose

additional constraints. The following criterion has to be minimized:

1

2
||y −X(n,nAnB)β(nAnB)

||22 + λ||D(nA, nB, γ)β(nAnB)
||1, (4.1)

where ||.||q designs the Lq norm (q = 1, 2), X(n,nAnB) was defined in equation 3.4, y =

(y1, y2, . . . , yn)
T ∈ Rn is the response vector.

The parameter γ represents a balance between sparsity and fusion (sparsity is controlled
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by the product of γ by λ). For a fixed value of γ, we can define a penalty matrix D(nA, nB, γ)

as per below. The value of λ controls the degree of fusion and can be optimized with the

path algorithm and for a given γ ⩾ 0 a corresponding β̂
γ

(nAnB)
(λ) can be estimated. The

penalty matrix we suggest has the following shape:

D(nA, nB, γ) =


Df1(nA, nB)

Df2(nA, nB)

Dp(nA, nB, γ)

 ∈ R(3nAnB−nA−nB)×nAnB with:

Df1
(v,w)(v′,w′)(nA, nB) =


1 if (v′, w′) = (v + 1, w)

−1 if (v′, w′) = (v, w) and v < nA

0 if not

,

Df2
(v,w)(v′,w′)(nA, nB) =


1 if (v′, w′) = (v, w + 1)

−1 if (v′, w′) = (v, w) and w < nB

0 if not

,

Dp
(v,w)(v′,w′)(nA, nB, γ) =

 γ if (v′, w′) = (v, w)

0 if not
.

(4.2)

The sub-matrix Dp(nA, nB, γ) (= γ InA.nB) induces sparsity in the coefficients, but when

γ = 0, the model penalty becomes a pure fusion penalty. The sub-matrices Df1(nA, nB) and

Df2(nA, nB) are associated to the constraints of fusion. They are defined using the joint

classes of the given partition. These sub-matrices correspond to the Rook’s case contiguity

rule (Plant, 2012) where two joint classes are said to be close if the bins following the

variable A (indexed by v) or (exclusive) the bins following the variable B (indexed by w) are

consecutive, as shown in the following diagram:
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(v+1,w)~w
(v,w-1) ⇐= (v,w) =⇒ (v,w+1)w�

(v-1,w)

The constraints induced by the Rook’s rule in D(nA, nB, γ) penalize jumps in β values in

the 2D space of the parameter.

We used the R package genlasso (Arnold and Tibshirani, 2019) for implementing the

estimation of the SPICEFP model (3.3) under the generalized constraints induced by the

penalty matrix D(nA, nB, γ).

4.2 The SPICEFP feature selection: the best partition and its best regressors

SPICEFP needs, as input values, the numbers of breaks (nA, nB) to define several candidate

partitions for the observed variables (A and B). It realises the construction of a design matrix

X (n,nAnB) hereafter called candidate matrix, for each candidate partition. The candidate

matrices lead to different regressors in terms of number and in terms of definition, as

the joint classes are not the same. In penalized regressions, cross-validation is often used

and implemented to optimize regularization parameters, but it is time consuming, needs

a sufficiently large sample size (to avoid a missing value effect) and the running time

will be multiply by the number of candidate matrices (as we need to optimize also the

partition). In SPICEFP, candidate matrices and regularization parameters are selected at the

same time, using information criteria by default. It requires estimating the degree of freedom

Q(nA, nB, γ, λ) for each model, see Tibshirani and Taylor (2012). A short summary of their

general theorem and its application to the SPICEFP context is given in the Web Appendix

(see SECTION Supplementary Materials).

There exist various information criteria including Akaike Information Criterion (AIC)
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(Akaike, 1973) and Bayesian Information Criterion (BIC) (Schwarz, 1978). These criteria

penalize the log-likelihood by the number of model parameters. The BIC also penalizes the

log-likelihood by the sample size. Given a partition (nA, nB) and for each value of γ taken

on a predefined grid (given by the users) and λ taken from the set (λe)e=1,...,Nλ
delivered by

the path algorithm, we consider the following information criteria:

AIC(nA, nB, γ, λ) = −2 log(L(nA, nB, γ, λ)) + 2 Q(nA, nB, γ, λ) and

BIC(nA, nB, γ, λ) = −2 log(L(nA, nB, γ, λ)) + log(n) Q(nA, nB, γ, λ),

with L(nA, nB, γ, λ) the likelihood function of the following model: y = X (n,nAnB)β(nAnB)
+ ε

with ε ∼ N (0, σ2In×n), associated with the criterion (4.1). We have:

−2 logL(nA, nB, γ, λ) = n log(σ2) + n log(2π) +
1

σ2
||y −X (n,nAnB)β̂

γ

(nAnB)
(λ)||22.

Computing the chosen AIC or BIC requires to know the variance σ2, for all the models. In a

simpler context (with a design matrix that does not vary with the partition (nA, nB)) Hirose,

Tateishi, and Konishi (2013) suggest taking the unbiased estimator of the error variance of

the most complex model. In our context, it is not trivial to define a single most complex

or full model for all possible partitions, i.e. contingency tables CnAnB . The dimension nAnB

could theoretically be infinite with therefore a predictor dimension theoretically infinite.

Moreover, in our context, the models are not nested, as each "sub-model" is in fact a different

contingency table with different joint classes. No sub-model can therefore be defined as

a subset of the variables of a complete model. Application of the standard practice from

the literature on the tuning parameter selection (Wang, Li, and Tsai, 2007; Wang, Li, and

Leng, 2009), even in high dimensional sparse linear regression (Wang and Zhu, 2011), is not

straightforward in our situation. We have therefore chosen to estimate σ2 by the variance

of the response variable: σ̂2 = 1
n−1

||y − y||22. It is a biased estimator of σ2, but this bias

remains fixed for all models compared. Such an estimator may lead to overestimate the

variance, which penalizes the introduction of new coefficients in the model. The selection
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of the best model (best partition with its best regressors) is done by computing the chosen

Akaike criterion (AIC or BIC) for each combination of (nA, nB), γ and λ. The optimal values

of n̂A, n̂B, γ̂ and λ̂ are those which minimize the criterion. The estimator β̂
γ̂

(n̂An̂B)
(λ̂) of β is

deduced.

5. Simulation study

5.1 Simulation design and SPICEFP setting

We performed a simulation study to evaluate the finite sample behavior of the SPICEFP

algorithm in three challenging situations, where the input variables are the measures of

Temperature and log-Irradiance in the Vine dataset, obtained between sunrise and noon

during the week of July 17 to 24, 2014. Only 79 statistical individuals were used from the

dataset, due to missing data. In the following, we refer to A as the Temperature variable

and B as the log-Irradiance variable.

Simulation 1 (two patches). To create a diffuse effect, we used a very small scale

(nA = 30, nB = 30) to construct a design matrix X79,900 with the observed frequencies of

Temperature and log-Irradiance, using equations (3.2) and (3.4). We chose to simulate two

different patches of coefficients βv,w (one with positive values and the other with negative

values) positioned at two different locations. It should be noted that negative values (around

-0.3) are 2 to 3 times higher than positive values (around 0.1). They are presented in row 2

of the Table 1, data is available for consultation (see SECTION Data Availability below).

The response variable of the simulation is computed using the following model:

y = X79,900 β900 + ε where ε ∼ N (0, 1.5 I79×79). (5.1)

Simulation 2 (two patches, one with higher impact). We multiplied by 10 all positive

values of the parameter vector β900 in (5.1).



12 Biometrics, 000 0000

Simulation 3 (one patch). We set all positive values of the parameter vector β900 in

(5.1) to 0.

Simulation 4 (two rough patches). We divided by 2 the dimensions (nA = 15, nB = 15),

by averaging the values of beta coefficients, to simulate

y = X79,225 β225 + ε where ε ∼ N (0, 1.5 I79×79). (5.2)

We thus generated 100 datasets for each simulation. Estimation was done with the SPICEFP

algorithm implemented in the SPICEFP R-package (Gnanguenon Guesse et al., 2023), and the

following input parameters: (nA, nB) ∈ {10, 15, 17, 20, 23, 25, 30}2, γ ∈ {0, 1/9, 1/3, 1, 3, 9}

and nλ = 20. For simulation 4, we reduce the possible matrix candidates to (nA, nB) ∈

{10, 15, 20, 25, 30}2. The running time with 4 cores of spicefp() function, for each dataset

(simulation 1, 2 and 3), was roughly 3 hours (so 300 hours for each simulation), while it

reduces to 1 hour per dataset with 4 cores for simulation 4.

[Table 1 about here.]

5.2 Simulation results

For each of the four simulations, an illustrative map is drawn on Table 1. A summary of

the four simulations is given in Table 2. The main objective of SPICEFP is more exploratory

than predictive, and consists in identifying possible combinations of Temperature and log-

Irradiance that have an impact (i.e. with non-zero coefficients). We used the usual classi-

fication metrics, where sensitivity is defined as the rate of non-zero coefficients correctly

identified by the model among the true non-zero coefficients. Conversely, the specificity is

the rate of zero-value coefficients correctly identified by the model among the true zero-

value coefficients. Prior to computing this, we removed the non affected combinations due

to missing values (it modified slightly the results).

In addition, to evaluate the overall goodness of fit we computed the R2
adjusted = 1 − ||y −

X (n,nAnB)β̂
γ

(nAnB)
(λ)||22/||y − y||22 ∗ (n− 1)/(n−Q(nA, nB, γ, λ)) as it’s a simple to calculate
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and well-known criterion that takes model complexity and overfitting into account for model

comparisons.

A good specificity was observed for all simulations. Over the 100 datasets of each sim-

ulation, less than 10 showed a bad specificity. Simulation 3 exhibited the lowest median

value for specificity combined with the lowest R2
adjusted. The increase in identification errors

is understandable since, in simulation 3, the data sets contained a large number of inten-

sively observed Temperature-log Irradiance combinations with zero-value coefficients. For

all simulations, the sensitivity was quite good. Lower values were observed for simulation

2, where SPICEFP often failed to identify the patch of negative coefficients. Again, it was

understandable as those coefficients were smaller (in absolute value) and near 0 compared

to the patch of positive coefficients. Finally, the degree of freedom is quite small (around

3) for all simulations and minimum (1-2) for simulation 2. The sparsity looked high but

it did not seem to result exclusively from the lasso penalty. A pure fusion penalty led to

quite the same results (the median values for the df were respectively 4, 3, 4 and 3.5 for the

simulations 1 to 4) but with a lower goodness of fit. The use of AIC with σ2 estimated by the

sample variance of Y could be an explanation as well as the configuration of the simulated

parameters (two distinct patches with homogeneous values). Other criteria are implemented

in the package SPICEFP, such as Mallow’s Cp, the generalized cross validation (Wang, Li,

and Tsai, 2007, GCV) and were tested. In addition, we tried to compute the AIC with the

residual sum of squares divided by n for σ2. All of these additional criteria led to overfitted

models (median values of df around 140 and R2
adjusted always equal to 1), as with the use of

the GCV (implemented in the SPICEFP package).

Finally, in order to produce a suitable visualization in Table 1, the vector of coefficients

was projected onto a fine-mesh matrix of combinations of Temperature-log Irradiance values

(we kept the SPICEFP suggested matrix size of 900× 900).
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[Table 2 about here.]

6. Results obtained on the motivating example: a step toward modelling the

evolution of a grape berry quality index

6.1 Methodology used for data analysis

We focus in this section on the modelling of the Ferari Index variation, denoted here as ∆FI,

from July 24 to August 1, 2014. We selected the n1 = 32 individuals (bunches) which have

the highest contribution to the final Ferari Index during this week of study, with an initial

index around 0.2 at the beginning of the week.

We focused our modelling on the morning when grapevine achieves most of its photosyn-

thesis. The time period between sunrise and noon is denoted T1 below. The input variables

of SPICEFP are yi = ∆FIi, Ai(t) (temperature values) and Bi(t) (irradiance values) for

i = 1, . . . , n1 and t ∈ T1. Estimation was done with the following parameters: (nA, nB) ∈

{10, 11, 12, . . . , 29, 30}2, γ ∈ {0, 1/9, 1/3, 1, 3, 9} and nλ = 20.

6.2 Results

The results are presented in Table 3. The first column shows the estimated coefficients and

the second column the response variable and the contingency table.

In addition to the result of the AIC best model, we computed a post process of the SPICEFP

results by averaging the coefficients of the 1% best models, where these were defined here

in the sense of the set of models with the lowest 1% of AIC values. Coefficients available in

these 1% best models were defined on different partitions and were all projected onto the

Temperature-log Irradiance fine-mesh matrix of size 900×900 before averaging. The map for

the 1% best models in Table 3 is the representation of the function F defined by: F(v, w) =

1

nm

nm∑
m=1

β
(m)
(v,w), where nm = 529 is the number of 1% best models and v, w ∈ {1, 2, . . . , 900}2.

In terms of goodness of fit, the AIC best model has: slope (ŷ as a function of y) = 0.49,
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R2
adjusted = 0.60, df = 4, γ̂ = 0, λ̂ = 0.84, n̂A=14, n̂B = 28. That is, the best model according

to AIC corresponds to a pure fused penalty (γ̂ = 0) with an estimated coefficient fusion of λ̂

= 0.84. This model was able to explain 60% of the differences between Ferari Index weeks,

which is quite satisfactory for a field experiment. The residuals distribution is unimodal

and shows asymmetry (same as Y). The visualization of the coefficients indicates conditions

(Irradiance < 100 µmol m−2 s−1, Temperature from 20°C to 33°C) that affected the Ferari

Index negatively. The unique positive coefficient value is 0.001, and practically speaking can

be set to zero given this is more realistic from a biological point of view than a positive

value with an effect over the whole Temperature-log Irradiance range (see Table 3). In fact,

the result of the AIC best model looked very similar to the results obtained in simulation

2. We might assume that we missed a patch of coefficients of smaller values in the upper

right side (high Temperature and Irradiance) where frequency of observation is high. This

hypothesis is reinforced by the result of the 1% best models which allowed identification

of more coefficients in this localization. The average estimation from the 1% best models

suggests a border zone between the zones of positive and negative influences. This border

zone looks sensible from a biological point of view.

Finally, in the morning (sunrise to noon), a large range of temperature values with low

irradiance values (Irradiance < 100 µmol m−2 s−1) seemed not suitable for an increase of the

Ferari Index. On the contrary, a combination of irradiance values above 150 µmol m−2 s−1

and temperature values below 30°C seemed suitable for increasing the Ferari Index. The

average of the coefficients suggested a possible gradation in the impact of some Temperature

and log Irradiance combinations.

[Table 3 about here.]



16 Biometrics, 000 0000

6.3 A first step toward modelling

From the map representation of the estimated value for the regression parameter (Table 3)

we observed that high temperatures combined with low morning irradiances had a negative

impact that delayed anthocyanin accumulation and technological maturity of red grapes.

This negative impact is observed for temperature levels that increase with the irradiance

level, drawing an oblique separation line in the Temperature-log Irradiance fine-mesh matrix

in both figures on the left of Table 3. These results show the importance of combinations

of Temperature - log Irradiance values and are consistent with the literature (Fernandes de

Oliveira et al., 2015; Spayd et al., 2002; Downey, Dokoozlian, and Krstic, 2006) and (Cohen,

Tarara, and Kennedy, 2008). It highlights the interest for further studies to analyze the

possible decoupling of Temperature and log Irradiance. Following the SPICEFP parameter

estimation results, we may investigate the following agronomic model:

∆FIi = β− Card{t|Ai(t) > S(Bi(t)) and B0 < Bi(t) < B1}

+ β+ Card{t|(Ai(t) < S(Bi(t)) and Bi(t) > B0) or Bi(t) > B1},

where ∆FIi is the increase in Ferari Index during the selected week and S is the function of

the straight line: S(B) = A0 + θ(B − B0) and β− < 0 < β+. The model is illustrated in the

following figure:

[Figure 2 about here.]

It is a first step toward a model for anthocyanin accumulation that determines technological

maturity at harvest. Establishment of this kind of simple model could be useful for example

to define a degree-lux day for maturity similar to the degree day for growth. The degree day

is a transformation suitable to adjust plant growth from different environments, to make

growth comparable.
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7. Discussion

The SPICEFP approach is dedicated to temporal biological or physical process which ended

in a final point with a limited value, such as crop production and harvest quality. The aim

of SPICEFP is to extract ranges of values from at least two temporal variables which impact

on the final point, thus increasing our knowledge on the process by enlightening how and

when the two temporal variables combine and influence the final point.

To achieve this goal, SPICEFP first transforms the temporal variables into 2D class intervals.

This transformation makes sense if the underlying process, namely the relationship between

the outcome and the input values, does not change over time. This is often the case in

agriculture where, for example, phenological stages can be estimated from cumulative degree

days. In the motivating example on grapevines quality, this assumption of stability required

to work at the scale of a week. When analyzing the data in Section 6, we defined the

scale of time (week) that ensures that the underlying biological process remains the same.

On this scale of time, SPICEFP searched for reference ranges of combined values, favorable

or unfavorable for the increase of the Ferari Index (which is correlated with anthocyanin

concentrations and is an indirect indicator of the grapevines quality).

The transformation of temporal variables yields a contingency table. It is assumed that no

data are missing and that the observation times are identical for both temporal variables.

These constraints can be released with usual pretreatment such as: imputation of missing

data (Stekhoven and Bühlmann, 2011; Josse and Husson, 2016), interpolation or smoothing

(Ramsay, Hooker, and Graves, 2009).

The underlying assumption of normality could also be released/relaxed in a future version

of SPICEFP. The generalized linear models with lasso or elastic net regularization (Friedman,

Tibshirani, and Hastie, 2010; Tay, Narasimhan, and Hastie, 2023) could be implemented

using the already available R package glmnet.
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The principal output of the SPICEFP algorithm is the map of the β estimated values (see

Table 1). A common drawback to all data driven approaches is the fact that the results

are design-dependent: the SPICEFP algorithm will not be able to properly estimate the

β coefficient in an area with little or no data. It is therefore necessary to have data of

(A,B) in areas where combinations of temporal variables has a potential interest. Note also

that components in the contingency table (3.2) that contain no observed values of the pair

(Ai,Bi) are considered missing values. The number of missing values and their location in

the contingency table change according to the dimensions nA and nB. To gain in precision,

we would tend to take larger values of nA and nB, which implies more components without

observations, and therefore more missing values. There is also a limitation due to the curse

of dimensionality (Giraud, 2014): if the number n of observations remains fixed while the

dimension p = nAnB of the variables increases, the observations get rapidly very isolated

and local methods cannot work. The more fluctuations in many directions, the more data

will be needed.

SPICEFP algorithm is sensitive to some parameters like the variance estimator of the residu-

als. Our suggestion is to use the sample variance estimator which clearly is an overestimation,

but simple, easy to compute and identical for all contingency tables we used as candidate

models in the SPICEFP algorithm. Another possibility would be to let users give a range of

values to check the sensitivity. Occasionally, we observed that many models have AIC or

BIC values close to the best model. In practice, we recommend to check not only the best

model, but the top percentage e.g., 1% of best models, to visually inspect the stability of the

results. A last suggestion to improve this work could be the use of adaptive penalty matrices

(Zhang et al., 2023). A first step could be to define a different matrix D(nA, nB, γ) for each

input variable (see Tibshirani, 2014 for suggestions of penalty matrices), a second step could

be a data driven local weight/penalty.
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For the simulations and motivating example, we chose the Rooks’ case contiguity rule

with a D(nA, nB, γ) matrix which penalizes jumps in the parameter bivariate discretized

function (by cancelling the first derivative in both direction). More regular solutions can

be implemented in the SPICEFP package, for example by replacing the D(nA, nB, γ) matrix

by a D′(nA, nB, γ) matrix which penalizes jumps in the derivative (by cancelling the second

derivatives). For example, by replacing in both direction the Rooks’ neighborhood definition

(+1,−1, 0) by (−1,+2,−1). Regularity can be further enhanced by replacing D(nA, nB, γ)

by a matrix penalizing jumps in higher-order derivatives.

Other approaches than GFL deal with variable selection and may be explored as an

alternative in the future: for example, the square-root lasso (Belloni, Chernozhukov, and

Wang, 2011) and the quantile universal threshold (Giacobino et al., 2017). The square root

does not require the estimation of the variance σ2 but is not implemented for generalized

lasso with contiguity constraints. It may very well control the FDR (False Discovery Rate)

but less the TPR (True Positive Rate), according to the simulation results presented in

(Giacobino et al., 2017).

In life sciences, exploratory experiments are commonly carried out to suggest new hypothe-

sis. More in-depth analyses will be conducted at a later step to test whether these hypotheses

are valid or not. In the same spirit, the SPICEFP approach provides an exploratory analysis

which is used for acquiring information. To our knowledge, there is a real need in agronomy

for the development of exploratory tools of this type, able to take advantage of temporal

data measured by sensors. Models can be proposed on the basis of the β estimate map results

and validated subsequently by further experiments.
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Figure 1. Transformation of both temporal explanatory variables for the SPICEFP approach



An exploratory penalized regression to identify combined effects of temporal variables - Application to agri-environmental issues 27

Figure 2. Model based on the oblique separation line
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