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Editorial on the Research Topic

Desiccation tolerance in land plants: from mechanisms to evolution
Desiccation tolerance (DT) is the ability to survive and recover from the equilibration

of the water potential of cellular contents to that of the surrounding air. Most plants resist

water loss and have evolved strategies to maintain their cellular water potential above that

of the surrounding air and are desiccation sensitive with cellular water potentials of -3 to -6

MPa generally lethal. Desiccation-tolerant plants allow the equilibration of the water

potential of their cells to that of the air and can tolerate tissue water potentials of -100 MPa

and lower (Alpert and Oliver, 2002). Most seeds, pollen and spores are also

desiccation tolerant.

Vegetative desiccation tolerance (VDT) was present in early bryophytes (Oliver et al.,

2005), suggesting acquisition of desiccation tolerance was critical for the colonization of the

land by primitive plants (Mishler and Churchill, 1985). Phylogenetic evidence indicates

that VDT was lost during the evolution of tracheophytes but has reappeared in the

lycophyte, fern, and angiosperm lineages (Mishler and Churchill, 1985; Oliver et al., 2020).

Desiccation tolerance in seeds (SDT) appeared subsequent to its loss during tracheophyte

evolution. SDT differs from VDT in that it is part of a developmental program that directs

loss of water during seed maturation. SDT, along with dormancy, enabled both

gymnosperms and angiosperms to disperse and establish in almost every terrestrial

ecosystem. VDT in angiosperms evolved in at least thirteen lineages spanning both

dicots and monocots (Gaff and Oliver, 2013) and there is growing evidence that VDT in

the angiosperms evolved from SDT by a ‘rewiring’ of the controlling genetic networks

(Farrant and Moore, 2011; VanBuren, 2017).

SDT was critical for the rise of civilization and global human expansion via its role in

plant domestication (Diamond, 2002; Purugganan, 2019; Schaal, 2019). The continued
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importance of DT, both seed and vegetative, lies in understanding

the mechanisms that enable cells to withstand dehydration and

recover (Oliver et al., 2020). The hope is that within these processes

novel strategies for improving crop stress tolerance will emerge: a

vital need for a changing climate. The greatest promise comes from

investigations into the genomic aspects of desiccation tolerance and

recent whole genome sequencing of desiccation tolerant plants

(http://desiccation.egi.ac.cn/)offer new insights into both the

evolution of DT and the mechanisms and gene networks that

control it (González-Morales et al., 2016; VanBuren et al., 2018).

Although we have made significant progress in understanding

how plants tolerate desiccation (Oliver et al., 2020) there is still

much to learn and many questions to be answered. It was with this

in mind that we selected the topic of ‘Desiccation tolerance in land

plants: from mechanisms to evolution’ for this Research Topic.

In an enlightening review of the studies of the seeds of the

xerophytic plant Caragana korshinski, Peng et al. built a strong case

for the use of xerophytic seeds for uncovering the underlying

mechanisms of SDT. They also advocated for the positive aspects

of re-establishment of DT in germinating seeds as a means for

studying important regulatory aspects of DT. Staying with SDT,

Sano et al. investigated chromatin dynamics during the short post-

germination period in Medicago trunculata seeds when desiccation

tolerance can be re-induced by a PEG treatment before being

irretrievably lost as the seedling develops. They provided

convincing evidence that PEG stimulated a more open

configuration of the chromatin encompassing a number of

induced DT related genes. They also demonstrated that an

increase in H3K27me3 marking was associated with termination

of the developmental window within which DT could be

re-induced.

Barthlott et al. demonstrated biofilms of the desiccation-tolerant

cyanobacterium Hassallia byssoidea are superhydrophobic (repels

water), a property that enhances gas exchange and excludes

competitors. Superhydorphobicity, restricted to biological surfaces,

was suggested to be an evolutionary innovation during the

colonization of the land. The presence of the superhydrophobic

surface of a cyanobacterial biofilm suggested that this property may

have an early prokaryotic Precambrian origin. They demonstrated

the presence of superhydrophobic surfaces in all land plants and

offered an argument for rethinking the role of superhydrobicity in

plant evolution.

Three of the remaining articles focused on desiccation tolerance

in bryophytes. Yang et al. investigated a comprehensive time course

analysis of the dehydrating and rehydrating transcriptomes of

gametophytes of the DT biocrust moss Syntrichia caninervis.

Their analysis highlighted the accumulation of transcripts related

to cellular protection during desiccation, in particular transcripts of

oxidative metabolism, and the decline in transcripts associated with

photosynthesis. Rehydration reversed this trend. The analysis

highlighted the importance of several transcription factor families

in the desiccation rehydration response. Fang et al. investigated the

integrative response of the transcriptome and metabolome of the

Antarctic moss Pohlia nutans to a PEG imposed water deficit stress.
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Almost half of the differentially changed metabolites were

flavonoids and lipids and those transcripts that integrated well

with the metabolite data were for flavonoid and long-chain fatty

acid biosynthesis genes. The third article focuses on evolution of the

abiotic stress responsive C2H2-type zinc finger proteins (C2H2-

ZFPs) along with a comparison of the expression characteristics of

these gene in Physcomitrium patens and Arabidopsis during

dehydration and rehydration. Li et al., in a comprehensive study,

demonstrated a general increase in C2H2-ZFP genes as plant

complexity increased, with Physcomitrium exhibiting a larger

number than expected likely related to the whole genome

duplication event that occurred in its evolutionary history.

Expression profiles for the C2H2-ZFPs of Physcomitrium and

Arabidopsis during dehydration and rehydration exhibited

different patterns of transcript accumulation reflecting both the

phylogenetic relationships and types of conserved promoter

domains; Z-type in non-seed plants and Q-type in seed plants.

These differences highlighted the desiccation tolerance and

sensitivity of these two plants.

Our remaining manuscript from Liu et al. explored the potential

of a dehydration responsive transcription factor, DREB A-5, from

the desiccation tolerant moss Syntrichia caninervis for crop

improvement. They demonstrated that ectopic expression of a

moss 35S-DREB A-5 construct improved germination rates and

seedling salt tolerance. Overexpression Arabidopsis lines had

enhanced levels of antioxidant enzymes and increased transcript

abundance of stress related genes, including the salt overly sensitive

(SOS) gene transcripts, SOS 1, 2 and 3. They provide convincing

evidence that the DREB 5-A improved salt tolerance in part by

stimulating jasmonic acid production.
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