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Théophile Ghislain Loïc Eyango Tabi a,b,c,*, Maud Rouault a, Victoria Potdevin b,
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A B S T R A C T

Bovine Respiratory Disease (BRD) is a prevalent infectious disease of respiratory tract in cattle, presenting
challenges in accurate diagnosis and forecasting due to the complex interactions of multiple risk factors. Com-
mon methods, including mathematical epidemiological models and data-driven approaches such as machine
learning models, face limitations such as difficult parameter estimation or the need for data across all potential
outcomes, which is challenging given the scarcity and noise in observing BRD processes. In response to these
challenges, we introduce a novel approach known as the Bayesian Deep Mechanistic method. This method
couples a data-driven model with a mathematical epidemiological model while accounting for uncertainties
within the processes. By utilising 265 lung ultrasound videos as sensor data from 163 animals across 9 farms in
France, we trained a Bayesian deep learning model to predict the infection status (infected or non-infected) of an
entire batch of 12 animals, also providing associated confidence levels. These predictions, coupled with their
confidence levels, were used to filter out highly uncertain diagnoses and diffuse uncertainties into the param-
eterisation of a mathematical epidemiological model to forecast the progression of infected animals. Our findings
highlight that considering the confidence levels (or uncertainties) of predictions enhances both the diagnosis and
forecasting of BRD. Uncertainty-aware diagnosis reduced errors to 32 %, outperforming traditional automatic
diagnosis. Forecast relying on veterinarian diagnoses, considered the most confident, had a 23 % error, whilst
forecast taking into account diagnosis uncertainties had a close 27.2 % error. Building upon uncertainty-
awareness, our future research could explore integrating multiple types of sensor data, such as video surveil-
lance, audio recordings, and environmental parameters, to provide a comprehensive evaluation of animal health,
employing multi-modal methods for processing this diverse data.

1. Introduction

Bovine Respiratory Disease (BRD) is a prevalent, multi-factorial
affliction impacting cattle worldwide, involving infections in both the
upper and lower respiratory tracts (infectious bronchopneumonia),
influenced by various causal agents (Smith et al., 2020). Cattle across all
ages and production types, including dairy, beef, and veal, are suscep-
tible. Although research has primarily focused on beef or feedlot calves
(Edwards, 2010; Woolums et al., 2018), as well as dairy replacement
heifers or veal calves, due to BRD’s significance in these sectors
(Dubrovsky et al., 2019; Pardon et al., 2013), it remains a critical

concern in all cattle populations. Untreated cases potentially leading to
rapid performance decline and fatal pneumonia (Delabouglise et al.,
2017; Engler et al., 2014). These statistics contribute significantly to
economic losses, accounting for up to 20 % of farmers’ annual incomes
(Bareille et al., 2009). Diagnosing BRD is a complex and ambiguous
process due to its potential interacting causes, including various path-
ogens such as bacteria and viruses, as well as non-infectious factors like
the animal’s genetics (breed, immunity, etc.) and environmental in-
fluences such as farming management practices (weaning, living con-
ditions, treatments, etc.) (Gaudino et al., 2022; Murray et al., 2017).
Antibiotics represent the primary treatment for BRD in the feeding
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period (Brault et al., 2019; Nickell and White, 2010), but their overuse
raises concerns about the emergence of antibiotic resistance. Therefore,
there is an urgent need to implement effective measures for studying the
disease, controlling its spread, managing antibiotic usage and associated
costs for farmers.

Various modelling approaches, encompassing data-driven methods
such as machine learning algorithms, have been explored for diagnosing
BRD. These algorithms, recognised for their effectiveness in applications
like image recognition and natural language processing, have found
multiple applications in veterinary research, predicting BRD (Cantor
et al., 2022; Ramezani Gardaloud et al., 2022; Timsit et al., 2011). These
methods extract BRD-related patterns by employing various sensors
(ear-tag, intraruminal bolus, ultrasound scanner, etc) to record cattle
behaviour, appearance and clinical signs. To minimise prediction errors,
machine learning models adjust their internal parameters according to
the given data. The performance and adaptability of these models
heavily thus rely on the richness and diversity of collected data. How-
ever, the absence of a gold standard to diagnose BRD based on clinical
signs (Timsit et al., 2016) makes early detection through sensor data
alone susceptible to false alerts. Additionally, young beef cattle
instinctively tend to conceal their clinical signs (Griffin, 2010), a
behaviour that evolved as a survival tactics, further increasing the rarity
of meaningful observations.

Unlike data-driven methods, knowledge-driven approaches, such as
mechanistic models, are mathematical models designed to describe and
represent the intricate relationships within a system. These models are
constructed based on a set of rules derived from theoretical insights and
empirical observations. In epidemiology, they find common application
in predicting the dynamic behaviour of complex diseases like Covid
(Plank et al., 2022), African swine fever (Muñoz et al., 2022), avian
influenza (Lambert et al., 2023), and BRD (Picault et al., 2022). The
primary strength of mechanistic models, in contrast to machine learning
models, lies in their ability to simulate diverse scenarios without
requiring extensive data. By simulating various disease management
scenarios, such as surveillance, prevention, and intervention strategies,
we can compare their effectiveness and offer evidence-based recom-
mendations, guiding decision-makers to implement optimal control
measures. Mechanistic models have demonstrated their efficiency for
studying and controlling the spread of infectious diseases (Ezanno et al.,

2020). However, it is crucial to note that their calibration presents a
substantial challenge. It is a tedious work to re-calibrate these models to
specific real-world outcomes.

Our research aimed to devise an approach that adeptly addresses the
constraints of both data-driven and knowledge-driven methodologies in
epidemiology. We sought to develop a method capable of extracting
insights from limited data sources while conserving its reliability in the
face of noisy observations. More specifically, we crafted multiple sce-
narios to compare various methods of automatically extracting insights
from sensor data using a data-driven model, and subsequently re-
purposing these insights to forecast the progression of BRD through a
mathematical epidemiological model.

2. Materials and methods

The methodology of this work is structured as follows (Fig. 1): In the
Section 2.1, we provide a detailed overview of the data acquisition
process, encompassing pulmonary ultrasound videos employed as
sensor data with the clinical and biological examination, established by
veterinarians, serving as the ground truth to distinguish infected animals
expressing clinical signs. In Section 2.2, a baseline scenario was devised,
where veterinarian expertise was used to reliably diagnose the total
number of infected animals at several observation dates over a 30-day
period. Crucial epidemiological parameters of a BRD mechanistic
model were then inferred enabling the forecast of the optimal path of the
evolution of the total number of infected animals. In subsequent sec-
tions, 2.3, 2.4, 2.5), we devise multiple methods to automatically esti-
mate the total number of infected animals, to improve the diagnostics
and forecast by incorporating uncertainty-based approaches to filter out
noisy observations or propagate the uncertainty of the diagnostics to the
forecasting. To conclude, the diagnostic and forecast performance of
each method is assessed in comparison with the baseline scenario 2.2.

In our study, we use the term “diagnosis” to refer to predictions made
instantaneously based on current data. In contrast, we use ’forecast’ to
describe the prediction of future disease progression, utilizing current
diagnostic data to project outcomes over time.

Fig. 1. Workflow of Bayesian deep mechanistic model. A real system is a farm containing animals in batches. Red path: Traditional approach involving manual
diagnosis from veterinarian examinations, employed for parameter inference of a knowledge-driven forecast. Blue path: Integration of lung ultrasound sensor for
automated data collection labelled with veterinarian-established ground truth. followed by a data-driven model trained to automate the diagnoses which are re-used
along with their confidence levels in several ways to improve and automate the forecast through a knowledge-driven model enabling tailored interventions.
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2.1. Data acquisition process

The data used in the experiments were gathered from nine fattening
farms in western France. Each farm managed up to three batches
simultaneously, with each batch consisting of an average of five to
twelve calves. Of the total cattle, 78 % of Charolais breed, 12 % of
Limousin, and 10 % mixed breeds. The Charolais breed was predomi-
nantly chosen because it is among the most prevalent beef breeds raised
in France. The experimentation on each farm started on the day the
cattle arrived (Day 0), for a duration of one month. The initial weeks
following their arrival are considered the period when cattle are most
susceptible to BRD (Babcock et al., 2009). Consequently, the data
collection period spanned from January to June 2023. To simplify
readability of the paper, let’s denote by t ∈ {1, 5, 14, 21, 28} the
observation dates. The selection of examination dates varied among
farms and depended on the availability of both farmers and a
veterinarian.

2.1.1. Sensor data
Portable ultrasound scanners were employed to evaluate the ani-

mals’ lung conditions on multiple days t ∈ {1, 5, 14, 21, 28}. The ul-
trasound scanner captured lung images in video format, featuring 28
frames per second in black and white, lasting up to 20 seconds each,
with a resolution of 480×560 pixels. The animals’ lungs were parti-
tioned into eight inter- costal zones, following a standardised scanning
protocol from the shoulder to the stomach: Ultrasound scanning was
conducted on the 4th and 5th intercostal spaces. These spaces are the
most cranial intercostal spaces accessible in animals of this size and age,
as referenced by (Cuevas-Gómez et al., 2020). Each intercostal space
was further divided into ventral and caudal portions, separated by the
shoulder, resulting in four sections scanned per side for each animal. A
veterinarian validated the dataset and, in some farms, ultrasound was
only performed on one side of the animal because of the physical re-
straints we encountered. Within the local farming system, it was chal-
lenging to establish a recruitment criterion that mandated access to both
sides of the thorax, alongside other criteria such as internet access and a
sufficient number of animals purchased annually. The process of
recording videos with an ultrasound scanner proved to be
time-consuming, tedious, and challenging, requiring the animals to be
kept in a fixed position. Consequently, some animals were prioritised for
the study, only the ones having lesions larger than 1 cm2 were deemed
meaningful (Masset et al., 2022). If multiple significant lesions (> 1cm2)
were observed in the same intercostal area, only one video was recor-
ded, corresponding to the lesion with the largest surface area. On Day
0 (t = 0), one-third of the animals of the three batches underwent ex-
amination, while from Day 2 to Day 28 (t > 0), all animals in a selected
batch were examined. To maintain a balanced dataset, videos of clini-
cally healthy lungs, without of lesions, were also recorded. To simplify
further explanation, we denote by X obs = {xobs1 , xobs2 , ..., xobsi , ..., xobsn } the
space containing the Lung UltraSound (LUS) video xobsn,t for each indi-
vidual i at time t. Note here that at a given time t, an animal having
lesion (so scanned) in a given batch may vary since some lesion may
disappear over time.

2.1.2. Ground truth data
Ground truth data consists in the identification of diseased animals,

based on clinical and biological assessments. Multiple veterinarians
participated in the examination of the animals, having undergone
identical training to minimise annotation bias. Clinical assessments
involved the examination of rectal temperature, lethargy, nasal/ocular
discharge, and quantification of breathing rate/amplitude. Animals
were categorised as clinically diseased if their rectal temperature
exceeded 39.7◦C (Timsit et al., 2011) and if they had at least one more
clinical symptom, which helped to reduce false positives caused by
non-infectious events. Biological assessments involved the use of nasal

swabs to determine the presence or absence of BRD associated patho-
gens (Mannheimia haemolytica, Pasteurella multocida, Mycoplasma bovis,
Histophilus Somni, Bovine Respiratory Syncytial Virus, Para-influenza
Virus type 3, bovine coronavirus, Influenza D virus). This choice was
primarily made due to restraint issues, the duration of the procedure,
and the invasiveness of the alternative methods. Following collection,
the swabs were immediately placed on ice and transported to the lab-
oratory within three hours. There, the two swabs from each animal were
suspended in 400–600 µL of phosphate-buffered saline (PBS) and stored
at − 80◦C. PCR analyses were performed within a maximum of 6 months
from freezing at the BIOEPAR laboratory (UMR BIOEPAR, France),
using a range of commercial kits (BIOTK051, BIOTK052, BIOTK053,
BIOTK054, Biosellal, France). An animal was considered biologically
diseased if it had at least one of those pathogens. The final decision of
whether an animal was considered infected or not was made using a
combination of clinical and biological results (see Table 1). Clinical signs
of BRD are often observed late in the disease course (Schaefer et al.,
2007), this is partly caused by the fact that sick animals tend to hide
their clinical signs. Therefore, in this study, we hypothesised that bio-
logical exams provide more informative insights than clinical exams.
Consequently, when there was a disagreement between the two types of
exams, the biological exam was considered the final decision. To
simplify further explanation lets denote by Y obs = {yobs1 ,yobs2 ,…,yobsi }the
space containing the infection

state yobsi,t ∈ {Infected, non − infected} for each individual i at t ∈ {1, 5,
14, 21, 28}

Table 1 describes the data used for this study and Fig. 2 illustrated
how we went from 5 to 12 animal per farm to 1254 individuals in total.
In total, our study involved 9 farms, with each farm hosting up to 3
batches simultaneously. Each batch typically consisted of 5–12 animals.
Veterinarians examined these animals over approximately 30 days, with
multiple observation dates (e.g., t=1, 5, 14, etc.). We treated each
observation of an animal as a distinct statistical individual. Although we
initially had 12 unique animals, the total number of observations (and
thus statistical individuals) increased to 1254. They were a total of 202
different bulls in the 1254 observations, the median number of obser-
vations per bull is 1 and the interquartile range is 4. It is important to
clarify that these 1254 observations do not represent unique animals, as
some were observed multiple times on different dates. A total of 1254
individual data points clustered in individual animals Y obs were
examined by veterinarians to determine their infection state Y obs. Note
that, only a subset of individuals in Y obs were recorded for LUS videos,
specifically 163 individuals. And since each individual can be scanned
on different zones (depending on the zones containing lesions), the total
number of recorded LUS video X obsamounts to 265. Each recorded LUS
video in X obs is associated to a unique infection state in Y obs such that
we have 265 independent pairs (xobs1 , yobs1 ), ..., (xobs265, yobs265) This also means
that 1091 individuals (87 %) in Y obs did not have a recorded LUS video
in X obs.

2.2. Baseline scenario

2.2.1. BRD mechanistic model
In this study, we employed a well-established epidemiological

mathematical model (Fig. 3) for BRD developed by (Picault et al.,
2019a). This model is a stochastic individual-based mechanistic
approach and had been initially calibrated (Picault et al., 2022) to
investigate the influence of farming practices, particularly pen size and
associated risk levels, on the dynamics of BRD, including its morbidity,
severity, lethality, and antimicrobial usage. Their results highlighted the
significant impact of risk reduction strategies implemented during pen
formation, as well as the effectiveness of collective treatments in miti-
gating BRD incidence within high-risk pens.

Implementation and simulation of BRD mechanistic model was
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facilitated by the EMULSION platform (Picault et al., 2019b), allowing
the depiction of all model components in a human-readable, flexible
structured text file processed by a generic simulation engine.

This facilitates collaboration and model refinement by scientists with
diverse backgrounds, including veterinarians and epidemiologists.

2.2.2. Model calibration
The reliability and realistic performance of a mechanistic model

depends on the behaviour of its internal parameters. Parameter infer-
ence refers to optimally adjusting the values of its parameters such that
the mechanistic model can accurately represent real-world observations.
In other words, inference fine-tunes these parameters, aligning the BRD
mechanistic predictions closely with actual veterinarian diagnosis. The
sensitivity analysis (Table 2) in (Picault et al., 2022), aiming to

Table 1
Infection State assignment guidelines. Observations can either be clinical or biological. Decision of infection state of an animal is based on the combination of ob-
servations. Quantities are subdivided into 3 categories.

Observations Decision Quantities

Clinically diseased Biologically diseased Infection state (yobsi ) No. of observations examined1 No. of observations scanned2 No. of LUS video recorded3
(X

obs
)

Yes Yes Infected 68 15 31
Yes No Non-infected 15 2 2
No Yes Infected 128 9 19
No No Non-infected 30 4 6
NE* Yes Infected 0 0 0
NE* No Non-infected 0 0 0
Yes NE* Infected 93 15 29
No NE* Non-infected 910 118 178
NE* NE* Undefined 10 0 0

1 Total number of animals examined by veterinarians
2 Total number of animals having gotten scanned for LUS
3 Total number of LUS Videos recorded

* (NE) Not Examined animals

Fig. 2. Total number of individuals. Going from farm having 5–12 animals, we
end up with over 1000 individuals if we consider each individual to be inde-
pendent at each observation date.

Fig. 3. Overview of the process’s representation in the mechanistic BRD model (Picault et al., 2022). It integrates four processes (infection, clinical signs, detection,
treatment). Animals transitioning to the infectious state (I) also exhibited mild clinical signs (MC), which can be detected (D), leading to initial treatment (T) that can
be repeated. Successful treatment causes the animal to revert to susceptible (S) and asymptomatic (A) states. If successive treatments failed, the process will stop, and
the animal will be ’Ignored’ (Ig).

Table 2
Definition of the three parameters of the BRD mechanistic model to be
estimated.

Parameter definition Notation Min Default max

Initial Condition    
Initial Prevalence (No units) θ1 0.0 0.1 1.0
Epidemiological parameters    
Average duration in Infectious State
(hours)

θ2 0.0 120 + inf

Pathogen transmission rate (h− 1) θ3 0.0 0.008 1.0
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understand the importance of each parameter in the final prediction,
emphasised the significance of parameters like the pathogen trans-
mission rate and the average duration in the infectious state, critical for
managing antimicrobial usage and mortality rates. In the present study,
we focused on determining the optimal values of three crucial param-
eters, θ1, θ2, θ3 as described below.

Table 2 outlines the meaning and permissible range of each param-
eter. The default values for these parameters are derived from the
original publication of the mechanistic model by Sébastien Picault
(Picault et al., 2019a): Initial Prevalence represents the initial propor-
tion of infectious animals within the batch. Average Duration in Infec-
tious State indicates the average time an animal remains in the
infectious state. Pathogen Transmission Rate reflects the average rate at
which a pathogen is transmitted from one animal to an- other. To esti-
mate these parameters, we employed a likelihood-free inference method
called Approximate Bayesian Computation (ABC) (Beaumont, 2019),
specifically regression-based correction methods. This method entailed
sampling randomly, in this particular case 100, parameter values within
a biologically acceptable domain and utilising them to generate simu-
lated datasets through the "average" pathogen model. Selected summary
statistics, specifically, here the count of symptomatic animals, captured
essential features of the observed data and related predictions of the
deep learning model. The similarity between simulated and observed
data was assessed using the Euclidean distance, and the top 1 % of
sampled parameters were accepted. This process facilitated the estima-
tion of the distribution of potential values for the selected parameters. A
type of regression-based ABC method, ABC-NN (i.e., regression by
neural network), was chosen.

It’s noteworthy that the Euclidean distance, with equal weights
assigned to every point, was used as the distance measure to compare
observed and simulated data. This implies an assumption that all ob-
servations were made with the same confidence level.

2.2.3. Baseline implementation
In conclusion of this section, we created a scenario Fig. 4. Ground

truth data (Table 1) is used to determine the infection status of each
animal yobs ∈ {Infected, non − infected}. By aggregating these results, we
obtained the total counts of infected and non-infected animals over time,
we refer to this information as diagnostics (Fig. 1). Similarly, since the
mechanistic model (Fig. 3) can predict the numbers of infectious (I),
susceptible (S), and asymptomatic carriers (pI), if we express the

model’s output as non-infectious being the sum of Susceptible Asymp-
tomatic Carriers, then we can obtain the total counts of infected and
non-infected animals over time, we refer to this information as fore-
casting (Fig. 1). Diagnostics are made during veterinarians’ visits (once
per week on average) whereas forecasting allows a continuous moni-
toring of the total number of infected animals because its predictions are
computed more often (every 12 hours). The ABC parameter inference is
employed to the estimate the optimal values of the three crucial pa-
rameters of the BRD mechanistic model such that its forecasting path can
pass closest to the veterinarian diagnostics. This way we can better study
the evolution of the disease. In theory, since the mechanistic model
follows a set biological rule, its predictions could help inform future
diagnostics of veterinarians. This scenario serves as our baseline, against
which the diagnostic and forecast performance of subsequent methods
presented in this paper will be discussed.

2.3. Automatic diagnostics from a punctual estimator

2.3.1. Deep learning
The baseline method outlined in the previous section is a classical

approach used by modellers to construct and estimate the parameters of
epidemiological models using real-world observations. This approach
relies on veterinarians’ diagnostics, necessitating clinical and biological
examination of every animal during each visit. This implies that a farmer
would have to schedule a veterinarian visit, round up all the animals,
individually consult each one—a process that is laborious, tedious,
costly and susceptible to human errors. Given the many obstacles to
regular diagnosis, we propose in this section an approach aimed at
automating the diagnosis. We developed in this section a spatiotemporal
convolutional neural network (deep learning model) to predict the
infection state yobsi ∈ {Infected, non − infected} of individual animals
using their LUS videos xobsn as input.

The processing of the input dataset X obs (LUS videos) followed
several steps. Initially, we addressed data imbalance in our LUS video
database. Out of the 163 individuals recorded (Table 1), 24 % were
diagnosed as infected animals by the veterinarians, and the remaining
76 % were non-infected animals. To create a balanced dataset, we
applied a downsampling strategy to reduce the total number of non-
infected individuals in the database. However, even with an equal
number of individuals in each class, 70 % of LUS videos belonged to non-

Fig. 4. Baseline Scenario: Traditional BRD study method - Veterinarians diagnose at different time steps animal infection states based on clinical and biological
observations. Using these diagnoses, a modeller employs ABC inference to parameterise an average pathogen BRD mechanistic model (via Emulsion). This model
enables the forecast of the total number of non-infected animals over a 30-day period.
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infected animals due to some animals being scanned multiple times in
different zones (see Sensor Data). Consequently, a second downsampling
strategy was applied to reduce the number of LUS videos in the non-
infected category. In the second step, the data obtained in the first
step was split into a training set (comprising 70 % of videos), a valida-
tion set (comprising 20 % of videos), and a test set (comprising 10 % of
videos). We ensured data integrity by preventing different videos of the
same individual on the same day from appearing simultaneously in

different sets, thus avoiding data leakage. For the test set, we used the
complete data from the two farms that were set aside earlier when
building the baseline method. In other words, the test dataset is both
used to evaluated the performance of the deep learning model (auto-
matic diagnostics) and mechanistic model (forecasting). Handling ul-
trasound videos posed challenges due to varying frame counts (technical
issues when recording) and noisy images (moving animals). The solution
employed, similar to handling text sequences, involved extracting im-
ages from the videos up to a maximum count and if a video had fewer
images, the missing frames would be padded with zeros (Birnbaum
et al., 2019).

A video encompasses both spatial information within individual
frames and temporal information across the entire sequence. To effec-
tively address both aspects in video analysis, we opted for a hybrid ar-
chitecture, specifically a spatiotemporal convolutional neural network.
In our approach, we integrated convolutional layers (Krizhevsky et al.,
2017) with recurrent layers (Bengio et al., 1994). The convolutional
layers focus on extracting spatial features, such as lesions, pleura lines,
or other relevant anatomical details, while the recurrent layers capture
temporal information related to the sequence or frequency of appear-
ance of spatial features. For additional details about the architectures,
including the chosen backbone, the number of layers, etc.

The code for implementation is written in Python (Version 3.8),
utilising Tensorflow (Version 2.15.0) and Keras (Version 3.0.0) libraries
to build, train, and evaluate the deep learning architecture. Optimisa-
tion was performed to find the best hyper-parameters using the Keras-
Tuner library (Version 1.4.6). Additionally, experiment tracking was
employed to monitor trained models through the use of the MLflow li-
brary (2.10.2).

2.3.2. Scenario simulation
Out of the nine farms, we set aside the data from two farms (testing

set presented earlier), creating a sampling pool A of LUS videos xobsi . In a
perfect world every examined individual yobsn ∈ {Infected,non − infected}
in those two farms should have been recorded for LUS video xobsn ,

however that is not the case here. To solve this issue, we had to artifi-
cially re-create a scenario where each examined individual has at least
one corresponding LUS video. Algorithm 1 illustrates how a bootstrap
sampling algorithm was used to generate a LUS video set xsimn for each
examined individual over time. This enables us to create a proper set as
input for an automated pipeline such as the one presented in this work.

Algorithm 1. Population simulation through bootstrap sampling

Out of the 9 farms 5 (Fig. 5), data from 2 farms were set aside spe-
cifically to evaluate the performance of the deep learning model, while
the remaining 7 farms’ data were used for training. To address the issue
of missing data (38 videos), the test sample was reused as a sampling
pool, allowing us to create a complete dataset. This sampling pool was
ultimately used to assess the performance of the method we developed.
The baseline accuracy represents the optimal outcome given that di-
agnoses are made by veterinarians and forecasts are based on their
predictions. Therefore, our goal is to achieve an accuracy as close to this
baseline as possible.

2.3.3. Method 1
In contrast to the baseline scenario where veterinarians manually

provided diagnostics, in the current scenario, we trained a deep learning
model to automatically diagnose yobsi ∈ {Infected, non − infected} all in-
dividuals using only their LUS video xobsi (Fig. 6). In other words, we
replaced the veterinarian diagnostics in Fig. 1 with predicted di-
agnostics. The subsequent steps mirrored the baseline approach, utilis-
ing ABC-NN to calibrate a BRD mechanistic model for optimal alignment
with the predicted diagnosis. Regarding the diagnostics, it is important
to note that we had to assign a virtual LUS video xsimi to every individual
yobsi since they were not all scanned (as presented in the previous sub-
section “scenario simulation”). The evaluation of method 1 involves
three steps: first, we compared its diagnostics performance with that of
the baseline using the Relative Root Mean Square Error (RRMSE).

RRMSE(ydiag,predi , ydiag,obsi ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1
(ydiag,predi − ydiag,obsi )

∑n

i=1
ydiag,obsi

∗ 100

√
√
√
√
√
√
√

Secondly, we assessed its forecasting performance relative to the
baseline by employing the same metric, RRMSE. Finally, we compared
the posterior distribution of parameters obtained using method 1 with
that obtained under the baseline scenario.
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2.4. Uncertainty-aware diagnostics

2.4.1. Uncertainty estimation
Method 1 integrates a data-driven model with a knowledge-driven

model to automatically diagnose and forecast BRD. The output proba-
bilities (softmax layer) from a deep learning model are often mis-
interpreted as indicative of model confidence, sometimes leading to

wrong predictions with high-confidence; A situation with potentially
significant real-world consequences. What if we could enhance Method
1 to distinguish between risky and confident diagnostics, allowing ex-
perts to exploit the most informative predictions for crucial decisions-
making, while applying supplementary examinations to challenging
diagnostics? Model uncertainty refers to the inherent lack of confidence
or certainty that a model may have in its predictions, acknowledging

Fig. 5. Flow diagram depicting the data management process. One portion of the data was allocated for training and testing the deep learning model, while the
remaining data was used to create a sampling pool. This pool was then utilized to generate a comprehensive dataset for evaluating the newly developed methods.

Fig. 6. Method 1 - Automating the traditional BRD study method. A deep learning model is trained on LUS videos and veterinarian examinations (utilized only
during training) to provide punctual diagnoses of animals. These diagnoses are then used to parameterise three key epidemiological parameters of the average
pathogen BRD mechanistic model using ABC inference. This approach enables automated diagnosis and forecast of the number of non-infected animal over a 30-
day period.
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that the model may not always be unequivocally certain about the
correct answer. Various factors, such as limited data, data ambiguity,
model complexity, and noisy data, can contribute to model uncertainty.
A common strategy to quantify uncertainty in deep learning predictions
is the use of Bayesian Deep Learning (BDL) models. Unlike traditional
models, BDL treats model parameters as probability distributions rather
than point estimates. This approach enables the model to offer not just
predictions but also a posterior distribution representing the range of
possible values. Incorporating this element of uncertainty provides a
more nuanced understanding of the model’s output. In BDL, the poste-
rior distribution captures the model’s updated beliefs about parameters
after observing the training data, offering a valuable measure of confi-
dence and variability in predictions.

In this study, we incorporated Monte Carlo Dropout (MCD), a pre-
viously established method to estimate deep learning model uncertainty
(Gal and Ghahramani, 2016). MCD involves employing dropout during
both training and testing phases in neural networks. During training,
dropout randomly deactivates certain neurons, compelling the network
to learn robust features and avoid over-fitting. During testing, the model
is assessed multiple times with dropout enabled, leading to varying
probabilities in the softmax layer based on the dropout rate (proportion
of deactivated neurons). Instead of yielding a prediction with a fixed
softmax probability, MCD produces a probability distribution for each
class, with the predicted class being the one with the highest average
probability (Bayesian model averaging). The uncertainty of the predic-
tion is then quantified here by computing the Shannon entropy over the
probability distribution of the classes. A higher entropy value signifies
greater uncertainty, as the probability mass is spread across multiple
classes. The Shannon entropy, introduced in deep Bayesian active
learning, usually serves as an acquisition function, guiding the selection
of training data with the highest uncertainty in hopes of enhancing
model generalisation.

Following the implementation of a Bayesian approximation in our
deep learning model, the final step is to determine the uncertainty
threshold that optimally separates uncertain predictions from confident
ones. This is achieved iteratively, evaluating the F1_score (harmonic
mean of precision and recall) for each threshold value and identifying
the value that maximises performance in the training set. The precision
is also called the positive predictive value and the recall can be called the
sensitivity.

2.4.2. Diagnostic filtering
Being able to obtain a prediction and its uncertainty level, we

decided in this section to re-use the uncertainty to filter out noisy ob-
servations. Algorithm 2 depict the given instructions to sample only
noise-free observations. Understand here that by filtering out noisy
observations, we are shrinking the original dataset. To simplify under-
standing, let’s denote Ifilteredt = {Nfiltered,infected

1 ,…,Nfiltered,infected
t } the space

containing the count of infected animals in the filtered dataset per ex-
amination date t. Cfiltered

t is the count of total animals (infected + non −

infected) in the filtered dataset per examination date such that
Nfiltered,infected
t ≤ Cfiltered

t .
The code for the implementation is written in Python (Version 3.8),

through the use of libraries of Tensorflow (version 2.15.0) and Keras
(version 3.0.0) to build, train and evaluate the Bayesian deep learning
architecture. Baal library (version 1.9.1) was used to implement filtering
with the Entropy function. Optimization was also performed to find the
best hyper- parameters using library KerasTuner (version 1.4.6).

2.4.3. Method 2
To conclude this section, we introduced a scenario (Fig. 7) where our

Bayesian deep learning model performs batch diagnoses for all animals
during each examination date. Following the batch diagnosis, we
filtered out animals with excessively high uncertainty in the predictions.

Fig. 7. Method 2 - Enhanced automated diagnostics through filtering. A Bayesian deep learning model is trained on LUS videos and veterinarian examinations (used
only during training) to provide precise diagnoses with associated confidence levels. Low confidence diagnoses are flagged for further expert examination, while
confident diagnoses are employed to parameterise the BRD mechanistic model. This approach ensures cautious diagnosis of the number of non-infected animal over a
30-day period.
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Algorithm 2. Diagnostic adjustment through uncertainty-based
filtering

The ratio of infected animals in the filtered dataset was then used as
an estimator for the true ratio of infected animals in the initial unfiltered
dataset. This approach allowed us to obtain a revised diagnosis of the
total number of infected animals per examination date. Similar to the
scenarios outlined in the previous section, we used this new diagnostic
to derive the epidemiological trajectory of the number of infected ani-
mals using the BRD mechanistic model. As in the previous section, we
assessed the performance of this method (diagnosis, forecast, parameter
inference) compared to the baseline, employing the same metrics as for
method 1.

2.5. Uncertainty-aware deep mechanistic model

2.5.1. Ensemble estimator
Using a Bayesian deep learning model allows us to generate pre-

dictions along with as- sociated uncertainties. In this section, these un-
certainties were leveraged to establish a confidence interval for the

number of infected animals around the predicted value. For simplicity,
let’s denote G(.) as the function that takes an LUS video input (xsimt ) and
predicts its infection state state (ypredt ∈ {infected, non − infected}) as a

probability assigned to each class. Through the MCD technique, each
execution of the Bayesian deep learning model on an input yields
slightly different probabilities for each class. In the absence of noise in
the input, the correct class will have the highest probability. However,
with noisy inputs, the model may occasionally assign a higher proba-
bility to the wrong class.

In essance running a Bayesian deep learning model multiple times on
a noisy input will, in most cases, predict the correct class, but occa-
sionally, it may predict the wrong class. This implies that when G(.) is
applied multiple times to all animals (xsim ) in a batch (X sim ), it does
not consistently diagnose the same number of infected animals. Running
G(X sim ) multiple times outputs a distribution of the number of
infected animals P(Ninfected

t ) in the batch. From this posterior distribu-
tion, the confidence interval of the number of infected animals is
derived, and the uncertainty of the diagnostics can be interpreted either
as the variance of the distribution or its entropy.
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2.5.2. Method 3 - uncertainty propagation
In summary of this section, we formulated a scenario (Fig. 8) in

which our Bayesian deep learning model forecasts a range of variation
for the number of infected animals per examination date. The average
prediction from the distribution of infected animals per examination
date serves as the updated diagnostic. We compared this revised diag-
nostic with the baseline using the RRMSE. Furthermore, we introduced a
step to incorporate the uncertainty from the revised diagnosis into the
forecasting phase. During the parameter calibration of the mechanistic
model, weights were assigned to each observation. The distance metric
employed in the ABC-NN process is characterised by the weighted
Euclidean distance, defined by the expression:

Dweighted(yobs, ysim) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1 wi(ysimi − yobsi )

√

Where, yobs is the revised
diagnostics, ysim is the simulated diagnostics (by the mechanistic
model) and wi is the weight of the revised diagnostics expressed as the
variance of distribution of repeated batch diagnostics. The forecast
performance of the mechanistic model fitted with in this scenario was
compared to that of the baseline using the RRMSE metric. Similarly, the
estimated parameters were also compared with those of the baseline.

3. Results

Results are organised as follows: first, we compared the diagnostics
performance of each method (1, 2, 3) to that of the baseline method.

Fig. 8. Method 3 - Enhancing diagnosis and forecast through uncertainty propagation. A Bayesian deep learning model trained on LUS videos and veterinarian
examinations (utilised only during training) provides an interval estimate of the total number of non-infected animals at different time steps. These diagnosis un-
certainties are then propagated to the forecasting model (mathematical model), thereby enhancing its accuracy.

Fig. 9. Diagnostic performance comparison - Predicting the total number of non-infected animals in a farm batch at various observation dates. Methods 1, 2, and 3
employ Lung ultrasound videos as input, while baseline diagnoses are based on veterinarian observations, considered ground truth.
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Secondly, we compared the forecast of each method to that of baseline.
Third we compared the value of the epidemiological parameters of each
method to that of the baseline.

3.1. Diagnostics

Applying each method presented in Section 3, 4, 5 to diagnose the
total number of infected animals in a batch at different time step yield
different results.Fig. 9 illustrates the diagnostic performance for each

method compared to the baseline: baseline diagnostics (represented by
crosses) are supposedly the most confident diagnostic that can be ob-
tained, they were established based on veterinarians’ examinations
(clinical and biological). Method 1 (represented by squares), where a
deep learning model is used as a punctual estimator, yields the highest
errors compared to the baseline diagnostics with a RRMSE of 39 %. Note
here that the deep learning model in itself after optimisation obtained a
F1_score of 72 %. Method 2 (black dots), where the uncertainty of a
Bayesian deep learning model is used to improve its predictive

Fig. 10. Forecast Performance Comparison: predicting the progression of non-infected animals in a batch over 30 days. Ground truth diagnostics (cross) are based on
veterinarian examination. Baseline forecast is fitted to ground diagnostics, while methods 1, 2, and 3 are fitted to their respective diagnoses (paragraph 3.1).

Fig. 11. Parameter inference performance comparison - Estimated distribution of pathogen transmission rate θ3, average duration in infectious state θ2, and initial
prevalence θ1 across methods. The goal is to be as close as possible to this baseline.
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performance, yields the lowest diagnostic errors compared to the base-
line with a RRMSE of 32 %. In, method 3 (box-plots), where a bayesian
deep learning model is used to diagnose in the form of an interval of
variation, it is the mean of the interval that is used final value and which
is compared to the baseline diagnostics. Method 3’s performance is
equivalent to that of method 2.

3.2. Forecasting

Applying method 1, 2, 3 to forecast using their previous diagnostics
yield different results.

Fig. 10 illustrate the performance obtained for each method tested.
The forecast of each method was fitted to their respective diagnostics
(Fig. 9), note that for method 3, its forecast was adjusted to the mean
diagnostic (from the box-plot). The ultimate goal here is to obtain
forecasts that are the closest to the baseline. Method 1, where di-
agnostics are estimated using a deterministic predictor yields the worst
results with an RRMSE of 38.4 %. method 2 and 3, where the uncer-
tainty (or confidence) of each diagnostic is evaluated and re-used, yields
the best results with an RRMSE of 27.2 %. The performance of method 2
and 3 is close to the baseline forecast (which was fitted on veterinarian
diagnostics) the RRMSE is 23 %.

3.3. Parameter inference

The infectious dynamic (forecast) obtained for each method is
characterised by different parameter values. These parameters represent
epidemiological phenomenon’s.

Fig. 11 illustrates the estimated parameter values for each method.
The pathogen transmission rate, an epidemiological parameter indi-
cating how rapidly a disease spreads among animals, is closest to our
reference values (baseline) when using method 2. Similarly, the average
duration in the infectious state, describing the period during which an
infected animal can transmit the disease, aligns closer with our baseline
when estimated using method 2. Initial prevalence refers to the pro-
portion of infectious animals at the outbreak’s onset. Interestingly,
methods 1 and 3 demonstrate better estimation accuracy than method 2
in this regard. Despite similar forecast performances between methods 2
and 3, their estimated parameters differ significantly. BRD was an
example of application of our methodology.

4. Discussion

4.1. Data acquisition process

In our experimental protocol, we structured our sampling periods (t
∈ 1, 5, 14, 21, 28) and selected animals for examination based on con-
straints posed by the availability of farmers and veterinarians. Due to
these limitations, we were unable to collect data from every animal,
leading us to employ bootstrap sampling to generate a comprehensive
dataset. Despite this challenge, bootstrap sampling provided us with the
most objective approach to ensure dataset completeness, given the cir-
cumstances. The encouraging results obtained might incite end-users to
modify the experimental sampling protocol accordingly. deep learning
performances are proportional to the size of the training set. Hence
scaled up to commercials herds, if including a new training phase,
should in theory lead to better performances. But if complete herds were
not going to be scanned, how animals might be prioritised amongst the
herd is a trickier question. By analogy with standard active learning
techniques (Settles, 2009) like query-by-committee, one could rely on
inter raters’ disagreement on clinical signs for such animal selection.
The idea for such selection is that the less the raters agree on the status of
a certain individual, the more information this individual will give about
the frontier between (health) states. Hence, animals could be chosen for
biological and scan exams according to maximum inter raters’ certainty
(healthy or not) and uncertainty (to try to find the best discrimination

between states).
Regarding the sensors used, we relied on lung ultrasound videos, a

tool highlighted in the literature (Ollivett and Buczinski, 2016; Timsit
et al., 2019) for its efficacy in quickly identifying caudal lung lobe
consolidation, lung necrosis, and lung abscessation. However, certain
limitations should be acknowledged. Only lesions adjacent to the pleura
lines were visible, thereby restricting visibility of deeper lesions. Ani-
mals underwent TUS on both sides of the thorax in 6 out of 9 farms.
However, in the remaining 3 farms, this was not feasible due to the type
of restraint used. Within the local farming system, it was challenging to
establish a recruitment criterion that mandated access to both sides of
the thorax, alongside other criteria such as internet access and a suffi-
cient number of animals purchased annually. We acknowledge this as a
limitation, as previous studies in calves have demonstrated relatively
low agreement between consolidations observed on one side of the
thorax versus the other (kappa value = 0.33) (Buczinski et al., 2014).
Similarly, in our study, when evaluating TUS results from the first day
consolidations were detected in an animal, the agreement between the
two sides of the thorax was low (kappa value = 0.30). Additionally,
discerning whether observed consolidations are active or old (scarred)
tissues (Masset et al., 2022) remains challenging. Furthermore, our ac-
cess was restricted to a fairly caudal part of the lung (from the 4th
intercostal space), but we know that lesions typically originate in the
cranial part (Masset et al., 2022), potentially leading to delayed diag-
nosis. We hypothesised that an infected animal could have at least one
pathogen detected in the cranial part, but depending on the pathogen,
lung damage might not always be visible (as the pathogen may remain
only in the upper respiratory tract) or could be delayed, potentially
resulting in false negatives. To address these limitations, future research
could explore integrating various sensor data types, such as video sur-
veillance for behavioural observation, audio recordings for detecting
acoustic events (e.g., coughing, sneezing), and environmental parame-
ters like CO2, NH3, and temperature. By incorporating multi-modal data
simultaneously, akin to a veterinarian’s holistic evaluation (visual,
auditory, environmental), we could provide a more comprehensive
assessment of an animal’s health. Video surveillance coupled with audio
surveillance seems particularly promising due to their synchronised
nature and ability to capture the entire batch of animals more frequently
than lung ultrasound examinations. This would enable synergy between
complementary sampling methods, relatively a specific but continuous
(surveillance) and specific but only punctual (ultrasound).

In any case, whatever the sensor or sampling method, establishing a
consensus on ground truth data remains challenging due to the absence
of a clear gold standard (Timsit et al., 2016). In this study, we defined
rules for diagnosing the infectious state of animals, considering an ani-
mal infectious if it harboured at least one pathogen during PCR exami-
nation. However, this approach carries inherent risks, as not all
pathogens play equal roles (Gershwin et al., 2015), potentially leading
to an elevated rate of false positives. Addressing this ambiguity in
ground truth labelling, recent work has introduced conformal prediction
under ambiguous ground truth (Stutz et al., 2023), leveraging multiple
expert opinions for uncertainty quantification. Employing such methods
with clinical and biological outcomes, even when they disagree, holds
promise for enhancing diagnosis accuracy.

4.2. Automatic diagnostics

Pre-processing data for deep learning models poses inherent chal-
lenges, and in our study, we addressed this by adopting a downsampling
strategy, randomly removing labels to achieve a balanced dataset.
However, we recognise that this approach is sub-optimal as it may result
in the loss of information. To overcome this limitation, we propose the
application of active learning (Gal and Ghahramani, 2016), a technique
where algorithms actively select the most informative inputs from a
large pool of unlabelled data for annotation by a human annotator. This
method has demonstrated effectiveness in enhancing the performance of
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deep learning models, particularly when dealing with highly imbal-
anced datasets (Lee and Seo, 2022).

Our work proves the importance of evaluating the confidence level of
predictions for diagnosis and forecast. As future research could integrate
multiple types of sensor data, automatic diagnostic models must adapt to
accommodate multi-modal approaches. To our opinion, the most
promising way forward is to employ deep audio-visual learning model
(Zhu et al., 2020). It could be a promising avenue for enhancing diag-
nosis accuracy and forecast capabilities in such multi-sensor environ-
ments as it treats audio-visual problems as a whole not as separate parts,
audio and visual.

4.3. Forecasting

In our current understanding, only two epidemiological mathemat-
ical models have been published in the literature. The first model was
introduced in 2019 (Picault et al., 2019a), followed by the second model
in 2023 (Sorin-Dupont et al., 2023). In this study, we employed the first
model, which was calibrated under the assumption of an "average
pathogen" infection to maintain simplicity. Despite parameterising this
model using veterinarian diagnoses (considered the most confident
values), we observed a relative average forecast error of 23 %. This
discrepancy may be attributed to the multi-pathogen nature of BRD,
where the prevalence of each pathogen and their interactions can
significantly influence infection dynamics. To address this complexity,
future research could explore the adoption of a pathogen-specific model
(Sorin-Dupont et al., 2023), offering a more nuanced understanding of
BRD dynamics. In our study, the epidemiological mathematical model
was parameterised through an inference process using Approximate
Bayesian Computation algorithms. We incorporated uncertainties of
observational points (diagnoses) into the process, enhancing forecasts
by weighting each diagnosis according to its confidence level, expressed
as variance. While the inclusion of rules within the mathematical model
has contributed to error reduction, there remains a need to enhance the
integration between observational data, their confidence levels, and the
mathematical model. For instance, ABC is only one of many
likelihood-free methods (Drovandi and Frazier, 2022) that we could
adapt to take advantage of uncertainty- awareness in the deep learning
predictions, hopefully leading to even more accurate and reliable
forecast.

5. Conclusion

This study represents a pioneering effort in leveraging sensor data,
particularly lung ultrasound videos, to cautiously diagnose and forecast
the progression of BRD in a batch. Our method is versatile as it does not
rely on specific sensor types or disease characteristics, making it appli-
cable across various contexts where early detection is challenging. While
acknowledging the imperfections in our data acquisition protocol, the
findings of this study highlight a functional coupling method. To render
it operational for the study of Bovine respiratory Disease, it is imperative
to improve the data acquisition protocol.
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