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Highlights 26 

• Artificially spiking of pathogens leads to removal overestimation 27 
• Current pathogen indicators accurately represent their respective microbial groups 28 
• Temperature, pH, and batch duration affect pathogen reduction 29 
• Spore-forming bacteria, including Clostridium perfringens, are not affected by AD 30 
• Thermophilic AD coupled with heat post-treatment fulfills most legislation limits  31 

 32 
Abstract 33 
Anaerobic digestion (AD)-derived digestate can be used as an organic fertilizer or for soil 34 
amendment. However, its utilization for resource recovery raises valid biosafety concerns. 35 
Despite extensive research on the capacity of AD for pathogen reduction, the variability in results 36 
poses challenges for drawing definitive conclusions. To address this lack of unification, results 37 
from 121 scientific articles were compiled, and a comprehensive meta-analysis was conducted. 38 
Findings indicate that artificial pathogen spiking leads to performance overestimation. Current 39 
most common indicators represent accurately their respective microbial groups. Clostridiaceae 40 
are barely affected by AD and may be favored by some pre-treatment technologies. The impact 41 
of operational parameters and the coupling of pre- and post-treatments with AD on pathogen 42 
reduction was also investigated. While an optimal batch duration was identified, the hydraulic 43 
retention time in (semi)continuous systems did not affect the overall pathogen reduction. Heat-44 
based post-treatments coupled with thermophilic AD resulted in the highest pathogen reductions, 45 
fulfilling legislations. Unprecedented statistical analyses allowed categorizing quantitatively key 46 
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parameters. Results confirmed that temperature is the most relevant parameter. Thermophilic 47 
conditions resulted in the highest pathogen reductions, while psychrophilic and mesophilic 48 
temperatures showed similar performances. The impact of pH on pathogen removal was 49 
confirmed, with acidic and basic values enhancing pathogen reductions. More research 50 
considering all AD products within a multicriteria optimization approach (e.g., pathogen 51 
reduction, biogas production, and digestate quality) is needed to determine optimal conditions 52 
considering all aspects. This study provides novel and relevant conclusions for AD at research 53 
and industrial scale, drawing several R&D perspectives. 54 
 55 
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WoS - Web of Science 94 
 95 

1. Introduction 96 
The need to implement a more sustainable development of society calls for a shift from the 97 
current linear economy to a more circular system. This approach prioritizes the recovery and 98 
recycling of resources from waste, ensuring their reintroduction into the production-consumption 99 
loop. To facilitate this transition, extensive research efforts have been dedicated to the 100 
advancement and implementation of environmentally friendly and cost-effective waste 101 
valorization technologies. 102 
Anaerobic digestion (AD) is among the most widely applied technologies for the valorization of 103 
organic waste streams. AD is a well-established biological process with a triple role: (i) 104 
production of biomethane (used as an energy source), (ii) waste treatment and stabilization, and 105 
(iii) generation of nutrient-rich digestate [1,2]. AD has become a primary technology for 106 
generating renewable energy and facilitating resource recovery, with over 182,000 digesters 107 
operating worldwide at various scales [3]. Thanks to supporting policies, the number of AD 108 
plants has increased significantly in the last decades. In Europe, the power generation capacity 109 
from biogas reached 209 TWh in 2018, representing 7.4% of the total net electricity generated. 110 
Recently, the European Commission presented the ambitious REPowerEU action plan, which 111 
anticipates a twelve-fold increase in AD capacity by 2030 [4]. 112 
This expansion of the AD capacity will require the effective management of larger quantities of 113 
digestate. Currently, around 290-300 million tons/year are produced worldwide, a value that 114 
could be increased twelve-fold by 2030 [5]. Digestate usually contains high concentrations of 115 
easily available nutrients, slowly biodegradable organic matter, and trace elements, making it a 116 
valuable resource applicable as organic fertilizer and for soil amendment [6]. The benefits of 117 
applying digestate as fertilizer are significant compared to commonly used raw organic wastes 118 
(e.g., manure). Digestate presents notable advantages when compared to raw substrates, 119 
displaying lower pathogen concentrations, enhancing nutrient availability for plant absorption, 120 
and reducing considerably the risk of water and soil pollution due to its slow-release nature [5]. 121 
The use of digestate as soil amendment holds the potential to replace 5-7% of the current total 122 
inorganic fertilizer usage [7]. Despite the notable advantages associated with digestate utilization, 123 
its application for resource recovery purposes raises reasonable concerns. The persistence of 124 
pathogenic microorganisms, commonly found in AD feedstocks and thus potentially in the 125 
digestate after the AD process, is one of them. If not managed properly, the agricultural usage of 126 
digestate could lead to the dissemination of pathogens, posing serious threats to animal and 127 
human health [8,9]. 128 
To effectively prevent and mitigate the risks associated with the use of digestate in agriculture, it 129 
is imperative to develop and implement meticulous management and risk assessment protocols 130 
throughout the entire AD lifecycle. These practices, regulated at a national and international 131 
level, play a pivotal role in safeguarding both the environment and public health. For example, 132 
the European Union (EU) has taken a proactive approach by providing comprehensive guidelines 133 
(i.e., EC1069/2009 and EC142/2011) [10,11], which establish standard practices and protocols 134 
for operating AD plants. These guidelines also incorporate sampling collection protocols and 135 
microbiological standards (i.e., maximum allowed concentrations of pathogen indicators), 136 
ensuring that the digestate is suitable for agricultural use. Fulfilling these standards for targeted 137 
microorganisms is therefore crucial, as their presence could limit digestate application. Certainly, 138 
other relevant legislations exist worldwide, such as those in China [12] or the United States [13]. 139 
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Despite being more or less restrictive and allowing different digestate applications, they all share 140 
the same objective: ensuring the safe utilization of recovered resources from digestate. 141 
AD can effectively reduce the concentration of pathogens present in a wide range of feedstocks, 142 
such as sewage sludge, manure or biowaste [14–17]. However, the pathogen reduction capacity 143 
of AD (commonly referred to as hygienization) can be insufficient, resulting in concentrations of 144 
microorganisms in the digestate exceeding biosafety levels. To enhance the microorganism 145 
inactivation during AD, it is crucial to understand and optimize the factors influencing the 146 
pathogen reduction performance. Different factors affecting pathogen removal have been 147 
identified, including the type of pathogens present, the byproducts formed during the process 148 
(e.g., volatile organic acids (VFAs) or ammonia nitrogen), and different operational parameters 149 
(e.g., temperature or retention time). Despite previous efforts done to elucidate optimal pathogen 150 
reduction conditions, the challenge remains, mostly due to the limited scope of many 151 
experimental studies, which assess the inactivation of specific pathogens under specific 152 
operational conditions, thereby resulting in data that cannot be extrapolated and even in 153 
contradictory results. 154 
To address this issue, it is essential to adopt a more comprehensive and holistic approach, for 155 
example, by conducting a meta-analysis of data collected from existing literature. Only two 156 
recent studies have undertaken such an approach, unifying and synthesizing existing data to 157 
understand pathogen inactivation during AD. The first study presented a descriptive review, 158 
limiting its statistical analyses to few factors [18]. It highlighted the considerable impact of 159 
pathogen type, temperature, and reactor feeding mode on pathogen inactivation. Specifically, 160 
thermophilic temperatures and batch mode appeared to be optimal conditions for achieving high 161 
removal efficiencies. While this study provided valuable insights, it left multiple aspects 162 
unexplored. For instance, the impact of the type of reactor lacked a comprehensive assessment, 163 
and critical operational conditions, including pH and organic loading rate (OLR), were not 164 
thoroughly examined. The study did not assess either the effect of coupling different pre- and 165 
post-treatments to AD. The second study conducted a more extensive statistical analysis to 166 
elucidate and quantify how AD operational conditions influence the inactivation of major 167 
foodborne indicator-pathogens [17]. This meta-analysis demonstrated the effectiveness of AD for 168 
efficiently reducing some pathogenic species, such as fecal coliforms, Escherichia coli, or 169 
Salmonella spp. Noteworthy findings include the positive impacts of temperature, high 170 
intermediate VFA concentrations, and pre-treatments on the pathogen reduction performance. 171 
However, this study has significant limitations. Namely, it focused solely on specific pathogens 172 
(i.e., Gram-negative microorganisms), and it analyzed each pathogen individually. The diverse 173 
behaviors exhibited by different groups of microorganisms during AD (e.g., Gram-negative 174 
bacteria, Gram-positive bacteria, Gram-positive spore-forming bacteria, viruses, or parasites) 175 
jeopardize the extrapolation of these results from one group to others. 176 
The present study aims at consolidating and analyzing the available experimental data, providing 177 
a global view of the capacity of AD for pathogen removal. Specifically, the impact of different 178 
operational conditions and reactor designs/types on the pathogen reduction performance was 179 
evaluated. Opposed to previous studies, a wide range of reactors, substrates, and operational 180 
conditions were considered, and all relevant microorganisms were included. For the first time, a 181 
quantitative analysis of the data was conducted to identify the most influencing parameters for 182 
pathogen removal. Additionally, an integrated assessment of the AD treatment line was 183 
performed by investigating the impact of common pre-treatment and post-treatment processes 184 
(either alone or coupled with AD) on pathogen reduction, aiming at identifying conditions 185 
leading to the highest pathogen removal. Lastly, the resulting database was compared against two 186 
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relevant pathogen-related regulations to assess compliance with regulatory requirements. 187 
Considering these diverse factors collectively allowed gaining deeper insights into the overall 188 
effectiveness of AD for pathogen inactivation, and optimizing its pathogen reduction 189 
performance. Increasing the current understanding of the pathogen reduction process is crucial 190 
for developing more efficient waste management processes allowing safe resource recovery. 191 
Ultimately, this research has the potential to contribute significantly to guaranteeing the 192 
production of safe and high-quality digestate, crucial to boosting AD implementation. 193 
 194 

2. Material and methods 195 
2.1. Article search strategy and selection process 196 

A comprehensive literature search was conducted from inception up to May 2023 using the Web 197 
of Science (WoS) database. A set of specific keywords was chosen to identify the articles 198 
focusing on the pathogen reduction capacity of AD. The Boolean string utilized was as follows: 199 
(“Anaerobic *digestion” OR biogas) AND (coliform* OR Enterococc* OR faecalis OR 200 
perfringens OR botulinum OR Citrobacter OR Enterobacter* OR Escherichia OR coli OR 201 
Klebsiella OR Salmonella OR Shigella OR Listeria OR Campylobacter OR Parvovirus OR 202 
Ascaris OR helminth OR egg* OR pathogen* OR *virus*) AND (temperature OR pH OR 203 
“retention time” OR ammoni* OR volatile fatty acid* OR VFA* OR “organic load* rate” OR 204 
biochar OR “conductive material*”) AND (reduction OR removal OR inactivation OR decrease 205 
OR hygieni*ation OR sanitation OR “viable but *culturable*” OR VBNC*) AND (sludge OR 206 
manure OR slurry OR *waste OR slaughterhouse OR “animal by-product*” OR food). The 207 
asterisk (*) is used to represent any sequence of characters. References identified by previous 208 
meta-analyses/reviews were also reviewed [14,15,17,18]. 209 
The eligibility criteria were as follows: (i) peer-reviewed articles published in English and 210 
available in full text, (ii) original studies evaluating pathogen reduction during AD, (iii) original 211 
studies evaluating pathogen reduction including different pre- and/or post-treatments and (iv) 212 
availability of pathogen reduction data or data allowing its calculation. Data from book chapters, 213 
systematic reviews, meta-analyses, conference papers, and letters to the editor were excluded. 214 
Further exclusion criteria included: (i) absence of key inputs or outputs, (ii) reported units 215 
incompatible with pathogen reduction calculation, or (iii) inconsistencies in the provided data 216 
(e.g., unreasonable methane yields or unreasonable volatile solids (VS) reduction values).  217 
 218 

2.2. Data collection 219 
Data were extracted from tables or text in articles. When data were not explicitly provided, values 220 
were extracted from graphs and/or manually calculated. Extracted data were organized in a 221 
spreadsheet using Microsoft Excel. Data encompassed crucial information regarding individual 222 
experiments, such as reactor type, feeding mode, reactor inoculum, feedstock, reactor operational 223 
conditions, and primary process outcomes such as pathogen reduction or methane yield. 224 
Categories were defined for different factors, including reactor types, feedstocks (including 225 
mixtures indicated as “co-digestion”), and microorganisms studied. The full database and a list of 226 
the categories considered can be found in Supplementary Material (Table S1). The database was 227 
also deposited in the research data repository Mendeley Data [19]. Assumptions were applied for 228 
data standardization (see Appendix A). 229 
Pathogen reduction was quantified in terms of Log reduction (LR), expressed as Log10 (N0 / N1), 230 
where N0 represents the initial number of colony forming units (CFUs) or most probable number 231 
(MPN) of microorganisms before AD, pre- or post-treatment and N1 represents the number of 232 
CFUs or MPN after AD, pre- or post-treatment. 233 
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Data obtained using molecular techniques, such as quantitative polymerase chain reaction 234 
(qPCR), were also included in the database [19] and are briefly discussed in Section 4. However, 235 
they were excluded from the meta-analysis due to the limited number of data points available. 236 
 237 

2.3. Statistical analysis and data representation 238 
Statistical analyses were performed using R Statistical Software (v4.3.2; R Core Team, 2023). To 239 
assess significant differences among groups with normally distributed data and homogeneous 240 
variances, analysis of variance (ANOVA) was employed. Post-hoc Tukey’s Honest Significant 241 
Difference (HSD) tests were then applied for pairwise comparisons (differences between groups 242 
are indicated as letters on the top of the boxplots). The validity of the ANOVA assumptions was 243 
evaluated through normality analysis using Shapiro-Wilk tests and homogeneity of variance 244 
using Bartlett's tests. For cases involving non-normally distributed data, non-parametric tests 245 
were employed. Specifically, the Kruskal-Wallis test was used, followed by Dunn's tests for 246 
pairwise comparisons. A significance threshold of 95% (p = 0.05) was applied for all tests. 247 
The provided boxplots display data points corresponding to the lowest datum within 1.5 times the 248 
interquartile range (IQR) of the first quartile, the first quartile itself, the median, the third quartile, 249 
and the highest datum within 1.5 times the IQR of the third quartile. Values falling below the 250 
lowest datum or exceeding the highest datum within the boxplots were identified as outliers. 251 
Partial least squares regression (PLS) analyses were performed to elucidate quantitatively which 252 
parameters were affecting the pathogen reduction performances the most. To do so, the LR was 253 
used as the output variable and the microorganism classification, temperature, pH, and either the 254 
hydraulic retention time (HRT; for semi(continuous) reactors) or the batch duration (for batch 255 
reactors) as input variables. The PLS was performed in R 4.3.2, using the packages pls (function 256 
plsr) and ggplot2 [21,22]. 257 
 258 

3. Results and discussion 259 
3.1. Literature search and screening 260 

In this meta-analysis, a rigorous literature search to identify relevant studies concerning the 261 
pathogen reduction capacity of AD was performed, including articles assessing the impact of 262 
different pre- and post-treatment technologies. Five hundred fifty entries using the previously 263 
described Boolean string were retrieved. The screening process, guided by predefined inclusion 264 
and exclusion criteria (see Section 2.1), was systematically applied. Initial screening of titles and 265 
abstracts resulted in 214 entries eligible for further evaluation. Full-text screening identified 121 266 
articles (N) meeting the inclusion criteria, subsequently included in the meta-analysis. A 267 
complete list of the 121 articles meeting the inclusion criteria and another list including the 92 268 
articles excluded after full-text review (along with the reasons for exclusions) can be found in 269 
Supplementary material (Table S1 and Table S2) and in the Mendeley Data repository [19]. 270 
A total of 2,051 independent datapoints (n) were extracted from the 121 articles. Of these, 1,526 271 
datapoints were dedicated to investigating pathogen reduction during AD, either alone or coupled 272 
to pre- or post-treatment processes (Table S1). The remaining 525 datapoints corresponded to 273 
data specifically focused on pathogen reduction during pre-treatment (n = 350) or post-treatment 274 
(n = 175) processes alone (Table S1). 275 
 276 

3.2. Data overview 277 
To ensure that the resulting dataset was unbiased and that the results could be extrapolated to 278 
general AD processes, a detailed analysis of the sources of the data was performed. The database 279 
encompassed research findings from diverse regions across all five continents (Figure S1), with 280 
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notable emphasis on America (N = 48) and Europe (N = 41). Among these, the USA (N = 24), 281 
Spain (N = 15), and Canada (N = 11) emerged prominently. Noteworthy contributions also come 282 
from China (N = 9) and Japan (N = 8). This global distribution provides a diverse perspective, 283 
enhancing the robustness and global applicability of the presented findings. 284 
Regarding publication years, data reveals a recent surge in studies (Figure S2). From 1997 to 285 
2005, only an average of 2.7 studies per year focused on pathogen reduction during AD. Between 286 
2006 and 2015, this average increased to 4.9 studies per year, reaching its peak after 2016 with an 287 
average of 6.0 studies per year. This highlights the escalating interest within the scientific 288 
community concerning AD and its associated pathogen dissemination risks. 289 
An evident disparity was observed in the scale of the studies, with a substantial majority 290 
conducted at laboratory scale (74.4%), followed by pilot-scale studies (17.3%) and industrial-291 
scale studies (11.6%) (Figure S3A). Concerning AD feedstocks, sewage sludge (50.4%) and 292 
livestock waste & effluents (35.5%) were the most prevalent (Figure S3B). Mono-digestion 293 
studies were predominant (88.4%), followed by agri/biowaste co-digestion (9.0%) (Figure S3C). 294 
 295 

3.3. Impact of artificial spiking on pathogen reduction during AD 296 
The first result of this analysis concerns a crucial aspect regarding the methodology employed in 297 
the gathered studies. While most articles in the database assessed the reduction of autochthonous 298 
pathogens, several articles assessed this reduction after artificially spiking pathogens into the 299 
substrates. This raised a question concerning the potential impact of spiking pathogens artificially 300 
into the substrates on the resulting pathogen reduction performances. To answer it, the database 301 
was divided into two separate experimental groups, one comprising experiments in which the 302 
naturally occurring autochthonous pathogens in the AD feedstock were assessed, and another one 303 
comprising experiments where pathogens had been introduced in the feedstock before AD. When 304 
comparing the performance of these two groups, it is clear that artificially inoculating pathogens 305 
leads to an overestimation of the pathogen reduction capacity of AD (Figure 1). 306 

 307 
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Figure 1. Microorganism Log10 reduction for experiments studying autochthonous pathogen 308 
reduction (naturally present in the feedstock) and for experiments in which allochthonous 309 
pathogens were inoculated. Mean values are represented by blue dots. Identical letters above 310 
boxplots indicate homogeneous groups. n stands for the number of independent datapoints. 311 
 312 
The different pathogen reduction between autochthonous and allochthonous pathogens can be 313 
attributed to the adaptation of native microorganisms to the substrate and to the conditions 314 
occurring during its natural decay (potentially similar to those of AD). Autochthonous 315 
populations may also be protected when present in highly physically structured environments, 316 
such as granules or biofilms. Inoculated pathogens might lack these adaptations, potentially 317 
affecting their survival and persistence. Although the specific susceptibility of allochthonous 318 
pathogens to reduction during AD has not been explicitly compared with that of autochthonous 319 
pathogens, it appears evident that their behavior and fate in AD systems are clearly influenced by 320 
their origin. A similar trend was observed in previous studies where allochthonous viruses and 321 
bacteriophages experienced a rapid decline upon inoculation into sludge compared to the 322 
autochthonous microorganisms [23]. This rapid reduction in numbers was attributed to a matrix 323 
effect. In spiking experiments, the feedstock is also usually inoculated to an initial concentration 324 
of microorganisms higher than their natural levels in the substrate (approximately 1 log10 higher). 325 
The reduced resistance of allochthonous microorganisms, combined with higher artificial 326 
concentrations in the feedstock intended for pathogen reduction, may explain the observed 327 
augmentation in pathogen reductions. 328 
This finding has particularly significant research implications, as it implies that studies focusing 329 
on artificially spiking of pathogens (17.3% of the total) may not represent accurately real-world 330 
scenarios in terms of pathogen reduction. Thus, the obtained LR results might be biased, and 331 
extrapolating the associated conclusions could lead to potentially dangerous overestimations of 332 
pathogen reduction capabilities. Laboratory-scale studies potentially dosed with allochthonous 333 
pathogens might be useful to study specific inactivation factors and/or certain microbial 334 
processes, but the overall microbial reductions should not be extrapolated to scaled systems. 335 
According to this result and to mitigate potential biases associated with the methodology 336 
followed during the studies in the database, the subsequent analyses were conducted using only 337 
data on the reduction of autochthonous pathogens. 338 
 339 

3.4. Impact of the targeted microbial group on pathogen reduction 340 
The first assessment of the overall pathogen reduction efficiency of AD involved a 341 
comprehensive analysis of pathogen reduction across the entire database. The analysis performed 342 
showed an average LR of 2.23 ± 1.81 (n = 810), confirming the well-established understanding 343 
that AD can effectively reduce pathogens [14,17,18]. 344 
Microbial physiology, morphology, and metabolism affect the survival of microorganisms under 345 
different stress conditions. Thus, it is reasonable to hypothesize that they play a pivotal role in 346 
shaping the fate of microorganisms during AD. In practical scenarios, analyzing all the potential 347 
pathogens present in a digestate is impossible. Hence, the selection of pathogen indicators is 348 
essential for effective quality/safety assessments. The EU regulation incorporates specific 349 
indicators such as Escherichia coli (Gram-negative bacteria), Enterococcus spp. (Gram-positive 350 
bacteria), and Clostridium perfringens (Gram-positive spore-forming bacteria) to monitor key 351 
microbial groups in digestates [11,24], although they are not all required in every scenario and 352 
regulatory conformity pathway (see Section 3.11).  353 
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Accordingly, microorganisms were categorized into large microbial groups (including Gram-354 
negative bacteria, Gram-positive bacteria, Gram-positive spore-forming bacteria, and viruses), 355 
and subsequent analyses were conducted. The previously mentioned pathogen indicators from 356 
each microbial group were also considered. Somatic coliphages were also included in the analysis 357 
since they are used as viral indicators at a European level as fecal contamination indicators in 358 
drinking water [25]. The obtained results underline that microorganism resistance during AD is 359 
intricately linked to well-known survival mechanisms and adaptive traits inherent to each group 360 
of microorganisms (Figure 2). 361 

 362 
Figure 2. Microorganism Log10 reduction for different groups (red) of microorganisms and for 363 
their respective pathogen indicators (blue). Mean values are represented by blue dots. Only the 364 
microbial groups with three or more independent values (n ≥ 3) are presented. Identical letters 365 
above boxplots indicate homogeneous groups. n stands for the number of independent datapoints. 366 
 367 
The mean reductions in pathogen concentrations observed during AD varied across microbial 368 
groups, with the most significant reductions observed for Gram-negative bacteria (mean LR of 369 
2.63 ± 1.83). Gram-negative bacteria are characterized by a cell wall featuring a lipid-rich outer 370 
membrane and a monolayer of peptidoglycan [26]. This structural composition provides limited 371 
protection against environmental stress factors encountered during AD, such as non-optimal 372 
temperature or pH values [27]. This is in agreement with previous studies [18]. After Gram-373 
negative bacteria, viruses and Gram-positive bacteria exhibited the second highest reduction 374 
values, with mean LRs of 1.66 ± 1.40 and 1.61 ± 1.57, respectively. Gram-positive bacteria 375 
possess a robust cell wall consisting of multi-layered peptidoglycan interwoven with long anionic 376 
polymers known as teichoic acids [26]. This complex structure gives them more protection under 377 
stress conditions, surviving at a wide range of pH and temperature values or under higher NaCl 378 
concentrations (osmotic pressures) than Gram-negative bacteria [28]. Viruses rely on protein 379 
capsids as their primary resistance mechanism. Environmental factors such as temperature, 380 
humidity, solar light incidence, or air pollutants can significantly affect the viability and 381 
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infectivity of viruses [29]. The created dataset primarily accounted for non-enveloped viruses, a 382 
category known for its high environmental persistence [30]. This consideration explains their 383 
greater resistance to AD compared with Gram-negative bacteria. Finally, Gram-positive spore-384 
forming bacteria were the most resistant to AD, with a mean LR of 0.62 ± 0.74. This result is not 385 
surprising considering that certain spore-forming bacteria, such as pathogenic Clostridium spp. 386 
can survive and even regrow under certain AD conditions [31]. This high resistance can be 387 
explained by their ability to produce intracellular spores, which are a dormant form of vegetative 388 
bacteria highly resistant to physical and chemical stresses [32]. The stimulation of spore 389 
germination followed by inactivation of the resulting vegetative cells could potentially enhance 390 
the pathogen reduction efficiency. 391 
These results are in line with previous studies [18], where similar findings were pointed out. The 392 
authors reported elevated LR values, such as 2.2-5.0 for Gram-negative bacteria and 1.8-3.0 for 393 
Gram-positive bacteria (interquartile ranges). These values are higher than those presented in this 394 
study (2.63 ± 1.83 and 1.61 ± 1.57, respectively). These differences can be attributed to the 395 
potential inclusion of data from studies considering the spiking of pathogens, which were 396 
excluded from this analysis. 397 
To confirm the representativeness of current pathogen indicators, their reductions (Figure 2, blue) 398 
were compared with each corresponding group that they represent (Figure 2, red). Results 399 
showed that the pathogen indicators represent accurately their respective groups (Figure 2). No 400 
significant differences were found between each pair of group-indicators, confirming the validity 401 
of extrapolating the removal of these indicators to each corresponding group. 402 
 403 

3.5. Impact of the reactor type or feeding strategy on pathogen reduction 404 
An analysis was performed to elucidate if the feeding modes and the type of reactors used in the 405 
studies had an impact on the pathogen reduction performances. The feeding mode (categorized as 406 
batch, semi-continuous, continuous and sequential) did not affect the overall LRs obtained 407 
(Figure 3A).  408 
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 409 
Figure 3. Microorganism Log10 reduction for A) different groups of microorganisms and 410 
different feeding modes and B) each microbial group in batch reactors with different durations. 411 
Mean values are represented by blue dots. Only the conditions with three or more independent 412 
values (n ≥ 3) are presented. Identical letters above boxplots indicate homogeneous groups. n 413 
stands for the number of independent datapoints. 414 
 415 
Previous reviews have pointed out that, for some pathogens, batch reactors can lead to enhanced 416 
pathogen reduction [17,18]. This enhancement is generally attributed to transient VFA peaks 417 
during the batch tests [18]. Another possibility is that, while batch configurations ensure that all 418 
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pathogens stay in the reactor for the whole duration of the AD process, the HRT in 419 
(semi)continuous system represents an average, which implies that some microorganisms might 420 
leave the reactor due to short circuits, thus affecting their reduction. The overall data do not show 421 
an enhanced performance for batch reactors, probably because of a main factor determining the 422 
LRs in batch tests: the batch duration. As shown in Figure 3B, the batch duration impacts 423 
considerably the pathogen reduction performance. Therefore, the sampling time for measuring 424 
the pathogen concentration affects the resulting LR. Most previous studies consider the last point 425 
to evaluate the LR in batch tests [18]. As shown in Figure 3, this is not necessarily the optimal 426 
value. The overall LR in batch reactors (considering all the points over time) and the LR 427 
considering only the last point are not significantly different. However, if the LR is calculated 428 
considering the lowest pathogen concentrations (resulting in the higher LR; optimal point in 429 
Figure 3A), batch mode reactors outperform other reactors. This agrees with the hypothesis 430 
suggesting that transient VFA peaks enhance pathogen reduction, implying that once these VFA 431 
are consumed, pathogens can regrow, reducing the overall LR [18]. This phenomenon can be 432 
observed in Figure 3B for Gram-negative bacteria (the most vulnerable group to non-ionized 433 
VFAs [18]). Optimal LRs were achieved at batch durations of 21-30 days, with decreasing values 434 
at higher and lower durations. As vulnerable but fast-growing microorganisms, Gram-negative 435 
bacteria first experience a reduction, followed by growth afterwards, once the VFAs have been 436 
consumed. Gram-positive bacteria and viruses did not show this behavior, as they are more 437 
resistant to high VFA concentrations and usually grow slower than Gram-negative bacteria. Some 438 
of these results should be interpreted with caution due to the low number of data points available, 439 
particularly concerning Gram-positive bacteria and viruses. 440 
While batch mode reactors seem to offer a notable advantage in reducing pathogens compared to 441 
semi-continuous systems, it is crucial to remember that the primary goal during AD is the 442 
production of methane and the generation of a stabilized digestate. Because of this, most studies 443 
take the last point in batch tests (usually a few days after the maximum methane yield has been 444 
achieved, given by a gas “plateau”) for pathogen reduction calculation, which would not be equal 445 
to the optimal LR value. This implies that reactors would not be stopped at the point of highest 446 
pathogen reduction, but once the VFA would have been consumed (i.e., at the final point in 447 
Figure 3). Thus, assuming that the transient VFA peaks are responsible for the improved batch 448 
performance, the LRs obtained in (semi)continuous systems (operated at low VFA values) would 449 
be similar to those from batch reactors. These are the overall LRs that are presented. 450 
Novel fermentative biorefinery concepts aiming to generate other high value-added products such 451 
as VFAs might indeed benefit from this improved pathogen reduction performance. In such 452 
scenarios, (semi)continuous systems would also work at high VFA concentrations, meaning that 453 
batch mode reactors would not necessarily be beneficial either. Research is needed to confirm the 454 
latter. Kinetic studies should also be done following both methane production rates, cumulative 455 
methane productivities, and pathogen reductions to confirm that VFAs are indeed responsible for 456 
the enhanced performances in pathogen reduction and to elucidate if optimal conditions 457 
considering both pathogen abatement and methane yields can be found. 458 
Moving on to the reactor types, most of the reactors used did not show significant differences in 459 
the obtained LRs (Figure 4).  460 
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 461 
Figure 4. Overall microorganism Log10 reduction for different reactor types. Mean values are 462 
represented by blue dots. Only the reactors with three or more independent values (n ≥ 3) are 463 
presented. Identical letters above boxplots indicate homogeneous groups. TPAD stands for 464 
temperature phased anaerobic digestion, AnSBR for anaerobic sequencing batch reactor, PABFR 465 
for panelled anaerobic baffle-cum-filter reactor, PFR for plug flow reactor, FBR for fixed bed 466 
reactor, and STR for stirred tank reactor. n stands for the number of independent datapoints. 467 
 468 
Only multi-stage stirred tank reactors (STRs) and two-stage temperature phased AD (TPAD) 469 
STRs showed enhanced performances. As it will be further detailed in sections 3.6 and 3.7, this 470 
may be a consequence of the low pH values in the first stage of multi-stage STRs and of high 471 
temperatures in the first stage of two-stage TPAD STRs, which is always thermophilic (see 472 
Figure S4 for the separate LRs at different stages) [1,15]. As is further discussed below, both low 473 
pH values and thermophilic temperatures result in higher LR values. 474 
 475 

3.6. Impact of temperature on pathogen reduction 476 
Temperature plays a crucial role in the inactivation of pathogens, guiding a complex and 477 
multifaceted process. The inactivation of pathogens inducted by temperature entails the alteration 478 
of multiple cellular structures, including the outer and inner membrane, the peptidoglycan cell 479 
wall, the nucleoid, RNA, ribosomes, and diverse enzymes. Consequently, deciphering the 480 
specific mechanism leading to cell death poses a complex challenge [33].  481 
The influence of temperature on pathogen reduction during AD has been widely studied. To 482 
confirm previous findings and to assess general trends, the database was categorized according to 483 
the three primary temperature ranges associated with AD: psychrophilic (15-25 ºC), mesophilic 484 
(35-39 ºC) and thermophilic (50-56 ºC). Subsequently, a comprehensive analysis was conducted 485 
to assess the extent of pathogen reduction within each microbial group across these temperature 486 
ranges. Figure 5 illustrates the LR of reactors operated under psychrophilic, mesophilic, and 487 
thermophilic conditions. 488 
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 489 
Figure 5. Microorganism Log10 reduction for different groups of microorganisms and for 490 
different temperature ranges. Mean values are represented by red dots. Identical letters above 491 
boxplots indicate homogeneous groups. n stands for the number of independent datapoints. 492 
 493 
Thermophilic temperatures resulted in significantly higher LRs compared with psychrophilic and 494 
mesophilic conditions for most groups. The analysis also revealed variations in the reduction of 495 
pathogen concentrations among microbial groups across the different temperature ranges. The 496 
most significant effect was observed for Gram-negative bacteria, showing a 2.25-fold higher LR 497 
in thermophilic conditions compared to psychrophilic temperatures. Gram-negative 498 
microorganisms were followed by Gram-positive bacteria (1.53-fold difference), viruses (0.65-499 
fold), and Gram-positive spore-forming bacteria (0.59-fold). These results are consistent with 500 
previous research, confirming that thermophilic AD represents the most effective temperature 501 
choice for pathogen removal [17,18].  502 
These results agree with previous statements, further highlighting the impact of the targeted 503 
microbial group on pathogen reduction performance. The general assumption that Gram-positive 504 
bacteria exhibit higher resistance to heat compared to Gram-negative bacteria [34] is clearly 505 
confirmed. Gram-positive spore-forming microorganisms were the least affected by temperature 506 
variations, as spores can resist higher temperatures than vegetative cells. At lower temperatures, a 507 
decreased LR or even complete persistence of pathogens such as C. perfringens, C. botulinum or 508 
C. difficile was observed. A previous study even documented bacterial growth during AD at 27 509 
ºC, resulting in an increased concentration of C. perfringens and a lower proportion of spores in 510 
the digestate compared to the initial substrate, suggesting germination [35]. 511 
When comparing psychrophilic and mesophilic conditions, it can be observed that the LRs were 512 
only higher for mesophilic conditions for viruses. For any other microbial group, the resulting 513 
LRs were similar. This implies that pathogen removal is not worsened under psychrophilic 514 
conditions, as mesophilic temperatures do not appear to be sufficient to provide an enhanced LR. 515 
 516 
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3.7. Impact of working pH on pathogen reduction 517 
The pH is a well-known parameter affecting microbial growth. For example, pH variations affect 518 
the ionization of amino-acid functional groups, resulting in protein denaturation and activity 519 
decrease. Extremely acidic or basic pH can also cause DNA breakup and lipid hydrolysis, 520 
respectively. The pH also affects several biological processes, such as the proton motive force 521 
and many other reactions involving the turnover of protons. In AD systems, studying the impact 522 
of pH is extremely complex. Not only the pH affects the aforementioned process, but also the 523 
speciation of the most common inhibitors in digesters: VFAs and free ammonia (NH3) [1]. These 524 
interactions go both ways, as pH affects the microbial activity, but metabolic processes also 525 
modify the pH. Both VFAs and NH3 are microbial products that affect (and sometimes 526 
determine) the pH in digesters. Due to the difficulties of separating the pathogen reduction effects 527 
related to the pH itself from those of VFA or NH3 (and due to the general lack of data), only the 528 
overall impact of the reported pH values in the media is discussed here. Discussions around the 529 
findings from individual articles on pathogen reduction related to VFA and/or NH3 can be found 530 
elsewhere [14,15,18]. 531 
Optimal pH values for most microorganisms correspond to neutral values (i.e., around 7). As 532 
shown in Figure 6, AD ecosystems are no exception.  533 

 534 
Figure 6. Microorganism Log10 reduction for different groups of microorganisms and for 535 
different pH ranges. Mean values are represented by blue dots. Only conditions with three or 536 
more independent values (n ≥ 3) are presented. Identical letters above boxplots indicate 537 
homogeneous groups. n stands for the number of independent datapoints. 538 
 539 
For all bacterial groups, the lowest LRs were reported at neutral pH ranges (7.1-8.0). Other than 540 
the neutrophilic nature of the microorganisms, pH values close to 7 result in low concentrations 541 
of both non-ionized VFAs (the toxic form) and NH3, thus reducing their toxicity. pH ranges 542 
above or below neutrality resulted in enhanced pathogen reduction performances. Both Gram-543 
negative and Gram-positive bacteria follow a similar trend, with increased reductions at pH 544 
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values below 7.0 and above 8.0. The high LRs for Gram-positive at low pH values are 545 
particularly noteworthy, but the low number of data points also must be considered when 546 
extrapolating this observation. As for the temperature, the most resistant bacterial group to non-547 
optimal pH ranges are Gram-positive spore-forming bacteria, for the same reasons stated above. 548 
Some pathogenic spore-forming Gram-positive bacteria are fermenters (e.g., Clostridium 549 
perfringens), who are acid resistant and survive at low pH values. This is illustrated in Figure 6, 550 
where this group of microorganisms shows the least noticeable impact of the pH on the LRs, 551 
particularly at low values. The little amount of data for viruses jeopardizes the unbiased analysis 552 
of the obtained results. 553 
Variable and/or non-reported VFA/NH3 concentrations in pathogen reduction studies preclude 554 
the identification of the precise phenomena responsible for the increased LRs. The overall trend 555 
of pathogen reduction data follows a similar trend as the one shown in Figure 6, with neutral pH 556 
ranges (i.e., 6.5-8.0) providing the lowest LRs (Figure S5). 557 
 558 

3.8. Impact of hydraulic retention time and organic loading rate on pathogen reduction  559 
The effect of the HRT on the pathogen reduction performance of (semi)continuous AD is 560 
controversial. While some studies claim that the HRT plays a main role (see [17] for individual 561 
examples for different pathogens), others have not observed any effect [18]. Putting all the 562 
available data together (Figure 7), it is clear from the created dataset that the HRT by itself does 563 
not impact the overall obtained LRs.  564 

 565 
Figure 7. Overall microorganism Log10 reduction for different hydraulic retention time (HRT) 566 
ranges. Mean values are represented by blue dots. Identical letters above boxplots indicate 567 
homogeneous groups. n stands for the number of independent datapoints. 568 
 569 
It is particularly noteworthy that, in agreement with the lower reduction of Gram-negative 570 
bacteria at long batch test durations, long HRTs did not result in enhanced LRs. This is because, 571 
as long as the HRT is large enough to allow a stable and effective AD without considerable VFA 572 
accumulation, longer HRTs will not result in a higher pathogen reduction. For the same reasons 573 
as for the HRT, the applied OLR did not have a significant impact on the resulting LRs (Figure 574 
S6), confirming the negligible effect of these two parameters. In agreement with the previous 575 
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statements, the lowest OLR range assessed (≤ 2 g VS/L/d) did not result in enhanced pathogen 576 
reductions. In fact, the lowest average LR was obtained for this range, suggesting that low loads 577 
(or long retention times) do not enhance pathogen reduction. 578 
Although this conclusion goes against some experimental articles [36,37], this overall assessment 579 
agrees with what has been observed in a previous meta-analysis [18], validating it and suggesting 580 
that it is not a result of sampling biases. The main inactivation mechanisms appear to be related 581 
to other factors, such as the working temperature or pH. The inactivation times associated with 582 
the effect of these parameters are much shorter than common AD retention times (e.g., in the 583 
ranges of minutes-hours), meaning that the extra time provided does not result in any tangible 584 
benefit. 585 
 586 

3.9. Pre- and post-treatments for enhancing pathogen reduction 587 
Several methods for pre- and post-treatment (e.g., alkaline, heat-based, microwave, ultrasonic, 588 
ozonation, filtration, or irradiation) have been assessed for digestate pathogen reduction [17]. 589 
This section presents a systematic comparison between the different approaches that exist, 590 
considering the LR as a single performance indicator. Coupling pre- or post-treatment with AD 591 
results in enhanced pathogen reduction performances with a 1.24-fold increase in LR when 592 
coupled with pre-treatment and a 1.76-fold increase when coupled with post-treatment (Figure 8).  593 

 594 
Figure 8. Overall microorganism Log10 reduction during AD, either alone or coupled with pre- or 595 
post-treatment processes. Mean values are represented by the blue dots. Identical letters above 596 
boxplots indicate homogeneous groups. n stands for the number of independent datapoints and 597 
AD for anaerobic digestion. 598 
 599 
Interestingly, post-treatment led to significantly higher LR values than pre-treatment. In 600 
agreement with the findings above, this might be due to the re-growth of pathogens during AD, 601 
which is obviously avoided when applying post-treatments. This hypothesis is further supported 602 



18 
 

by similar LRs for pre- and post-treatments individually, without considering the AD step (Figure 603 
S7). 604 
A more in-depth examination of the LRs for the different pre- and post-treatments coupled to AD 605 
was conducted, focusing on specific treatment parameters. Pre-treatment conditions exhibited 606 
considerable diversity across studies. For instance, alkali treatment involved pH levels ranging 607 
from 10 to 12. Heat treatment spanned temperatures between 60 and 160 ºC, with durations 608 
varying from five minutes to one hour. Pasteurization conditions (70 ºC for one hour) tended to 609 
be prevalent in this type of pre-treatment. Ultrasound and microwave energy used during 610 
treatment also showed variability, ranging from 2.4 to 27 kJ/g total solids (TS). Despite these 611 
diverse conditions, no significant differences were observed between the performances of most of 612 
the pre-treatment processes studied (i.e., alkali, heat, microwave, ozonation, ultrasound, and 613 
ultrasound combined with heat) (Figure S8). Only results from ozonation (from two studies from 614 
the same group) resulted in higher LRs. These findings must be approached with caution due to 615 
the limited data for certain treatments, with only a single study in some cases, jeopardizing the 616 
extrapolation of unbiased outcomes. 617 
Considering the similar performances, the choice of technology may be guided by other factors, 618 
such as economic considerations (e.g., reduced costs due to energy requirements) and/or 619 
biological aspects (e.g., enhanced substrate biodegradability after pre-treatment). Thermal pre-620 
treatments emerge as a promising option, showcasing the potential for positive energy balances 621 
through increased biogas production with on-site heat generation from biogas combustion. They 622 
offer the additional advantage of scalability, having been successfully implemented at full-scale 623 
for treating sewage sludge, municipal solid wastes, and animal by-products (ABPs) [38]. 624 
However, careful consideration must be given to the fate of spore-forming microorganisms, 625 
which may be favored by these treatments. 626 
Regarding post-treatments, this analysis focused on heat-related processes. Treatment conditions 627 
varied across studies, with temperatures ranging from 60 to 80 ºC and durations spanning from 628 
two minutes to 96 hours. Once again, pasteurization conditions were prevalent. Pasteurization 629 
was indeed the main driver for the overall increase in LR values depicted in Figure 8. 630 
Specifically, when focusing on heat-related treatments, which constitute the majority of the 631 
collected data points, the benefits of post-treatment coupled with AD (mean LR 3.92 ± 1.43) 632 
compared with pre-treatment (mean LR 2.78 ± 2.05) become evident. Thus, pasteurization of the 633 
digestate is preferable to pasteurization of the input substrates (considering pathogen reduction as 634 
the sole criterion). The energy requirements of the latter are obviously lower. 635 
 636 

3.10. Overall assessment of process parameters on the pathogen reduction performance  637 
To perform a quantitative analysis of the data and to confirm the overall trends discussed above, 638 
PLS analyses were performed using the LR as the output variable and the microorganism 639 
classification, temperature, pH, and either the HRT (for (semi)continuous reactors) or the batch 640 
duration (for batch reactors) as input variables. The goal here was not to develop a predictive 641 
model (reason why there is no validation dataset), but to evaluate jointly which parameters were 642 
the most relevant for pathogen removal.  643 
The corresponding score plots support the previous findings (Figure 9). The classification of 644 
microorganisms played a major role in defining the obtained LRs. This is clearly seen for batch 645 
reactors (Figure 9A), where the samples for Gram-negative bacteria, Gram-positive bacteria, and 646 
“other microorganisms” are grouped separately in the plot. Gram-negative were directly 647 
proportional to the LR, while Gram-positive, particularly spore-forming bacteria, impacted the 648 
LR negatively due to their higher resistance during AD (see PLS coefficients in Table S3).  649 
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Figure 9. PLS score plots for (A) batch reactors and (B) (semi)continuous reactors. LR values 651 
were used as predicted variable and temperature (T), pH, batch duration, hydraulic retention time 652 
(HRT), and the microorganism classification (e.g., Gram-negative bacteria (G-), Gram-positive 653 
bacteria (G+), Gram-positive spore-forming bacteria (G+ s.f.), virus, eggs, viable eggs, or others) 654 
as input variables. The two first components explained 39% (A) and 33% (B) of the total 655 
variance. PLS stands for partial least squares and LR for log reduction. 656 
 657 
The same can be observed in the results for (semi)continuous reactors, although two separate sub-658 
groups can be found for the aforementioned microbial groups (vertical dot groups, parallel to the 659 
y-axis). This was due to the temperature parameter, which, as mentioned above, affected the most 660 
the pathogen reduction performance. These sub-groups for (semi)continuous reactors (Figure 9B) 661 
correspond to psychrophilic-mesophilic (vertical group positioned to the left) and thermophilic 662 
systems (vertical group positioned to the right), clearly denoting that thermophilic systems have a 663 
totally different behavior, affecting positively the obtained LRs (Table S3). These two groups can 664 
be clearly found for Gram-negative bacteria, Gram-positive bacteria, and Gram-positive spore-665 
forming bacteria, confirming the similar observation regardless of the microbial group. The 666 
different positions of these microbial groups are related to their resistance to pathogen reduction 667 
(more resistant to the left, less resistant to the right; in agreement with the statement from Section 668 
3.4). The temperature PLS coefficients were always the largest (Table S3), implying that this 669 
parameter had the highest impact on the LR (using the two first components, comprising 72% of 670 
the total variance). The parallel distribution of points for batch reactors with the temperature 671 
vector underlines the crucial importance of this parameter. 672 
Continuing with the batch duration, although it affected the LR less than the temperature, it 673 
clearly impacted the resulting LR. As mentioned in Section 3.5, optimal LR values are obtained 674 
at intermediate batch durations, when the pathogen reduction has been done but before the re-675 
growth of Gram-negative bacteria has occurred. The parallelism of the temperature and the batch 676 
duration vectors in Figure 9A is a construct of the database. Apparently, tests at higher 677 
temperatures lasted longer. The reason for this remains unknown, as there is no particular reason 678 
to run thermophilic tests for a longer period of time. This phenomenon exacerbated the parallel 679 
distribution of points around the vectors of these two parameters, which were the most relevant 680 
for batch reactors. 681 
Regarding the HRT in (semi)continuous reactors, this parameter impacted the predicted LR 682 
values. This might appear in contradiction with the negligible effect described in Section 3.8, but 683 
when looking at the data distribution along the HRT vector and at the HRT scores in the first two 684 
components (Table S3), this finding can be explained. For component 1 (explaining 22% of the 685 
variance; Table S4), the coefficient of the HRT was negative, while for component 2 (explaining 686 
11%), the coefficient was positive (and higher in absolute value than for component 1). 687 
Therefore, the overall trend (Figure 7) resulted in a negligible impact of the HRT, as in some 688 
cases longer HRTs resulted in higher LRs and in others the opposite occurred. This dichotomy 689 
agrees with the literature, where both conclusions have been proposed [17,18].  690 
The pH was found to affect the resulting LRs negatively, which is in agreement with the positive 691 
effect of acid pH values on the pathogen reduction performance. In any case, the overall impact 692 
of the pH on the LR was much lower than that of the microorganism type or the temperature. 693 
The outcomes from these analyses confirm the statements made in previous sections, giving also 694 
numerical outputs (e.g., PLS coefficients) that can be used to compare quantitatively the relative 695 
importance of each of the tested parameters on the pathogen reduction capacity of AD. 696 
 697 
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3.11. Anaerobic digestion for reducing the level of pathogens below regulation limits 698 
To assess compliance with regulatory requirements, the created database was compared against 699 
two relevant pathogen-related regulations in the field of organic waste AD (used for 700 
benchmarking): the United States Environmental Protection Agency (US EPA) Class A biosolids 701 
regulation (EPA/600/R-22/194) [13] and the EU ABP regulation (CE 142/2011) [11]. This 702 
analysis is purely comparative, as the feedstocks, treatment lines, and analytical methods 703 
employed in the studies from the database did not necessarily follow the regulation guidelines for 704 
waste digestion, digestate sampling, or pathogen quantification.  705 
Table 1 presents the limits from the legislations used for the benchmarking exercise. The 706 
regulation CE 142/2011 is applied only to ABP material as defined by the regulation CE 707 
1069/2009, and offers two options for complying: (i) dedicated protocols are followed and E. 708 
coli, Salmonella sp., and Enterococcaceae are below given limits; or (ii) if other standard 709 
protocols are followed (standard processing method 7 in CE 142/2011), Enterobacteriaceae and 710 
C. perfringens are also below limits. The US EPA Class A biosolids regulation claims explicitly 711 
that “the implicit goal of the Class A pathogen requirements is to reduce all the pathogens present 712 
in sewage sludge […] to below detectable levels”. Class A biosolids are post-treated to reach 713 
these criteria, thus allowing for “unrestricted use”. The European criteria are less restrictive than 714 
those from the US EPA because they do not imply unrestrictive use of the material. Several other 715 
EU and regional/national regulations add further innocuity criteria depending on the digestate use 716 
and status. 717 
 718 
Table 1. Summary of the limits given in the regulations used for benchmarking. 719 

Indicator Regulation Implications Limit a Included pathogens 
retrieved in the database 

Escherichia coli CE 142/2011  Requirement for any 
digestion residue produced 
from authorized ABP material 

Lower limit: ≤1,000 
CFU in 1 g 
Upper limit: <5,000 
CFU in 1 g 

Escherichia coli 

Salmonella CE 142/2011  Requirement for any 
digestion residue produced 
from authorized ABP material 

= 0 CFU in 25 g Salmonella spp., 
Salmonella typhimurium, 
Salmonella typhi 

Enterococcaceae CE 142/2011  Requirement for any 
digestion residue produced 
from authorized ABP material 

Lower limit: ≤1,000 
CFU in 1 g 
Upper limit: <5,000 
CFU in 1 g 

Enterococcus spp.  

Enterobacteriaceae CE 142/2011  Further requirement when 
other standard procedures are 
followed (standard processing 
method 7). 

Lower limit: ≤10 CFU 
in 1 g 
Upper limit: <300 
CFU in 1 g 

Enterobacteriaceae 

Clostridium 
perfringens 

CE 142/2011  Further requirement when 
other standard procedures are 
followed (standard processing 
method 7). 

= 0 CFU in 1 g Clostridium perfringens  

Fecal coliforms EPA/600/R-
22/194 

Requirement for Class A 
biosolids (sewage sludge). 
Unrestricted use of digestate. 

<1000 MPN in g TS Fecal coliforms  

Salmonella sp. EPA/600/R-
22/194 

Requirement for Class A 
biosolids (sewage sludge). 
Unrestricted use of digestate. 

<3 MPN in 4 g TS Salmonella spp., 
Salmonella typhimurium, 
Salmonella typhi 

a The CE142/2011 regulation stablishes the number of replicates to be analyzed (usually 5) and two microbial limits. The lower 720 
limit represents the threshold value for the number of bacteria. The result is considered satisfactory if the number of bacteria in all 721 
replicates does not exceed this limit. In addition, the regulation also stablishes the number of replicates that can be between the 722 
lower and the upper limit (maximum value for the number of bacteria). The result can also be considered satisfactory if none of 723 
the replicates exceed the upper limit, even if a given number of replicates are between the lower and upper limits. 724 
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* MPN stands for most probable number, CFU for colony forming unit, ABP for animal by-product, and TS for total solids.  725 
 726 
In Figure 10 (CE 142/2011 benchmarking), the general mandatory requirements in the EU 727 
regulation for ABP-derived digestates (i.e., E. coli, Salmonella, and Enterococcaceae) are 728 
compared with the gathered database (for any feedstock and reactor type).  729 
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Figure 10. Database comparison against the EU ABP regulatory limits (CE142/2011). The 731 
concentration in the digestate of each pathogen indicator is shown for different AD temperatures 732 
and considering additional treatments (i.e., pre- or post- treatment). The red line represents the 733 
upper limit and the blue line the lower limit when applicable. Limits as absence (zero CFUs/g 734 
wet) were adopted as below 1 for graphical purposes. Only conditions with three or more 735 
independent values (n ≥ 3) are presented. Escherichia coli, Salmonella sp., and Enterococcaceae 736 
are mandatory for ABP digestates, while Enterobacteriaceae and Clostridiun perfringens are part 737 
of a particular non-mandatory conformity pathway. CFU stands for colony forming units, AD for 738 
anaerobic digestion, ABP for animal by-product, and n stands for the number of independent 739 
datapoints. 740 
 741 
Most of the concentrations for E. coli were below acceptable limits. Only psychrophilic AD and a 742 
few values for mesophilic AD, both without any pre- or post-treatment, resulted in values above 743 
limits. Thermophilic AD resulted, as expected, as the most effective process to obtain 744 
concentrations below limits. The integration of pre- or post-treatments with AD ensured 745 
digestates with E. coli concentrations below limits, regardless of the AD temperature. 746 
Thermophilic digestates seem to present lower Salmonella levels, which is coherent with results 747 
for Gram-negative bacteria (see Section 3.6). However, Salmonella contamination is punctual, 748 
meaning that Salmonella reduction by itself should not be an exclusion criterion for a given 749 
process, as the presence of this pathogen might occur very rarely. Thus, Salmonella must be 750 
monitored, and eventual contaminated batches of digestates and by-products should be 751 
eliminated. Concerning Enterococcaceae, they follow the previously observed trend for the 752 
reduction of Gram-positive bacteria, with increasing reduction at higher temperatures. As for E. 753 
coli, thermophilic AD and mesophilic AD coupled to pre- or post-treatments resulted in 754 
concentrations below detection limits. Regarding the two indicators applied when other standard 755 
but derogatory methods are used (Enterobacteriaceae and C. perfringens), it can be observed that 756 
few data were available for both. Enterobacteriaceae as an indicator (n = 10) was only available 757 
at mesophilic temperatures. Enterobacteriaceae being a large family of Gram-negative bacteria 758 
(including E. coli), acceptable limits could be expected to be easily achieved by switching to 759 
thermophilic AD and/or by engineered pathogen reduction processes if necessary. Concerning C. 760 
perfringens, none of the available data resulted in acceptable values since its absence is required. 761 
C. perfringens is a recognized fermentative bacterium capable of competing for substrates with 762 
other Clostridia commonly found during AD. Therefore, special attention must be paid in 763 
reactors where its presence is detected, as it may persist in the system rather than being a 764 
transient occurrence [39]. Consequently, C. perfringens (along with other pathogenic Clostridium 765 
species such as C. botulinum or C. difficile) represents a raising concern that, being a spore-766 
forming Gram-positive bacteria, seems to be poorly removed during AD [40]. As it can be 767 
observed, the literature lacks data on the effects of post-treatments on the removal of this 768 
pathogen. 769 
Given the large number of studies that did not provide TS concentrations in the digestates, it was 770 
not possible to calculate the concentrations of indicators for the benchmarking exercises. This 771 
reduced considerably the number of points in the database (n). To overcome this issue, a second 772 
benchmarking analysis was performed, assuming that, for the studies with unknown TS contents: 773 
(i) wet AD had TS values of 5%, and (ii) dry AD had TS values of 15%. This allowed to extend 774 
considerably the number of data points (Figure S9). The observed trends in Figure 10 were 775 
confirmed by this second analysis, further validating the given conclusions. The increase in data 776 
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concerning C. perfringens is particularly relevant, as the database was significantly enlarged and 777 
still the obtained concentrations were always unsatisfactory. 778 
The results for the US EPA Class A biosolids benchmarking (limits for high quality and 779 
unrestricted use) are shown in Figure 11. Data indicate that most thermophilic digestates would 780 
be conforming to fecal coliforms and Salmonella sp. criteria. Most psychrophilic and mesophilic 781 
digestates in the database, with or without pre- or post-treatments, would fail to comply with this 782 
high-quality standard. 783 
 784 

 785 
Figure 11. Database comparison against the US EPA Class A biosolids regulatory limits 786 
(EPA/600/R-22/194). The concentration in the digestate of each pathogen indicator is shown for 787 
different AD temperatures and considering additional treatments (i.e., pre- or post- treatment). 788 
The red line represents the limit. Only conditions with three or more independent values (n ≥ 3) 789 
are presented. CFU stands for colony forming units, TS for total solids, AD for anaerobic 790 
digestion, and n for the number of independent datapoints. 791 
 792 
As for the comparison against the EU legislation, the US EPA benchmarking was also repeated 793 
assuming the TS contents mentioned above (5% for wet AD and 15% for dry AD (Figure S10)). 794 
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This analysis further confirmed the observations extracted from Figure 11, showing the same 795 
trends and similar conditions providing effective pathogen reduction. 796 
While AD does not always reduce the levels of pathogens below regulation limits, a large 797 
fraction of data points fulfills the most restrictive regulation thresholds. In agreement with 798 
previous findings, thermophilic AD and post-treatments allowed fulfilling limits more than any 799 
other working conditions or treatment trains. 800 
 801 

4. Implications for technology implementation 802 
The first two novel points to underline concern how tests for assessing pathogen reduction 803 
performances are done: (i) spiking of pathogens leads to removal overestimation, and (ii) current 804 
pathogen indicators accurately represent their respective microbial groups. Both findings are 805 
crucial, not only for research but also for effective digestate quality/safety assessment and for 806 
optimizing pathogen reduction performances in digesters. 807 
As a general trend, the pathogen reduction effect of AD seems clear. Thus, the agricultural 808 
application of digestates appears to be safer than the direct use of feedstocks (e.g., manure). 809 
Cases where pathogen indicators increase after AD are rare [31]. Pathogen reduction during AD 810 
depends on several factors, including the microbial group of the pathogen (i.e., Gram-negative 811 
bacteria, Gram-positive bacteria, Gram-positive spore-forming bacteria, or viruses). For instance, 812 
on the one hand, Gram-positive spore-forming bacteria showed virtually no removal after 813 
psychrophilic or mesophilic AD. On the other hand, Gram-negative bacteria were effectively 814 
removed by AD (e.g., thermophilic conditions with an interquartile range of 3-5 Log10 reduction). 815 
Operational parameters also affect the pathogen reduction performance. The most relevant is the 816 
temperature. Thermophilic digesters resulted in the highest removals, while mesophilic and 817 
psychrophilic digesters resulted in similar overall reductions for most pathogens. This implies 818 
that, from a pathogen reduction point of view, increasing the temperature from psychrophilic to 819 
mesophilic ranges does not improve the performances. The pH also affects the pathogen 820 
reduction performance, with neutral ranges (commonly found in digesters) resulting in the lowest 821 
pathogen reductions. More research is needed to investigate the effects at both basic and acidic 822 
pH values and to differentiate the impact of the pH itself from that of the concentrations of VFAs 823 
and/or NH3. Assessing these factors separately can lead to a deeper understanding of the 824 
multifactorial process leading to pathogen reduction during AD, particularly at high loads. Long-825 
term (semi)continuous studies should also be performed to account for the possibility of pathogen 826 
adaptation. Novel fermentative biorefinery concepts aiming to generate other high value-added 827 
products such as VFAs might also benefit from the enhanced pathogen reduction performance at 828 
low pH values. In this case, (semi)continuous systems would also work at high VFA 829 
concentrations, implying that the performance of batch reactors would not necessarily be 830 
enhanced compared to continuous reactors. Further research is needed to confirm this. 831 
In link with the previous statement, the batch duration affected the pathogen reduction 832 
performance. Optimal reductions were obtained after 20-30 days, while too long batches (over 833 
30-40 days) resulted in the re-growth of fast-growing organisms (i.e., Gram-negative bacteria). 834 
Importantly for (semi)continuous reactors, neither the HRT (ranges from two hours to 120 days) 835 
nor the OLR (ranges from 0.12 to 26.9 g VS/L/d) had a significant impact on pathogen removal, 836 
implying that these parameters can be optimized according to another criteria (e.g., maximization 837 
of biogas production) without affecting the pathogen reduction performance. 838 
AD combined with pre- or post-treatments tends to enhance overall pathogen removals. Most of 839 
the used pre-treatment processes perform similarly, suggesting that the process selection could be 840 
done considering other factors (e.g., economic and/or energetic). Post-treatment processes (e.g., 841 
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digestate pasteurization) seem to be more effective than pre-treatments, which could be observed 842 
even with the high noise of the pooled data. Looking at details, some studies suggest that in 843 
certain cases, pre-treatment could select thermotolerant bacteria that might regrow as part of the 844 
fermentative consortium during AD [41]. The results presented here show that regulators should 845 
aim at post-treatment as a simple solution (e.g., post-pasteurization) instead of favoring both pre- 846 
and post-treatments equally (as is the general case, for example, with ABPs AD in the EU).  847 
Digestate valorization through post-treatments allowing some extent of resource recovery is a 848 
topic of great scientific and industrial interest, as it can be a lever for ensuring economic 849 
performance of AD. The effect of novel post-treatments (e.g., nitrogen stripping, struvite 850 
recovery, (vacuum-)evaporation, or enhanced thermal drying) on overall pathogen removal 851 
should be more often taken into consideration as a potential additional benefit of these 852 
technologies. A good indicator of this lack of research activity is that no study in the present 853 
meta-analysis database was part of any digestate post-treatment valorization approach such as 854 
those mentioned above. 855 
Regardless of the pathogen reduction treatments used, benchmarking the final digestate pathogen 856 
concentrations to two very distinct quality criteria allowed to conclude that most thermophilic 857 
digestates were conforming to the highest standards, while a post-treatment (e.g., pasteurization) 858 
is highly recommended for mesophilic/psychrophilic digestates. Thermophilic conditions lead to 859 
higher energy requirements, but this might be balanced out by enhanced biogas productivities 860 
[42] and by a safe land application of digestates. Pathogen reduction-wise, two-stage systems are 861 
not recommended, as pathogen removal only occurs significantly in the thermophilic stage. 862 
The absence of studies using molecular methods (e.g., quantitative polymerase chain reaction 863 
(qPCR)) analyzing pathogen reduction during AD precludes their inclusion in the meta-analysis. 864 
This lack of research can be attributed to relevant pathogen-related legislations, which establish 865 
culture-based methods as the standard for studying pathogen concentrations in digestates. Despite 866 
this limitation, the potential of molecular methods as an alternative to culture-based methods 867 
cannot be overlooked. Molecular methods offer the advantage of exploring a wider spectrum of 868 
microorganisms, yet they also have the disadvantage of potentially detecting non-viable 869 
microorganisms (e.g., free genetic material present in the media). Although the pathogen 870 
reduction trend was found to be similar between culture-based and molecular methods in the 871 
database (data not shown), it is important to highlight that the LRs observed when qPCR was 872 
employed were generally lower (probably due to sequencing of genetic material from dead cells). 873 
Further research is needed to extrapolate findings from different methodological approaches to 874 
full scale plants. 875 
Overall, the systematic analysis of pathogen reduction allowed drawing several perspectives for 876 
R&D. For certain microbial groups, AD can be optimized through conventional process levers 877 
(e.g., temperature) to enhance pathogen removal if they become limiting for digestate application. 878 
This is the case of Gram-negative bacteria. Other pathogens, such as C. perfringens, represent a 879 
challenge that must be addressed specifically. 880 
It seems worthwhile, therefore, to investigate the levers of the AD process for pathogen control 881 
through case-by-case studies according to specific contexts of interest (i.e., a given set of 882 
feedstock, digestate, and pathogen group). Despite the generally acknowledged positive impact of 883 
AD, it must be noticed that, particularly for agricultural scenarios, the practical AD input/output 884 
perspective (selecting inflows simply based on economic considerations) overlooks the overall 885 
impact of an AD plant (and its associated sanitary risks) on the evolution of common operational 886 
practices, such as flow pooling and interchange. In this context, the impact of AD can vary, being 887 
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either positive or negative, depending on the baseline practices, their evolution, and adherence to 888 
regulations. These crucial aspects go beyond the scope of the present study. 889 
Finally, it must be mentioned that, given the lack of data from full scale plants, the results 890 
presented here should be extrapolated with caution to large scale installations. The trends 891 
concerning the impact of variables such as pH and temperature and/or microbial groups should be 892 
similar regardless of the scale. However, results from batch and (semi)continuous reactors might 893 
indeed be different already at laboratory, pilot, and industrial scales (results not shown), so it is to 894 
be expected that extrapolating LRs from batch laboratory-scale reactors to full scale processes 895 
(usually (semi)continuous) will result in overestimations of the reduction capacities (even if 896 
allochthonous pathogens were not spiked). As a work based on an analysis of available data, the 897 
conclusions from this study are limited by the amount of data that could be gathered, their 898 
accuracy, and their repeatability. Similarly, it was not possible to differentiate between specific 899 
scenarios, as the amount of data for each case would not be sufficient, leading to biased 900 
conclusions. 901 
 902 

5. Conclusions 903 
The performed meta-analysis has resulted in novel and relevant conclusions for AD at both 904 
research and large scale. The large amount of collected data and the systematic data analysis done 905 
have resulted in a global view of the pathogen reduction capacity of AD. When designing 906 
experiments to assess AD pathogen reduction performance, artificial pathogen spiking leads to 907 
performance overestimation, and thus results cannot be extrapolated to scaled systems. 908 
Importantly, current pathogen indicators accurately represent their respective groups. 909 
Clostridiaceae are barely affected by AD and may be favored by some pre-treatment 910 
technologies. Concerning operational parameters, temperature is the parameter that most 911 
significantly affects pathogen reduction performance. Thermophilic AD resulted in enhanced 912 
pathogen removal, with both psychrophilic and mesophilic conditions resulting in significantly 913 
lower performances. The pH also affected pathogen removal, with both acidic and basic values 914 
enhancing LRs. This is probably due to a combination of the effect of the pH itself and of the 915 
concentrations of inhibitory compounds also affecting pH (e.g., VFAs or NH3/NH4

+). An optimal 916 
batch duration was identified, but the HRT in (semi)continuous systems did not enhance the 917 
overall pathogen reduction, implying that the HRT/OLR values can be set according to the 918 
desired methane production rates. Heat-based post-treatments coupled to thermophilic AD 919 
resulted in the best pathogen reduction performances. These conditions fulfilled most legislation 920 
limits. Further research should focus on multifactorial process optimization, considering the links 921 
between different factors (e.g., pH, VFA, and NH3 concentrations) and developing mathematical 922 
models that allow optimization and scenario evaluations. The impact of novel post-treatments 923 
allowing resource recovery (e.g., nitrogen stripping, evaporation, or enhanced thermal drying) on 924 
overall pathogen removal should also be further studied. 925 
 926 

Data availability 927 
The complete database used in this meta-analysis is available on the research data repository 928 
Mendeley data under the digital object identifier (DOI): 10.17632/3m9ph7j578.2. 929 
 930 

Appendices 931 
Appendix A: Assumptions considered 932 

- If not specified, room temperature was assumed to be 25 ºC. 933 
- If not specified, mesophilic conditions were assumed to be 35 ºC. 934 
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- If not specified, thermophilic conditions were assumed to be 55 ºC. 935 
- If not specified, the type of reactor was assumed to be stirred tank reactor (STR). 936 
- If not specified, the feeding mode was assumed to be semi-continuous. 937 
- Sewage sludge refers to the mixture of primary sludge and waste activated sludge. 938 
- If not specified, sludge was assumed to be sewage sludge. 939 
- If not specified, grams of “dry solids” was assumed to be grams of total solids (TS). 940 
- If not specified, the “reactor volume” was assumed to be the working volume. 941 
- If not specified, CH4 volume (L) was assumed to be given at standard pressure and 942 

temperature (273.15 K and 0.987 atm). 943 
- Except for dry anaerobic digestion (AD), reactors were assumed to be stirred (if not 944 

specified). 945 
- If not specified, chemical oxygen demand (COD) concentrations were assumed to be total 946 

values (i.e., raw samples). 947 
- When reporting concentrations of TS or volatile solids (VS) as weight for weight (w/w), it 948 

was assumed to be equivalent to weight for volume (w/v). 949 
- When studying pre-treatment coupled to AD, the initial TS, VS and COD concentrations 950 

pertain to the pre-treated substrate. 951 
- When studying pre-treatment coupled to AD, the initial TS and COD concentrations pertain 952 

to the substrate before pre-treatment. 953 
- When studying pre-treatment coupled to AD, the initial VS concentration pertain to the 954 

substrate after pre-treatment. 955 
- When heat treatment was performed, the time of treatment represents the time after reaching 956 

the desired temperature (without taking into account the heating ramp). 957 
- When the Colony Forming Unit (CFU) value was <X, CFU was assumed to be to be 958 

equivalent to X. 959 
- When the CFU value was ≥X, CFU was assumed to be equal to X. 960 
- When microbial concentration was reported as Most Probable Number (MPN), it was 961 

assumed to be equivalent to Colony Forming Units (CFU). 962 
- The reporting of N0 and N values displayed variability, with instances presented on a wet 963 

weight basis (CFU/g), on a dry matter basis (CFU/g TS), or in volumetric units (CFU/mL). 964 
When possible, the values were converted to CFU/g TS using the TS concentration of the 965 
feedstock or digestate. A density of 1 g/mL was assumed for volume/mass conversions. 966 
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