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Abstract: A range of remote sensing platforms provide high spatial and temporal resolution insights
which are useful for monitoring vegetation growth. Very few studies have focused on fruit orchards,
largely due to the inherent complexity of their structure. Fruit trees are mixed with inter-rows
that can be grassed or non-grassed, and there are no standard protocols for ground measurements
suitable for the range of crops. The assessment of biophysical variables (BVs) for fruit orchards from
optical satellites remains a significant challenge. The objectives of this study are as follows: (1) to
address the challenges of extracting and better interpreting biophysical variables from optical data by
proposing new ground measurements protocols tailored to various orchards with differing inter-row
management practices, (2) to quantify the impact of the inter-row at the Sentinel pixel scale, and
(3) to evaluate the potential of Sentinel 2 data on BVs for orchard development monitoring and the
detection of key phenological stages, such as the flowering and fruit set stages. Several orchards
in two pedo-climatic zones in southeast France were monitored for three years: four apricot and
nectarine orchards under different management systems and nine cherry orchards with differing tree
densities and inter-row surfaces. We provide the first comparison of three established ground-based
methods of assessing BVs in orchards: (1) hemispherical photographs, (2) a ceptometer, and (3) the
Viticanopy smartphone app. The major phenological stages, from budburst to fruit growth, were also
determined by in situ annotations on the same fields monitored using Viticanopy. In parallel, Sentinel
2 images from the two study sites were processed using a Biophysical Variable Neural Network
(BVNET) model to extract the main BVs, including the leaf area index (LAI), fraction of absorbed
photosynthetically active radiation (FAPAR), and fraction of green vegetation cover (FCOVER). The
temporal dynamics of the normalised FAPAR were analysed, enabling the detection of the fruit set
stage. A new aggregative model was applied to data from hemispherical photographs taken under
trees and within inter-rows, enabling us to quantify the impact of the inter-row at the Sentinel 2 pixel
scale. The resulting value compared to BVs computed from Sentinel 2 gave statistically significant
correlations (0.57 for FCOVER and 0.45 for FAPAR, with respective RMSE values of 0.12 and 0.11).
Viticanopy appears promising for assessing the PAI (plant area index) and FCOVER for orchards
with grassed inter-rows, showing significant correlations with the Sentinel 2 LAI (R2 of 0.72, RMSE
0.41) and FCOVER (R2 0.66 and RMSE 0.08). Overall, our results suggest that Sentinel 2 imagery can
support orchard monitoring via indicators of development and inter-row management, offering data
that are useful to quantify production and enhance resource management.
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1. Introduction

Climate change constitutes a real threat to agroecosystems in Mediterranean regions.
According to Cherif et al. (2020) [1], the Mediterranean basin has undergone a 1.5 ◦C
increase in average annual temperatures in recent decades, and periods of drought have
become more pronounced [2]. Any sustained shift in temperature patterns can affect the
development of vegetation and modify crop growth and phenological development [3].
The Mediterranean basin is extensively planted with orchards, the productivity of which
depends on the timing of development stages. Fruit trees’ ability to intercept incident
radiation, which is a function of the leaf area and tree structure, determines tree yields, and
these are increasingly threatened by high temperatures [4–6] and by water shortages [3,7].

The accurate monitoring of phenological stages and leaf development can improve
the effectiveness of management practices and associated decision-support systems. For
example, Mediterranean orchards routinely require irrigation to ensure economically viable
yields [8]. Irrigation needs to be adjusted according to the stage of development, the soil
characteristics, and the climate [9]; as the tree canopy develops and the leaf surface area
increases, water requirements also increase. Thus, providing water at the right time and in
the right place depends on water managers monitoring vegetation development at both
the field and the catchment scales.

Variations in growth rates and developmental timing across different tree species
significantly complicate the task of monitoring orchard cover. For instance, the phenological
stage crucial for estimating water requirements in cherry trees, which are prevalent in the
Mediterranean region, are the flowering and fruit set stages [10]. Detecting these stages
appears important for water management.

For most orchard varieties around the Mediterranean basin, the fruit set stage is crucial,
as it generally defines the onset of the irrigation season [11].

A range of methods exist for the ground-based monitoring of vegetation development.
For instance, the Biologische Bundesanstalt, Bundessortenamt, und CHemische Indus-
trie (BBCH) scale is a standard often used to describe the main phenological stages [12].
However, even with a growing number of observations from numerous locations (e.g.,
https://tempo.pheno.fr/ accessed on 2 August 2024), data are rarely collected regularly
over space or time. Sampling is often scattered irregularly throughout the growing season,
with some regions being under-sampled. The lack of the consistent ground-based observa-
tion of phenology is currently driving the development of remote sensing as an alternative
platform for crop development monitoring [13–15].

The diversity of spectral ranges and fine spatial and temporal resolutions currently
available means that remote sensing is becoming a valuable tool for crop monitoring [16].
The literature contains a number of contributions reporting on remote sensing as a way
of monitoring landcover change and plant phenology [15,17–19]. In these and related
studies, different vegetation indices (NDVI, SAVI, GNDVI, RDVI, EBI, BC) have been
proposed to monitor phenology and leaf development, although the main focus has been
on cereals [20–22]. Some recent studies have examined the monitoring of forest phenology
using Sentinel 2 [23,24]. Again, most exploit vegetation indices to detect specific pheno-
logical stages, such as the start of the season or senescence [24–26]. To date, comparatively
few studies have explored the use of remote sensing to monitor phenological stages in
orchards [14,27]. Orchards, which often include tree rows that are interlaced with bare soil,
grass, or rocks, make the interpretation of the remote signal more complex [28–30].

Biophysical variables such as the leaf area index (LAI), fraction of vegetation cover
(FCOVER), and fraction of absorbed photosynthetically active radiation (FAPAR) are reg-
ularly used to describe vegetation structure. The LAI can be related to the area of photo-
synthetic elements developed by the plant per unit of horizontal ground area [31,32]. It
represents the ratio between the total area of all leaves (on one side only) per unit of soil
surface area (expressed in m2/m2). The LAI is not influenced or affected by the conditions
under which observations are made [33,34]. Depending on measurement methods, e.g., if
a ceptometer is used, the plant area index (PAI) may be considered instead, covering green
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parts (leaves or grass) as well as trunks or stems [35]. The FCOVER represents the fraction
of ground covered by green vegetation, while the FAPAR corresponds to the fraction of
photosynthetically active radiation absorbed by vegetation for photosynthesis [36]. The
FAPAR is a key variable for estimating the chlorophyll concentration in the plant [37] and
is determined by the canopy leaf area, leaf tilt, and zenith angle of the sun [34]. These
variables are critical for understanding plant growth and can be used to monitor the de-
velopment stages [38,39]. The FAPAR is essential for plant productivity and is closely
related to the phenological stages, as changes in the FAPAR indicate leaf development and
senescence. Various studies have also shown that vegetation indices can be calibrated and
validated against ground-based measurements to accurately estimate these BVs for various
crop types [40,41]. These biophysical variables provide information that is essential to the
characterisation and modelling of vegetation functioning [42,43]. They play a critical role as
indicators of mass and energy exchange processes, such as radiation and rain interception,
as well as in photosynthesis and respiration [44,45].

To estimate these biophysical variables from remote sensing, Weiss et al. (2002) [46]
developed the BVNET model based on radiative transfer and neural networks. Many
studies have used such biophysical variables for crop monitoring [34,47], although few
have focused on orchards [27,48,49]. As noted earlier, this is partly due to the complexity
of modelling the spectral signal given orchards’ structure, heterogeneity, and the mixing of
trees and inter-rows (grassed or non-grassed). To overcome this, orchard characterisation
is often addressed using very high-resolution drone images [50–52] or sensors such as
RapidEye, Quickbird, or Skysat [53]. However, these sensors can only cover limited
areas and periods and are often costly. Similarly, there has so far been no validation of
biophysical variables estimated from the BVNET model on orchards. Determining whether
Sentinel 2 data, freely available via the Copernicus programme, can be combined with the
BVNET framework to reliably estimate biophysical variables in orchards is a key motivation
behind the present work (detail in Supplementary Figure S1).

Ground measurements are essential to validating remote-sensing-based estimates [44,54–56].
Most ground methods of assessing the FCOVER or LAI were developed for cereal crops or
grasslands [57], the reference being the destructive sampling method, where all of an area’s
leaves are measured with a planimeter [57,58]. While this method remains the gold standard, it is
often difficult to apply in practice. This is particularly true for fruit trees (outside of experimental
domains), since only a few trees can be sampled, only once a year, and generally only at the end
of the fruit harvest [59,60]. The three methods based on optical methods alternative to destructive
sampling methods that have been applied in this study are presented below:

i. A ceptometer is a tool often used to estimate crop PAI. It measures the solar radiation
above and below canopy and calculates the canopy PAI based on the ratio between
the two [61];

ii. Hemispherical photography uses photographs of the canopy acquired with a hemi-
spherical (fish-eye) lens [62,63]. The can-eye software.495 developed by Weiss
et al. (2008) [63] (https://www6.paca.inrae.fr/can-eye/ accessed on 2 August 2024)
facilitates the computation of the main biophysical variables;

iii. The Viticanopy application proposed by De Bei et al. (2016) [64] is an easy-to-use
method based on photographs collected from a smartphone.

The sampling strategy used to record the LAI is probably as crucial as the technical
choices regarding measurements. There is no real consensus on ground measurement
protocols to estimate the FCOVER or LAI for fruit trees. The structure of orchards is highly
spatially variable, and measurement accuracy involves sampling at multiple locations
within and among fields, regardless of the measuring device. Makhloufi et al. (2021) [65]
proposed a sampling strategy for olive trees based on tree size, characterising plots of three
adjacent rows (each containing three olive trees) within a Sentinel 2 pixel. Orlando et al.
(2015) [66] used a mobile app to measure the LAI for plants arranged in rows, with the
device positioned below the canopy at a distance from the trunk of approximately half the
crown radius. Eight measurements were then obtained while moving in parallel to the row.

https://www6.paca.inrae.fr/can-eye/
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Poblete-Echeverría et al. (2015) [67] compared different ground measurement methods for
apple orchards, including a destructive method, digital photographs, and a ceptometer.
Representative apple trees were selected in each field and the trees were then divided into
four quadrants, with four photographic images acquired per tree. In all cases, consistency
in the timing of imaging appears to be very important, given that in fruit tree orchards, the
radiation transmitted can vary significantly throughout the day. Although all the methods
used to estimate the LAI are subject to highly variable error, the error can be kept within
acceptable limits via extensive (and costly) sampling [68].

From this brief review, it appears that very few studies have addressed the assessment
of BVs of fruit orchards. This is largely due to the inherent complexity of their structure,
with trees being mixed with inter-rows that can be grassed or non-grassed, involving
different irrigation management practices. Inverting biophysical variables obtained from
optical satellites remains a challenge with such tree covers. The impact of the background
(inter-row) on the spectral signature at the scale of the Sentinel 2 pixel has not yet been
quantified. Nor have any standard protocols been defined for acquiring representative
ground measurements relevant to characterise the main biophysical variables (BVs) in the
differing Mediterranean orchards. The BVNET model can be applied to Sentinel 2 images
for orchard areas, but there has been no validation to date of BVs on fruit trees. The main
objectives of this study are therefore to (1) address the issues around inverting biophysical
variables from optical data by proposing new protocols for ground measurements to
assess biophysical variables characterising a range of orchards with different inter-row
management systems, (2) quantify the impact of the contribution of the inter-row at the
Sentinel 2 pixel scale, and finally, (3) assess whether Sentinel 2 BVs can be used to monitor
orchard development and to detect key phenological stages such as flowering and fruit set,
as an aid to irrigation timing.

2. Data and Methodology

The Viticanopy, ceptometer, and hemispherical photograph approaches were applied
to capture biophysical variables across a range of orchards, including cherry, nectarine, and
apricot. The temporalities for these measurements were sometimes different because of the
manpower and time required to carry out these field campaigns. The periods are described
in detail in the following sections. Figure 1 provides a summary of the different approaches
and scales explored. At the watershed scale, several fields (red rectangles on Figure 1) were
selected for ground measurements. In each field, a representative plot including 3 by 3 trees
has been monitored by different methods to assess the biophysical variables and the
phenological stages. Three trees (in red) are monitored by three methods. The ceptometer
provides the PAI; the Viticanopy app provides the PAI and canopy porosity; hemispherical
photographs provide the FCOVER and FAPAR at the field scale. The performance of each
technique is evaluated from the field to watershed scale, using Sentinel 2 imagery. The time
series of BVs obtained at the plot level were analysed to detect phenological stages, and the
correlations between BVs obtained from Sentinel 2 and from ground measurements were
analysed to validate the BVNET model.

2.1. Study Areas

Our study was conducted within two different areas in southeast France, approxi-
mately 80 km apart (Figure 2). The sites included locations within the Ouvèze–Ventoux
watershed, containing various cherry tree orchards (Figure 2b), as well as a large com-
mercial farm in the La Crau area with a range of varieties of fruit trees (Figure 2c). These
two sites have been included in the research projects of the involved teams for several
years (PRIMA EU IRRIWELL). Each site includes a weather station and soil moisture
measurements described in detail in Rouault et al., 2024 [69] (see Supplementary Part S1 for
description). Soil moisture was measured in five different orchards (in bold in Table 1), with
capacitive probes arranged at varying depths between 0 and 50 cm (0–15, 15–30, 30–50 cm).
Continuous data were averaged every 30 min from 15 May 2021 up to now, on both the
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row and the inter-row. The five fields were selected to cover the variability encountered at
the watershed scale in terms of soil, irrigation practice, and inter-row management. These
two areas were chosen to represent the diversity of Mediterranean orchards and farming
practices and were monitored inclusively from 2021 to 2023. In the Ouvèze–Ventoux area,
there is a range of approaches to the management of inter-rows (grassed, non-grassed) and
of irrigation techniques (micro-sprinkler and drip) (see examples Figure 2b).

In the La Crau area, orchards are considerably larger and have more homogeneous
planting patterns, with drip-irrigation and different cultivars (see Table 1 and Figure 2c).
Each site is described in detail in the following sections.
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Figure 1. Schematic of the three approaches used to monitor orchard development at different spatial
scales throughout the year (from tree level for phenological observations to watershed level using
Sentinel 2 data).

Table 1. Characteristics of the orchards studied in the Ouvèze region (id: identifier, the fields in bold
are also monitored with soil moisture measurements described in Section 2.1).

Id Crop Cultivar Monitoring
Years

Number
of Plots Area (ha) Planting Pattern (m)

(Inter-Tree × Inter-Row)
Irrigation

Type Grassy

50 Cherry 1 Summit + 1 Belge
+ 1 Burlat 2021 to 2022 1 0.72 6 × 7 Drip Yes

56 Cherry 2021 1 0.84 8 × 7 Drip Yes
72 Cherry 2 Belge + 1 Summit 2021 to 2023 1 0.89 7 × 7 Micro-sprinkler Yes

183.1
183.2
183.3

Cherry
2 Summit + 1 Sweetheart

2 Belge + 1 Summit
2 Belge+ 1 Summit

2021 to 2023
1 (2021)
3 (2022)
1 (2023)

1.09 5 × 5 Drip No

259 Apricot 2023 1 0.48 4 × 4 Non-irrigated No
1378 Cherry 2021 1 0.54 7 × 7 Non-irrigated Yes

1409 Cherry 2 Belge + 1 Noir
de Meched 2021 1 0.42 6 × 7 Drip Yes

1418 Cherry 2 Folfer + 1 Earlise 2021 to 2023 1 0.22 6 × 7 Micro-sprinkler Yes
1423 Cherry 3 Belge 2021 to 2023 1 0.62 6 × 7 Micro-sprinkler Yes
3031 Cherry 3 Summer Charm 2021 to 2023 1 0.43 6 × 7 Micro-sprinkler Yes

3099.1
3099.2
3099.3
3099.5

Cherry

3 Prime Giant
2 Belge + 1 Summit
2 Belge + 1 Folfer
2 Belge + Summit

2021 to 2023 1 (2021)
4 (2022/2023) 4.57 5.5 × 7 Drip Yes

3150 Cherry 2 Belge + 1 Summit 2021 1 3.09 5 × 5 Drip Yes
3311 Cherry Belge + Summit 2021 to 2023 1 0.74 7 × 7 Drip Yes
3463 Cherry 2 Van + Burlat 2021 to 2023 1 0.33 6 × 7 Micro-sprinkler Yes

2.1.1. Description of Orchards Monitored in the Ouvèze–Ventoux Watershed

The Ouvèze–Ventoux watershed (centred 44◦13′050′′N, 5◦8′579′′E), covering an area
of around 100 km2, lies to the northeast of Mont Ventoux, the highest point in the Vaucluse
département at 1915 m. The altitude of cultivated fields ranges from 209 m above sea
level (asl) on the plateau area to 600 m asl near Mont Ventoux. The main cultivated area
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is the large Entrechaux plateau (around 300 m asl), while other cultivated areas (cherry
trees) are found in a narrow valley called “le bout du monde”, which is colder and less
sunny due to its topography (a microclimate that impacts leaf development). The average
annual temperature of the basin is around 14.4 ◦C based on a 30-year average from the
Carpentras weather station, which is 15 km SW of the study area. The station records an
annual rainfall of around 650 mm, mainly in autumn and winter. This region principally
cultivates vineyards (699 ha, 38% of the territory, including irrigated table grapes and
non-irrigated wine grapes) and orchards (631 ha, 34%) of cherry, apricot, plum, and other
fruit trees, usually on family farms with many small fields (<2 ha). The cultivation methods
vary widely across the catchment area, reflecting the diversity of environments and farmers.
Most orchards are grassed and often drip-irrigated (80%). However, some farms use
different management systems, including non-weeded fields, micro-sprinkler irrigation
(10%), and sprinkler irrigation. A few orchards are non-irrigated.
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Figure 2. (a) Locations of the monitored orchards in the Ouvèze–Ventoux watershed (green points at
right) and in the La Crau area (yellow points at left), (b) pictures of 2 cherry orchards (13 September
and 22 July 2022): top, non-grassed orchard drip-irrigated by two rows of drippers and bottom,
grassed orchard drip-irrigated in summer, (c) pictures of 2 orchards in La Crau (top, nectarine tree in
spring 22 March 2023 and bottom, in summer 26 June 2022).
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Cherry trees are the most common type of orchard in the Ouvèze–Ventoux watershed;
most farmers start field irrigation after the flowering stage, when the fruit set stage occurs.
The specific date of this fruit set stage fluctuates depending on cherry tree cultivars and the
local microclimate [70]. Typically, a single plot contains different cherry tree varieties to
ensure a staggered harvest and to cater to diverse market demands (an example is provided
in Supplementary Figure S2 for the biggest plot 3099). Common cherry tree varieties found
in the region include “Prime Giant” (early), “Belge”, “Burlat” (late), and “Folfer” (seasonal).
As noted above, most orchards have grass in the inter-rows, although some farmers mow
the grass once or up to three times annually to reduce competition for water. Other farmers
choose not to mow, resulting in a yellowing effect during the summer months after the
fruit harvest, when irrigation levels decrease [71]. Five orchards were monitored for soil
moisture with capacitive probes arranged at varying depths from 0 to 50 cm (continuous
measurements from 2021 to the present).

To represent the diversity of farming practices within this region, 14 orchards were
selected for further study: 13 cherry orchards and 1 apricot orchard. We chose more
cherry trees as they are dominant in the region compared to apricot trees. The number of
monitored fields have been defined to cover the variability in both the soil properties, the
inter-row and irrigation management, and the varieties. Another criterion was the acces-
sibility of the plots, i.e., having the authorization of the farmers to make measurements,
and also that all the measurements for the whole basin could be carried out on the same
day. Their main characteristics are summarised in Table 1. The sites covered different man-
agement approaches to inter-rows (with or without grass) and irrigation (drip-irrigation
or micro-sprinkler irrigation). During the period of our study, some farmers transformed
individual fields, with trees uprooted in 2022 in field 50 and half of field 183 developed as
a greenhouse. We therefore included an additional field in 2023, as a replacement. Over
the course of the study, 13 orchards were monitored in 2021, 9 in 2022, and 10 in 2023 (the
number decreased from 2021 to 2023 because one typology was used to represent those
fields showing very similar behaviour and also because the 2023 protocols involved more
ground measurements).

For each of the monitored orchards, at least one representative plot including 9 trees
(on 3 rows) was chosen for measurements, to ensure consistency throughout the study
period. In the largest field (#3099, 4.6 ha with different cultivars), 4 plots were monitored.
Three plots were monitored in field 183 for the year 2022, but only one was sampled in
2023 due to the modification of the orchard by the farmer. Table 1 shows the range of
cultivars in the different plots sampled, each with 3 rows of 3 trees and 2 inter-rows. Three
trees (in red in Figure 3) in the 3 × 3 diagonal were monitored specifically for the different
measurements, with protocols described in the following sections according to each sensor
type. Most plots contain 2 different cultivars.

All monitored fields and the locations of the different plots were compiled in a spa-
tialised database. The database was constructed using data from the European LPIS
(Land Parcel Identification System) cadastral database, which includes all plots declared
by farmers (to obtain subsidies), spanning the period from 2017 to 2021. The LPIS was
supplemented with ground and satellite-based observations.

2.1.2. Description of Orchards Monitored in the La Crau Area

The La Crau area (centre 43◦34′40.8′′N, 4◦52′44.4′′E, 5 m asl) is bordered on the
west side by the Rhône river and on the north by the Alpilles mountain range. The
region is predominantly flat, with a surface area of approximately 600 km2 [72]. It has
an annual average rainfall of 500 mm and a mean air temperature of between 15 and
16 ◦C [73,74]. The soils are shallow, ranging between 40 and 80 cm in depth, with a high
proportion of rocks [73,75], making their available water capacity low. A large farm (120 ha)
with commercial orchards was selected to monitor the fruit trees, nectarine (seasonal and
early varieties), and apricot trees (early and late). The farm was extensively monitored,
and complementary measurements were available to assist in analysing water restriction
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scenarios for irrigation (PRIMA EU Irriwell project). The field pattern is very regular,
with each field forming an elongated rectangle (280 m long and 50 m wide) separated by
windbreak hedges. The orchards are designed for industrial production, with a wide variety
of cultivars (early, late, and seasonal (Table 2)). All the fields have grassed inter-rows, and
the trees are planted on small soil mounds roughly 30 cm high. All are drip-irrigated from
April to September (around 480 mm from June to September). Ground-based monitoring
was performed on 4 fields (plots 4-18-20-47), as described in Table 2 (see also Figure 2a). In
field 20, which contained nectarine trees (Prunus persica var. nucipersica), there was reduced
irrigation (−30% of applied water) on one row; this field was monitored at two locations,
with (20a in Table 2) and without water restriction (20b). In the other fields, only one plot
each was monitored, including an early nectarine (number 4), a late apricot (18), and a late
nectarine (47) field.

Table 2. Main characteristics of the monitored orchards in the La Crau area (all fields are drip-irrigated
and have grassed inter-rows and the same rootstock INRAE “Amandier × pêcher GF 677”).

Id Crop Cultivar Precocity Water
Restrictions Monitoring Years Planting Pattern (m)

(Inter-Tree × Inter-Row)

4 Nectarine Big Fire Early No 2022 to 2023 5.5 × 3.5
18 Apricot (Under numbers) Late No 2022 to 2023 5.5 × 3.5
20 Nectarine Queen Glory Season No 2022 to 2023 5.5 × 3.5
20a Nectarine Queen Glory Season Yes (−30%) 2023 5.5 × 3.5
20b Nectarine Queen Glory Season No 2023 5.5 × 3.5
47 Nectarine Nectasweet Early No 2022 to 2023 5.5 × 3.5

2.2. Sentinel 2 Data and Image Processing

Sentinel 2 data have been free thanks to the European Copernicus program since 2016.
These data provide a frequent revisit time of 3 to 5 days and high spatial resolution in
the visible and near-infrared spectral bands, with a pixel size of 10 m. Available Sentinel
2A and B images were acquired for our study sites (Tile 31TFJ) via the THEIA platform
(https://www.theia-land.fr/ accessed on 9 August 2024), using Level 2A data corrected
for atmospheric effects to provide top-of-canopy reflectance. We have downloaded data
from 2016 up to 2023. The last three years were used for comparison with the ground
measurements (in 2021, 61 cloudless images, in 2022, 78, in 2023, 65). Reflectance from
the green (B3), red (B4), and near-infrared (B8) spectral bands were then used in the
BVNET model [76,77] to estimate the LAI, FAPAR, and FCOVER biophysical variables.
The BVNET model is based on combining the SAIL radiative transfer model [78] with
a neural network and has previously been evaluated across a range of crop types [17,79,80].
However, no validation has yet been conducted on orchards. The biophysical variables
were computed by the BVNET model at the pixel level, representing an area of 10 × 10 m.
For each monitored field, the mean values of the BVs at the pixel level were computed for
all cloudless acquisition dates (204 images for the whole period). A temporal interpolation
method was then applied to obtain daily values by smoothing for each field using the
“WhittakerFilt” R function [81]. Figure S1 in the Supplementary Part S2 summarises the
main data-processing steps.

2.3. Ground Measurements for Monitoring of Orchard Development

There were three methods of data acquisition around each tree of the selected plot:
hemispherical photographs, ceptometer measurements, and the use of the Viticanopy
application. Although the three methods used for ground measurements differ in their
acquisition systems, it can be seen from Figure 3b that the measurements were performed
at the same locations with respect to the trees, and always addressed the same plots and the
same three trees (illustrated in red). All measurements for the three methods were acquired
at the same date to have the same sun and leaf inclination angles.

https://www.theia-land.fr/
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2.3.1. Hemispherical Photographs: Acquisition and Processing

For each plot, hemispherical photographs were taken using a Sony Alpha 5100 camera
equipped with a Lensbaby circular fish-eye lens. Images were collected once a month from
2021 to 2023. More frequent monitoring every 10–15 days was scheduled during the leaf
development stage up to maturity. Photographs were taken aiming both at the ground
(14 photos per plot) and at the sky (56 photos per plot at each date). All photographs were
processed through a python algorithm (developed specifically for this work) to derive the
FAPAR and FCOVER biophysical variables for both the inter-row and tree canopy. The main
processing steps are summarised in Figure 3a. In Figure 3a, we can see an upward-aimed
photo of the tree canopy on the top; on the bottom, we can see a downward-aimed photo of
the ground cover. First, the algorithm uses a manually created mask to delete the operator
from photographs. Then, the algorithm cuts the image at a 60-degree angle, retaining only
the central part. The algorithm asks the operator to define which areas correspond to green
vegetation (grass or leaves) and bare soil or sky. A training dataset was developed based on
188 upward-aimed and 160 downward-aimed photographs, while the validation dataset
was composed of 40 upward-aimed and 74 downward-aimed photographs. The training
dataset covered a wide range of species (cherry/apricot/nectarine trees) at different stages
of development (winter/spring/summer) and with different types of inter-rows (stony, or
grassed/non-grassed during different seasons, including yellow grass during summer and
frozen during winter). With these datasets in place, a deep-learning method (multilayer
perceptron MLP) was applied to classify the photograph’s pixels into four main classes
(downward-aimed: grass, ground; upward-aimed: vegetation, sky). In the last stage, the
gap fraction (percentage of non-vegetation pixels) was computed for each field based on
photographs with an angle of 5◦ to the zenith. It is this last variable that was used to assess
the FAPAR and FCOVER according to the equations detailed in Demarez et al. (2008) [57].
The downward-aimed pictures were used to characterise the surface in the inter-row along
a transect (see black line in Figure 3c) that crossed the two inter-rows, with 1 m spacing
between photographs. The upward-aimed pictures were used to characterise the tree
canopy along transects (see blue lines in Figure 3c). Measurement replication was ensured
by taking two photographs per tree/inter-row, 50 cm apart. In total, 56 photographs were
used to characterise the tree canopy and 16 to characterise the inter-row area for each plot.

To compare biophysical variables derived from the hemispherical photographs with
values computed from the BVNET model (using Sentinel 2 data at 10 m resolution), an
aggregative model is used to consider the tree canopy and the background (inter-row cover).
Here, we use Equation (1), assuming that all radiation is captured and the distribution of
grass is homogeneous under the canopy:

FAPARc = FAPARt + (1 − FAPARt)× FAPARg (1)

FCOVERc = FCOVERt + (1 − FCOVERt)× FCOVERg (2)

where FAPARt (and FCOVERt) characterises the tree canopy from hemispherical pho-
tographs, FAPARg (FCOVERg) characterises the inter-row cover, and FAPARc (FCOVERc)
is the integrated variable corresponding to the plot scale. These integrated variables will
be compared to the mean values computed from Sentinel 2 data. To explore the impact of
the inter-row on the Sentinel 2 mixed-pixel response, the inter-row contribution was also
subtracted from Sentinel 2-derived biophysical variables.

2.3.2. Use of the Viticanopy Application to Estimate PAI and Gap Fraction

Viticanopy (https://viticanopy.com.au/ accessed on 2 August 2024) is an app that uses
photographs taken by a phone under the row to estimate the biophysical variables of vine
plants [82]. The method analyses upward-aimed images of canopies—and transmission
of light through the canopy—to estimate the PAI based on Beer’s Law and can be used
to approximate the FCOVER. The Viticanopy application has been used successfully on
vineyards [64] as well as in orchards [83–85]. The algorithm, described in De Bei et al.

https://viticanopy.com.au/
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(2016) [64], estimates the canopy porosity using a similar approach to that proposed by
Weiss et al. (2008) [63], considering the proportion of sky pixels visible through the canopy
to characterise the porosity. A light extinction coefficient (k), which may vary according to
crop type and region, must be defined. In this case, it was set at the default value of 0.7 for
vineyards [86], given that there are no reference k values for orchards.

The measurement protocol using Viticanopy is described in Figure 3d. Three pho-
tographs were taken aimed upward, towards the canopy, in the four directions around the
trunk (two following the row and two perpendicular to the inter-row). Photographs of the
three trees were always taken at the same places on each date, within a diagonal 50 cm
from the trunk and with intervals of 1 m between photographs (12 photographs were taken
per tree, and 36 at the plot scale). For each photograph, the application provides a table
listing the canopy cover, canopy porosity, and PAI, which we averaged for each tree and
then for each field. An estimate of the FCOVER is computed by using the values of the
canopy cover and canopy porosity for each tree:

FCOVERviti = CanopyCover − (CanopyCover × CanopyPorosity) (3)

2.3.3. Ceptometer Measurements to Estimate PAI

A SunScan ceptometer (Delta T, Cambridge, UK) was used on the plots described
in Sections 2.1.1 and 2.1.2, consisting of two sensors: one located in full sun to measure
the incident radiation and the second positioned under the canopy [87]. This method
has been employed in different contexts on annual crops [88], on apple trees [67], and in
vineyards [35]. The procedure developed for vineyards can be applied to different tree
crops via a protocol modification (see e.g., Keane et al. (2005) [89]; Lopes et al. (2014) [90];
or Wünsche et al. (1995) [91]). The ceptometer was deployed in our study areas under
protocols adapted from the M2 and M3 protocols defined in López-Lozano and Casterad,
(2013) [92] and renamed P1 and P2, respectively. In P1, the ceptometer was placed in the
tree shadow for measurements and in P2, 4 measurements perpendicular to the inter-row
and the row were performed (see Figure 3e). These measurements were collected from
April to August 2023. The main constraint on data collection is that the measurements
can only be performed when the sky is perfectly clear. The SunScan estimates the PAI
using the difference between the direct incident radiation measured by a sensor placed
in the inter-row, in full sun, and a sensor placed in the tree shadow. Three trees were
measured per plot, following the P1 protocol, with tree shadow data sampled 20 cm from
the trunk in the same direction as the shadow (blue line in Figure 3e). The sampled trees
were those characterised using hemispherical photographs. The mean PAI of the plot was
also measured following the P2 protocol, on the row and inter-row, along the same transect
as the upward-aimed hemispherical photographs, with two data acquisitions per transect
taken 50 cm from the trunk and 20 cm from the middle of the row. The first measurement
was taken perpendicular to the row and the second, one meter farther towards the centre
of the row (in black, Figure 3e). The average value of ceptometer measurements taken at
different points in an orchard row has been shown to be representative of the plot in other
comparative studies on other species [91,93].

Calculating the PAI via the ceptometer involves several parameters. The ellipsoidal
leaf angle distribution probability parameter has been left at the default value of 1 (close
to 60◦). This angle is the classical value used to define the angle of leaves on trees and
vines [94]. For leaf absorption (see definition in Gates, (1968) [95]), we kept the default
value at 0.85, since the values proposed in the literature on orchards vary greatly. A value
of 85% seems to be representative, particularly at the start of the season, when the leaves
are very photosynthetically active [96,97]. The exact location of the measurement is also
essential input to estimate the solar angle intercepted by the tree canopy, so latitude and
longitude values were entered into the ceptometer for each plot.
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2.4. Phenology Monitoring

For the inclusive monitoring period from 2021 to 2023, the tree development stage
was monitored between budburst and full canopy development (Figure 4a) for nine cherry
tree fields in the Ouvèze area, using the BBCH scale [12,98], and four orchards in La
Crau. Observations of the same three trees (in red in Figure 4) were performed for each
plot on each observation date; on each tree, one north- and one south-facing branch was
characterised according to the BBCH scale (see Figure 4). The observations were generally
performed once a month, although with increased frequency between the flowering and
fruit set stages (every 12 days). Visual observations were conducted, and photographs
are also taken focused on the two branches (north and south). The flowers or leaves are
counted according to the phenological stage. Fruit set, BBCH stage 71, corresponds to the
beginning of growth and thickening of the fruit organ. This stage also marks the end of
petal fall, such that stage 69 (corresponding to 100% of petals fallen) is similar to stage 71.
This phenological fruit set stage marks the start of the irrigation period for farmers.
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Phenology stage detection was based on the analysis of the time series of the bio-
physical variables (LAI and FCOVER and particularly FAPAR) each year. The mean value
of the FAPAR was computed for each monitored field at each date. Daily interpolation
was performed using the “WhittakerFilt” R function [81]. For each field where there were
observations of stages 67 and 69, the BV values were extracted for the corresponding days
listed. A statistical analysis (correlation, boxplots) was carried out from these extracted
values to assess whether the two phenological stages (67 and 69) can be differentiated
from the S2 BV. As the dates of the flowering stage (stage 67) for the different cultivars can
vary by up to 20 days and as orchards can also vary in age, soil type, and microclimatic
condition, with branches more or less stretched (and thus potentially very different FAPAR
values), the FAPAR was normalised to avoid these effects and to minimise variability in
development between species in different plots, following Equation (4).

FAPARn,j = 100 ×
FAPARj − FAPAR70

FAPARmax − FAPAR70
(4)

where FAPARn,j is the normalised FAPAR (expressed in %) at DOY j, FAPAR70 is the FAPAR
of DOY 70 (i.e., 11 March, generally just before flowering, corresponding to minimum
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FAPAR), and FAPARmax is the FAPAR at maximum leaf expansion, which corresponds
to the highest value in the time series. Normalising the FAPAR also made it possible to
minimise the impact of the initial grass cover in the plot inter-row and constitutes a relative
indicator of the dynamics of leaf expansion at the beginning of the season, when flowers
start to appear.

3. Results
3.1. Analysis of Ground Measurements Compared to Estimations from Sentinel 2

Comparisons between the Sentinel 2 LAI and the PAI results obtained from Viticanopy
and ceptometer measurements (protocol P2) are presented in Figure 5 for the first half of
2023 (Results for other plots are presented in Supplementary Figure S5). In all cases, the
measurements reflect the same positive trend: an increase from DOY 70 (mid-March) to
the beginning of June, corresponding to leaf development, followed by a slight decrease
after the fruit harvest (DOY 160) due to decreased irrigation and the subsequent impact on
leaves. The ceptometer measurements (blue lines) show a marked spatial variability, which
is mainly explained by the heterogeneity of the tree canopy and shadow (two acquisitions
were taken 50 cm from the trunk and 20 cm from the middle of the row). While all the trees
in a field are pruned at the same period, trees differ in their patterns, growth, crown, and
shadow. The farther into the season, the greater the standard deviation. The Viticanopy
measurements show less variability due to the smaller view captured by the smartphone.
Neither the Viticanopy nor the ceptometer method distinguishes between leaf and non-leaf
material. Both methods characterise only the tree canopy, as opposed to Sentinel 2 pixels,
which include both the tree canopy and the background due to the inter-row cover. The
difference between the Sentinel 2 LAI and the PAI based on these two methods defines
the inter-row impact at the pixel scale. For grassed orchards (plot 3099 in the Ouvèze area
at left on Figure 5 and plot 4 in La Crau at right), the PAI values from the Viticanopy and
ceptometer methods are always lower than the Sentinel 2 LAI values. The inter-row grass
in the S2 pixel has a strong impact, particularly at the beginning of the season. After the
harvest, when irrigation decreases and the grass becomes yellow, there is less of a difference
between the Viticanopy, ceptometer, and Sentinel 2 values. For non-grassed cherry trees
with a higher tree density, represented by plot 183 (middle Figure 5b), the PAI from the
Viticanopy and ceptometer methods is higher than the LAI from Sentinel 2. The impact of
the bare soil results in a lower S2 value.
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Remote Sens. 2024, 16, 3393 14 of 29

Scatter plots and correlations between Sentinel 2 LAI data and ceptometer PAI (proto-
col P2) and Viticanopy PAI measurements across all monitored plots in the two study sites
(La Crau and Ouvèze basin) are presented in Figure 6a–c (see additional graphs of com-
parison with ceptometer protocol 1 in Supplementary Figure S6). The highest correlation
for the Sentinel 2 LAI was obtained using the Viticanopy estimates, particularly excluding
non-grassed orchards (fields 183.2 and 259, Figure 6c). There is a significant relationship
between the ceptometer and Viticanopy values (R2 = 0.45 with P1, R2 = 0.71 with P2—see
Supplementary Figure S6). The ceptometer comparison in Figure 6a shows a lower cor-
relation with the S2 estimation with an R2 value at 0.14, mainly due to the large spatial
variability of the heterogeneity of the tree canopy and shadows (Figure 6a).

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 30 
 

 

5b), the PAI from the Viticanopy and ceptometer methods is higher than the LAI from 
Sentinel 2. The impact of the bare soil results in a lower S2 value. 

 
Figure 5. Comparison of temporal profiles of Sentinel 2 LAI interpolated profile (black line) and PAI 
obtained from the ceptometer (blue line, P2 protocol) and Viticanopy (green line) for three orchards: 
(a) 3099 (cherry—grassed—Ouvèze), (b) 183 (cherry—non-grassed—Ouvèze), and (c) 4 (nectarine—
La Crau) at the beginning of 2023. 

Scatter plots and correlations between Sentinel 2 LAI data and ceptometer PAI (pro-
tocol P2) and Viticanopy PAI measurements across all monitored plots in the two study 
sites (La Crau and Ouvèze basin) are presented in Figure 6a–c (see additional graphs of 
comparison with ceptometer protocol 1 in Supplementary Figure S6). The highest corre-
lation for the Sentinel 2 LAI was obtained using the Viticanopy estimates, particularly 
excluding non-grassed orchards (fields 183.2 and 259, Figure 6c). There is a significant 
relationship between the ceptometer and Viticanopy values (R2 = 0.45 with P1, R2 = 0.71 
with P2—see Supplementary Figure S6). The ceptometer comparison in Figure 6a shows 
a lower correlation with the S2 estimation with an R2 value at −0.14, mainly due to the 
large spatial variability of the heterogeneity of the tree canopy and shadows (Figure 6a).  

 
Figure 6. Comparison between Sentinel 2 LAI and PAI from (a) ceptometer measurements taken at 
all orchards of the two areas (La Crau and Ouvèze), (b) Viticanopy measurements at all orchards, 
and (c) Viticanopy measurements excluding 2 non-grassed orchards (183, 259). The black line rep-
resents the optimal correlation 1:1; the red line represents the results from linear regression. 

3.2. Analysis of Inter-Row Impact on the Biophysical Variables Assessed from Hemispherical 
Photographs 

The protocols involving hemispherical photographs enable the quantification of the 
relative impacts of the inter-row and tree canopy at the pixel scale. Figure 7 shows the 

Figure 6. Comparison between Sentinel 2 LAI and PAI from (a) ceptometer measurements taken at
all orchards of the two areas (La Crau and Ouvèze), (b) Viticanopy measurements at all orchards, and
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3.2. Analysis of Inter-Row Impact on the Biophysical Variables Assessed from
Hemispherical Photographs

The protocols involving hemispherical photographs enable the quantification of the
relative impacts of the inter-row and tree canopy at the pixel scale. Figure 7 shows the
proportion of the tree (in orange) and inter-row (green) effect calculated from Equation
(1) on values obtained from hemispherical photographs taken at cherry orchards in the
Ouvèze area. This proportion is computed at a plot scale that is representative of a Sentinel
2 pixel (10 m) for two different days in 2022: 22 March and 21 June in the top graphs
(Figure 7a). A significant spatial variability in the grass contribution is observed among the
cherry trees, and is more pronounced in March than in June. Such variability can largely be
explained by differing agricultural practices: some farms cut the grass or apply weedkiller
in the row, which can extend into the inter-row. The plots where the FCOVER or grass
remains high tend to correspond to young orchards (e.g., plot 3463). The impact of the tree
canopy is greater in June, as leaves and branches are more developed than in March. Some
farmers use bands to stretch the branches as far as possible in order to optimise the impact
of radiation on the tree, while others cut branches to make it easier for machinery to move
about. These different practices induce variations in the structures outlined in these results.
The results for the non-grassed field (183) differ substantially from the grassed orchards,
showing the FCOVER values close to 100% of the tree canopy proportion, although there
is still a small grass fraction due to the grass regrowth between the two treatments. It is
important to note that this orchard has the narrowest inter-row spacing as well as a high
tree density.

Figure 7b presents the temporal variability for one year (2022) between mid-March
and mid-November in the inter-row impact on the FCOVER computed for two different
plots (183 non- grassed and 3099 grassed orchards). While a small area of grass can appear
on the non-grassed plot due to regrowth, this contribution always remains very low (<5%).
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For the grassed plot (3099.1, right), the grass contribution varies throughout the year, from
12% in summer to nearly 70% in winter. The variability tends to be correlated with the soil
moisture content, especially in spring and in autumn; when there is more rain, the soil water
stock is high, and the grass is green and well developed. In summer, soil moisture decreases
despite irrigation due to higher evapotranspiration. During these periods, much of the
water is preferentially delivered to the trees, and the grass subsequently turns yellow. Thus,
the inter-row contribution decreases, and the impact of the tree canopy becomes dominant.
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Figure 7. (a)—(top graphs) Proportion of tree (orange 100*FCOVERt/FCOVERc, see Equation (1)) and
of inter-row (green 100*((1-FCOVERt)*FCOVERg)/FCOVERc) components computed from hemispher-
ical photographs used to estimate FCOVER for two dates, 22 March 2022 (doy:81) and 21 June 2022
(doy 172), for all the monitored fields. (b)—(bottom graphs) For two plots, left, field 183.2 and right,
field 3099.1, temporal variations in proportion of tree and inter-row components for the different
observation dates in 2022.

Figure 8a shows the inter-row contribution computed on all the monitored grassed
orchards from the hemispherical photographs for 2022 (photographs taken throughout
the year outlined in orange). The observed temporal variability is related to differences in
grass development and differing farm management practices concerning inter-rows. The
contribution of grass is high at the beginning and at the end of the year because the high
soil moisture content allows for the maintenance of green cover. To explore the impact of
the Sentinel 2 mixed-pixel response, the inter-row contribution (computed in Figure 8a) was
subtracted from Sentinel 2-derived biophysical variables. Figure 8b,c show comparisons
between the FAPAR (in black) with and without (in green) this inter-row contribution for
a non-grassed site (field 183, Figure 8b) and a grassed site (field 1418, Figure 8c).
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Figure 8. (a) Averaged percentage of grass contribution on FAPAR computed from hemispherical
photographs according to Equation (1) for all grassed orchard plots in 2022. Examples of Sentinel 2
FAPAR dynamics (black lines) for plots at (b) non-grassed site 183 and (c) grassed site 1418. Initial
values of FAPAR, as computed from BVNET, are provided in black. The green line represents
adjusted FAPAR after subtracting the grass contribution (percentage obtained from hemispherical
photographs). It corresponds to FAPAR only for the trees. The percentage of grass contribution is
in red.

While there is an obvious and expected grass contribution for field 1418, the impact of
the grass signal on the non-grassed site (field 183) is lower, albeit fluctuating slightly during
summer due to grass regrowth between the two chemical treatments. The presence of grass
has very little impact on the signal of the satellite in this case. In the grassed plot, the signal
is highly affected, especially during winter. The grass impact starts to decrease around day
25, with the beginning of tree leaf development in spring and grass-cutting around day
50. Grass development appears to be responsible for the double-curved upward trends
observed on the temporal profiles.

3.3. Validation of the Aggregative Model

Figure 9a,b present the correlations between the Sentinel 2 FCOVER (a) and FAPAR
(b) computed by the BVNET model and the values obtained from the aggregative model
(equation 1 applied with hemispherical photographs) for years 2021 to 2023. Using the ag-
gregative model that considers both trees and inter-rows to compute integrative values for
the FCOVER and FAPAR gave satisfactory results, with statistically significant correlation
coefficients (R2 for FCOVER = 0.57, and R2 for FAPAR = 0.45) compared to the Sentinel 2
estimates. There is a slight overestimation of the Sentinel 2 biophysical variables, but this
remains acceptable, with an RMSE of 0.12 for the FCOVER and 0.11 for the FAPAR. Thus,
the aggregative model can be considered to validate the orchards’ FCOVER and FAPAR
estimates provided by Sentinel 2. Figure 9c shows the correlation between the Sentinel 2
FCOVER and Viticanopy FCOVER, which considers only the tree canopy. Figure 9d shows
the correlation between the Viticanopy FCOVER and the FCOVER from the upward-aimed
hemispherical photographs. Correlation coefficients are slightly higher for the FCOVER
than for the FAPAR (Figure 9a,b). The slopes are usually below the 1:1 line, except for the
comparison between the Viticanopy and hemispherical FCOVER estimates. The correlation
between the FCOVER computed for the tree canopies from hemispherical photographs and
using Viticanopy appears quite good, with a high correlation coefficient (0.72) and a low
RMSE value (0.11). While an introduced bias is observed, due primarily to the smaller
view covered with Viticanopy, this can easily be corrected using these statistical results. In
the light of our results, therefore, the Viticanopy approach (Figure 9d) appears to be an
easy-to-use tool providing accurate and relevant ground measurements in orchard systems.
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Figure 9. Correlation between (a) FCOVER obtained from hemispherical photographs (from
Equation (1)) for all orchards of the two studied areas and FCOVER from Sentinel 2 computed
with BVNET (b) FAPAR from hemispherical photographs and FAPAR from Sentinel 2 for all orchards
and for the 3 years. (c) Correlation between FCOVER from Viticanopy and Sentinel 2 for all or-
chards for the two areas, except 183 and 259. (d) Correlation between FCOVER from upward-aimed
hemispherical photographs and from Viticanopy for all plots.

3.4. Analysis of Leaf Development and Identification of Key Phenological Stages from Sentinel 2
Biophysical Variables

Figure 10a shows a temporal profile of the LAI (in green) of grassed cherry trees at two
spatial scales, including the plot (dotted lines) and field (solid green line), and Figure 10b
shows the soil water stock for the 0–50 cm layer (blue line) for the year 2022.

A rapid increase in the LAI is observed in spring (April to June), when leaves are
developing and stems grow, followed by a slight decrease from DOY 180 (July). The LAI
decrease can be explained by several factors (hydric stress impacting the leaves, yellowing
of the inter-row). After the harvest (generally in June for cherry trees, around DOY 181),
irrigation decreases slightly, resulting in less water availability and increasing the risk of
leaf “roll up”. In summer, the grass in the inter-row becomes yellow, which impacts the
global value recorded at the pixel scale (10 m). In autumn, when rains generally return,
the biophysical variables start to increase again, as the inter-row turns green, and tree
leaves become less dry. The last stage is reflected in leaves falling and senescence. The
evolution of the LAI in this orchard is strongly linked to the soil moisture content, measured
here using capacitive sensors and averaged for the 0–50 cm layer. While drip-irrigation
is applied from April to September (1 h per day, 6 L/m in spring and 1 h/2–5 days after
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the harvest), the soil water stock in the 0–50 cm layer decreases from June to September
because of the higher evapotranspiration rates, which are also strongly linked to the LAI.
At the field scale, a high spatial variability of the LAI is noted due to differing species, with
most fields containing at least two different varieties of either early, mid-season, or late
varieties (see Figure S2 in Supplementary). Some of the largest fields (e.g., 3099) contain
four varieties. Such management practices are reflected in the differences between the
averaged value obtained for a field (combining different varieties) and the value extracted
at the plot scale (including 3 × 3 trees, LAI Figure 6a, green dotted line). The tree age can
also vary at the field scale. When trees suffer too much damage from pests, farmers may
cut them down and replant new ones. Soil heterogeneity, particularly in large fields, may
also explain the differences observed between the plot and field scale (plots described in
Supplementary Figure S2).
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Figure 10. (a) LAI temporal profiles obtained from BVNET applied to Sentinel 2 data averaged at plot
and field scales (field 3099) for the year 2022 and (b) soil water stock (in mm in blue) computed at
0–50 cm using capacitive sensors (described in Section 2.1), with rainfall recorded at the Carpentras
station (see Supplementary Part S1 and Table S1).

This pattern can also vary according to climate conditions in a particular year. Figure 11
shows the temporal profiles of the Sentinel 2 FCOVER from 2016 to 2023 for the same
field (3099). The decrease in FCOVER values during the summer period appears more
pronounced for drier years (in 2022, annual rainfall of 550 mm; in 2020, 439 mm) than for
wetter years, such as 2018 (annual rainfall of 918 mm).

Figure 12a,b present the FAPAR time series in 2022 for two cherry orchards in the
Ouvèze area: non-grassed plot 183.1 and grassed plot 3099.1; the vertical lines correspond
to the ground observation of the main phenological stages. In these examples, flowering
(green vertical line, BBCH 67) occurs at a time when the curve has already started to



Remote Sens. 2024, 16, 3393 19 of 29

increase. Similar results obtained in 2021 on several orchards (grassed or non-grassed, with
different irrigation practices) are shown in Supplementary Figure S7. As already noted,
the flowering date can vary depending on the cultivar (early or late). Table 3 shows the
dates observed for the monitored fields for the years studied. Field 3099 (Figure 12b) is the
largest of the watershed (>4 ha) and contains mainly old trees of several varieties, ranging
from very early to late, with grassed inter-rows.
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Figure 12. Sentinel 2 FAPAR evolution in 2022 for two cherry tree fields, with the date of flowering
observation (in green) and the date of fruit set observation (in red) for (a) plot 183 (non-grassed cherry
trees) and (b) plot 3099 (grassed cherry trees).

Figure 13 shows the temporal variability observed at this last field (field 3099) across
the main phenological stages (BBCH notations). BBCH stage 67 represents the greatest
density of open flowers and BBCH stage 69 represents the point at which all the petals fall,
which is correlated to the fruit set stage. After this last stage, farmers generally start cherry
tree irrigation. As expected, it is mainly from the flowering stage onwards that the dates
of this phenological stage vary most. Cherry flowering generally starts in March/April
in the south of France [10] and nectarine flowering starts in April/May [99,100]. This key
stage for cherry trees is followed by a fruit set stage around 15 days later [101,102], which
is characterised by the falling of flower petals. For some stages (between 50 and 57), no
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variability was observed. However, this lack of variation likely reflects the frequency of
observation, which was not dense enough during these periods. A larger number of ground
observations were collected closer to the flowering dates (DOY 104–112).

Table 3. Dates of fruit set stage (day of year) observed for 2021, 2022, and 2023 on the different cherry
trees monitored in the Ouvèze area.

Plot BBCH 67 2021 BBCH 67 2022 BBCH 67 2023 Plot BBCH 69 2021 BBCH 69 2022 BBCH 69 2023

50 109 (19/04) 111 (21/04) 50 125 (05/05) 124 (04/05)
72 111 (21/04) 109 (19/04) 72 124 (04/05) 123 (03/05)

183_1 103 (13/04) 183_1 124 (04/05)
183_2 103 (13/04) 104 (14/04) 183_2 124 (04/05) 123 (03/05)
183_3 103 (13/04) 183_3 124 (04/05)
1401 109 (19/04) 111 (21/04) 109 (19/04) 1401 125 (05/05) 124 (04/05) 123 (03/05)
1418 99 (09/04) 94 (04/04) 104 (14/04) 1418 125 (05/05) 111 (21/04) 109 (19/04)
1423 111 (21/04) 109 (19/04) 1423 124 (04/05) 123 (03/05)
1424 99 (09/04) 1424 125 (05/05)
3031 103 (13/04) 104 (14/04) 3031 124 (04/05) 123 (03/05)

3099_1 99 (09/04) 103 (13/04) 104 (14/04) 3099_1 125 (05/05) 124 (04/05) 123 (03/05)
3099_2 111 (21/04) 111 (21/04) 3099_2 124 (04/05)
3099_3 103 (13/04) 111 (21/04) 3099_3 124 (04/05) 123 (03/05)
3099_5 111 (21/04) 111 (21/04) 3099_5 124 (04/05) 123 (03/05)
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3347 92 (02/04) 103 (13/04) 95 (05/04) 3347 125 (05/05) 111 (21/04) 109 (19/04)
3463 111 (21/04) 109 (19/04) 3463 124 (04/05) 123 (03/05)
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Figure 13. Variability in dates for the phenological stages of a cherry tree orchard (plot 3099) observed
in 2022.

The dates for the phenological stages are slightly later in 2022 and 2023 than in 2021
(see Table 3). In 2021, when fewer plots were monitored, there was already a difference of
17 days in stage 67 observations between fields. In 2023, this shift increased to 28 days. The
staggering of the fruit set stage is due to several factors, including climatic conditions, the
choice of tree varieties, and the available soil moisture. While stage 67 varied significantly
between fields, stage 69 was more stable over time, generally appearing around DOY 123
and 125 each year. As mentioned in Section 2.1.1, most fields contain different varieties to
ensure a longer harvesting period. Some fields are also located in a small, colder valley
(e.g., field 1401) and receive less radiative input, which may explain why their fruit set
stage occurs later than other, more exposed fields located in the plateau (e.g., field 3099). In
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addition, there were slight variations between the dates of the fruit set stage for 2022 and
2023. Both these years were classified as rather hot and dry in spring compared to 2021,
which was wetter. Such climatic variations likely explain the small discrepancies observed
between the monitored fields.

Figure 14a shows the normalised FAPAR results expressed in boxplots for the two main
stages of interest, based on values extracted for all the orchards in 2021 from Sentinel 2 data.
A significant difference between these two stages can be identified from the normalised
FAPAR. A normalised FAPAR threshold (FAPAR (n,j > 60%)) distinguishes significantly
between the two main phenological stages considered, BBCH 67 and 69. By applying this
threshold to the whole normalised FAPAR image on the watershed, it is possible to map the
period between the flowering and fruit set stages at the watershed scale. The resulting map
is presented in Figure 14b, enabling the orchards already at the fruit set stage to be detected
and the appropriate starting point for irrigation on the watershed to be determined.
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Figure 14. (a) Normalised FAPAR computed for all observed cherry trees relative to observation dates
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flowering and fruit set stages for 2021 obtained by thresholding FAPAR images.

4. Discussion
4.1. Ground Measurement Protocol to Estimate Biophysical Variables and Comparison with
Sentinel 2-Based Estimations

Our study compared different protocols using various ground sensors. Even if the
acquisition methods differ, the measurements were performed at the same dates with the
same sun and leaf inclinations and on the same trees. To our knowledge, this is the first
attempt to use Viticanopy, the ceptometer, and hemispherical photographs for comparison
purposes on a variety of orchards. Various studies have shown comparisons between two
methods such as [24,46] between ceptometer and PocketLAI methods [61,103] or Viticanopy
and LAI 2000 [64,82]. Liu et al. (2013) [104] has discussed the different factors impacting
the BVs estimated from different methods. The PAI can replace the tree LAI in certain
ranges of the zenith [26,34]. Hemispherical photographs appear to be the best technique,
revealing both the inter-row and the tree impacts on biophysical variable values (protocol
Supplementary Figure S3), and allowing us to propose an aggregative model to validate
the Sentinel 2 estimations (see Figure 9 and Supplementary Figure S4). Inverting the
S2 biophysical variables appears achievable using this new approach, with our protocol
proposed for validation. The levels of accuracy obtained to validate the BVNET outputs
were comparable to those achieved by other studies exploring different crops in various
contexts [57,105]. The error on the estimations of the FCOVER and FAPAR remains quite
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acceptable. The use of the BVNET model for heterogeneous crops is unusual. Other
approaches based on geometrical–optical (3D) radiative transfer models (such as DART
model https://dart.omp.eu/#/ accessed on 2 August 2024 for example) are well-suited for
addressing issues related to shading, background effects, and other complexities inherent
in discontinuous canopies such as orchards, but such approaches generally required a lot of
input parameters with an accurate description of the tree and leaf, which were not available
at our study scale. Our choice to use the BVNET model was motivated by the intention
to explore its adaptability and generate comparative observations with a rigorous control
with various ground measurements.

The inter-row impact can be quantified at the pixel scale. Numerous photographs
allowed the collection of a large dataset for deep-learning image classifications to identify
the leaves and grass in the inter-row. A first “expert knowledge” step is required to identify
the masks and specify the sky, leaf, grass, or soil. Generally speaking, the larger the learning
dataset, the greater the precision. Our ground observations provide a large dataset which
can be added to other ground-based data to improve image classification methods for other
study cases. It should, however, be mentioned that classifying the soil-facing images is
often hindered by heterogeneous surface features (including stones, sparse vegetation,
fallen leaves, or grass). Classifying the tree canopy is easier.

Viticanopy or a ceptometer providing PAI values are alternative ways of characteris-
ing the tree canopy. For the ceptometer, two protocols derived from López-Lozano and
Casterad (2013) [92] were compared (detailed in Figure 3e and comparison of the results
in Supplementary Figure S6), neither of which proved particularly satisfactory for orchard
applications because of the large spatial variability of orchard structure and the associ-
ated shadow. The Viticanopy app showed less variability and was easier to use. Recently,
Lai et al. (2022) [106] have proposed a method to correct for the clumping effect by using one-
dimensional fractal dimensions. In that study, 3D radiative transfer models were applied
to simulate different configurations of crown vegetation canopies. The method warrants
further research; the pattern of the orchards studied here could be simulated to evaluate
it. Other indirect methods, such the use of LIDAR or UAV [107] have also been proposed,
but their applications are spatially limited. Our protocols can be applied in other orchard
contexts where ground-based measurements are used to monitor leaf development and
evaluate the impact of the inter-row on the validation of BV assessment via Sentinel 2 pixels.

4.2. Sentinel 2 Potential for Orchard Monitoring and the Detection of Key Phenological Stages

This study demonstrated that it is possible to monitor the foliar dynamics of orchards
in the Mediterranean region from Sentinel 2 images. Typical dynamic patterns have been
observed for orchards, as for many other crop systems, which are strongly related to
temporal variations in the soil moisture. The key variables, including the LAI, FCOVER,
and FAPAR, can be used to characterise leaf development and we have demonstrated
that the normalisation of the FAPAR allowed us to detect some crucial phenology stages
(fruit set). The time series from Sentinel 2 for all the monitored biophysical variables show
an increase from March to June, then a slight decrease in summer, followed by an increase in
autumn. These dynamics stem from different processes related to the water consumption of
orchards, depending on both irrigation practices and pedo-climatic conditions [69,108,109].
Notably, it is the first time that the inter-row contribution was quantified at the Sentinel 2
pixel scale, using an original approach based on determining the BVs from hemispherical
photographs downward-aimed at the inter-row and upward-aimed at the tree canopy.
It is thus possible to quantify the impact of these two factors to determine the relative
importance of the grass cover in the spectral signal at the pixel scale. To complete this
study, lidar data focused only on the tree canopies could be used to validate the estimations
performed at the tree level [104,107]. A different approach developed by Abubakar et al.
(2023) [28] was applied to Mediterranean vineyards based on the disaggregation of the
Sentinel 2 signal, assuming that in summer the inter-row is bare soil. They employed
a phenological model to derive metrics and then subtracted this model from the LAI profile

https://dart.omp.eu/#/
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to classify grassed and non-grassed plots. However, this last approach would be difficult
to apply in orchards, with their greater diversity of inter-row management and more
developed leaf expansion.

We also established that some key phenological stages, including the end of the flower-
ing and fruit set stages, could be identified via a normalised FAPAR through the analysis of
nine cherry orchards in the Ouvèze area. This stage is especially important in determining
when to start the irrigation of orchards, helping farmers with water management. To
detect other phenological stages would require increasing ground observations for valida-
tion. As described in particular by Carmona-García et al. (2024) [110], Tubau Comas et al.
(2019) [111], or Horton et al. (2017) [112] for other fruit species, the automatic identification
of phenological stages by remote sensing is possible, but calibration requires numerous
observations on the ground and/or a higher image precision than Sentinel 2 can provide.
Other methods based on correlation analysis between various spectral indices derived
from Sentinel missions and phenological stages have been explored, but their performance
depends on climate years [113,114]. The method based on the use of Sentinel 2 data requires
a high frequency of cloud-free images in spring. For tropical countries, where there are
more cloudy days, different studies have shown that the ratio between VV and VH from
Sentinel 1 radar missions can also be used to fill temporal gaps when monitoring crop
development [115]. Other satellites can be used to help with orchard water management,
mixing optical and thermal spectral ranges [116–118]. The future TRISHNA mission [119],
which will be launched in 2026, should also provide high-resolution spatial and temporal
thermal data very complementary to Sentinel 2 data.

4.3. Operational Applicability of Methods, Limitations, and Future Research

The LAI, FCOVER, and FAPAR are often used in a range of modelling applications,
including simulating soil–vegetation–atmosphere transfers (SVATs) and crop models to
predict yields or reproduce water and carbon budgets. However, the assessment of biomass
production for orchards is still poorly addressed by functional models. For example, while
the generic STICS crop model [120] can simulate a range of crops and technical practices,
including vineyards [45,121] and apple trees [122], it is still unable to reproduce cherry
tree crops. The introduction into STICS of the LAI derived from Sentinel 2 should help to
better simulate the biomass of these fruit trees. This will be one of the avenues to explore in
the future, through similar approaches developed by Courault et al. (2021, 2010) [17,123].
Water needs can be estimated using various models, some simplified via the use of crop
coefficients defined according to the FAO56 method [19]. In the same way, this method can
be improved by computing crop coefficients from the Sentinel 2 FCOVER [108]. Moreover,
being able to distinguish the relative impacts of grass and tree canopy at the plot scale
provides more useful information on water consumption.

While several applications suggest themselves from these first results, it remains
important to evaluate our methods in different environmental contexts. The impact of
phytosanitary treatments and fertilisers has not been mentioned here. Contamination
by pests or the provision of inputs can modify trees’ foliar dynamics [124], as can the
development and composition of the grass cover [125,126]. Monitoring such impacts
requires detailed knowledge of agricultural practices and specific ground observations.
Some studies have explored these factors using a spectroradiometer or UAV sensors [14,127].
This is a research avenue of its own to be explored in the remote sensing field over the
coming years and should enhance orchard management.

5. Conclusions

Here, we have established that Sentinel 2 data can be used to monitor orchard devel-
opment in Mediterranean regions. For the first time, three different ground-based methods
were compared to validate BV values estimated from satellite images via the BVNET model.
The validation of the Sentinel 2 LAI was performed using Viticanopy, which proved to be
easy to use for monitoring leaf development, providing reliable results. We propose a new
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aggregative model applied to values derived from hemispherical photographs; combining
inter-row and tree impacts, the model can be used to quantify the proportions of the signal
linked to grass cover and to trees. This original approach provides a better understanding
of the inverting of biophysical variables from Sentinel 2. Our results show statistically
significant correlation coefficients for the Sentinel 2-based FCOVER and FAPAR compared
to values obtained from the aggregative model. Very few studies have explored a range of
different methods on commercial orchards combining, for example, late- and early-fruiting
varieties of cherry trees, apricots, and nectarines. Importantly, all the proposed methods
can be applied in other orchard contexts. This study also demonstrated that some key
phenological stages of cherry trees, like the end of the flowering and fruit set stages, which
determine the start of irrigation in our studied regions, can be identified via the normali-
sation of the FAPAR. The enhanced characterisation of plant phenological development
from space offers a range of opportunities for improved orchard management, particularly
concerning the efficient use of irrigation scheduling and yield prediction.
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