
HAL Id: hal-04738542
https://hal.inrae.fr/hal-04738542v1

Preprint submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

pyPLNmodels: A Python package to analyze
multivariate high-dimensional count data

Bastien Batardiere, Joon Kwon, Julien Chiquet

To cite this version:
Bastien Batardiere, Joon Kwon, Julien Chiquet. pyPLNmodels: A Python package to analyze multi-
variate high-dimensional count data. 2024. �hal-04738542�

https://hal.inrae.fr/hal-04738542v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

DRAFT
pyPLNmodels: A Python package to analyze1

multivariate high-dimensional count data2

Bastien Batardiere 1¶, Joon Kwon1, and Julien Chiquet13

1 Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay ¶ Corresponding author4

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Johanna Bayer
Reviewers:

• @LingfengLuo0510
• @mrazomej

Submitted: 20 June 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary5

High dimensional count data are complex to analyze as is, and normalization must be performed,6

but standard normalization does not fit the characteristics of count data. The Poisson7

LogNormal(PLN) (Aitchison & Ho, 1989) and its Principal Component Analysis variant8

PLN-PCA (Chiquet et al., 2018) are two-sided latent variable models allowing both suitable9

normalization and analysis of multivariate count data, implemented in this package.10

Consider Y a count matrix consisting of 𝑛 rows and 𝑝 columns. It is assumed that each11

individual Y𝑖, that is the 𝑖th row of Y, is independent of the others and follows a Poisson12

lognormal distribution:13

Y𝑖 ∼ 𝒫(exp(Z𝑖)), Z𝑖 ∼ 𝒩(o𝑖 + B⊤x𝑖, Σ),

where x𝑖 ∈ ℝ𝑑 and o𝑖 ∈ ℝ𝑝 are user-specified covariates and offsets (with default values if not14

available). The 𝒫 (resp. 𝒩) denotes a Poisson (resp. Normal) distribution. The matrix B is15

a 𝑑 × 𝑝 matrix of regression coefficients and Σ is a 𝑝 × 𝑝 covariance matrix. The variables Z𝑖,16

known as latent variables, are not directly observable. However, from a statistical perspective,17

they provide more informative insights compared to the observed variables Y𝑖. The unknown18

parameters B and Σ facilitates the analysis of dependencies between variables and the impact19

of covariates. The primary objective of the package is to estimate these parameters and20

retrieve the latent variables Z𝑖. Extracting those latent variables may serve as a normalization21

procedure adequate to count data.22

The only difference between the PLN and PLN-PCA models is that the latter assumes a23

low-rank structure on the covariance matrix, which is helpful for dimension reduction. Other24

variants of the PLN model exist, which are detailed in the work of Chiquet et al. (2021b).25

Fields of applications and functionalities26

Possible fields of applications include27

• Ecology: Joint analysis of species abundances is a common task in ecology, whose goal
is to understand the interaction between species to characterize a community, given a
matrix of abundances in different sites with abundances given by

𝑌𝑖𝑗 = number of species 𝑗 observed in site 𝑖.

Additionally, the PLN models seek to explain the impact of covariates (when available),28

such as temperature, altitude, and other relevant factors on the observed abundances.29

• Genomics: High throughput sequencing technologies now allow quantification, at the
level of individual cells, various measures from the genome of humans, animals, and
plants. Single-cell Ribonucleic Acid sequencing (scRNA-seq) is one of those and measures

Batardiere et al. (2024). pyPLNmodels: A Python package to analyze multivariate high-dimensional count data. Journal of Open Source Software,
0(0), 6969. https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0009-0001-3960-7120
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/6969
https://github.com/PLN-team/pyPLNmodels.git
https://doi.org/
https://orcid.org/0000-0003-4891-6256
https://github.com/LingfengLuo0510
https://github.com/mrazomej
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft

DRAFT
the expression of genes at the level of individual cells. For cell 𝑖 and gene 𝑗, the counts
𝑌𝑖𝑗 is given by

𝑌𝑖𝑗 = number of times gene 𝑗 is expressed in cell 𝑖.

One of the challenges with scRNA-seq data is managing the high dimensionality, necessi-30

tating dimension reduction techniques suitable to count data.31

The PLN and PLN-PCA variants are implemented in the pyPLNmodels package introduced32

here, whose main functionalities are33

• Normalize count data to obtain more valuable data,34

• Analyze the significance of each variable and their correlation,35

• Perform regression when covariates are available,36

• Reduce the number of features with PLN-PCA.37

The pyPLNmodels1 package has been designed to efficiently process extensive datasets in a38

reasonable time and incorporates GPU acceleration for better scalability.39

To illustrate the primary model’s interest, we display below a visualization of the first two40

principal components when Principal Component Analysis (PCA) is performed with the PLN-41

PCA model (left, ours) and standard PCA on the log normalized data (right). The data42

considered is the scMARK benchmark (Diaz-Mejia, 2021) described in the benchmark section.43

We kept 1000 samples for illustration purposes. The computational time for fitting PLN-PCA44

is 23 seconds (on GPU), whereas standard PCA requires 0.7 second.45

1https://github.com/PLN-team/pyPLNmodels

Batardiere et al. (2024). pyPLNmodels: A Python package to analyze multivariate high-dimensional count data. Journal of Open Source Software,
0(0), 6969. https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft

DRAFT
Figure 1: PLN-PCA (left, ours) and standard PCA on log normalized data (right). Each cell is identified
by its respective cell type. This categorization is done solely to demonstrate the method’s ability to
differentiate between various cell types. Unlike the standard Principal Component Analysis (PCA), which
fails to distinguish between different cell types, the PLN-PCA method is capable of doing so.

Statement of need46

While the R-package PLNmodels (Chiquet et al., 2021a) implements PLN models including47

some variants (Chiquet et al., 2021b), the Python package pyPLNmodels based on Pytorch48

(Paszke et al., 2019) has been built to handle large datasets of count data, such as scRNA-seq49

data. Real-world scRNA-seq datasets typically involve thousands of cells (𝑛 ≈ 20000) with50

thousands of genes (≈ 20000), resulting in a matrix of size ≈ 20000 × 20000.51

The statsmodels (Seabold & Perktold, 2010) is a Python library providing classes and functions52

for the estimation of many different statistical models, as well as for conducting statistical tests53

and statistical data exploration. Notably, It handles count data through the Generalized Linear54

Models PoissonBayesMixedGLM and BinomialBayesMixedGLM classes. We stand out from this55

package by allowing covariance between features and performing Principal Component Analysis56

suitable to count data.57

The R package GLLVM package is designed for fitting Generalized Linear Latent Variable Models.58

It allows for flexible modeling of multivariate response data, accommodating both continuous59

and discrete responses. Compared to the pyPLNmodels package, it offers a broader scope of60

modeling capabilities, enabling the incorporation of Poisson distribution as well as Binomial61

or Negative Binomial distributions and an additional zero-inflation component. However, its62

scalability is notably inferior to our proposed methodology. Our approach, specifically the63

PLN-PCA model, demonstrates superior scalability, effectively accommodating datasets with64

tens of thousands of variables and the PLN model handles couple thousands of variables within65

Batardiere et al. (2024). pyPLNmodels: A Python package to analyze multivariate high-dimensional count data. Journal of Open Source Software,
0(0), 6969. https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft

DRAFT
a reasonable computational timeframe. In contrast, GLLVM struggles to scale beyond a few66

hundred variables within practical computational limits.67

Benchmark68

We conducted a comparison using the following configurations:69

• PLN and PLN-PCA models fitted with pyPLNmodels on CPU, referred to as py-PLN-CPU70

and py-PLN-PCA-CPU respectively.71

• PLN and PLN-PCA models fitted with pyPLNmodels on GPU, referred to as py-PLN-GPU72

and py-PLN-PCA-GPU respectively.73

• PLN and PLN-PCA models fitted with PLNmodels on CPU, referred to as R-PLN and74

R-PLN-PCA respectively.75

• The GLLVM model with Poisson distributed responses, fitted on CPU, referred to as76

GLLVM.77

These models were tested on the scMARK dataset, a benchmark for scRNA data, which contains78

19998 cell samples and 14059 gene variables. We plotted the fitting time for these models79

against an increasing number of gene variables, ranging from 5 to 14059. Additionally, we varied80

the number of cell samples at 𝑛 = 100, 1000, 19998. We used 𝑞 = 5 Principal Components81

when fitting each PLN-PCA model and the number of latent variables LV=2 for the GLLVM82

model. For each model, the fitting process was halted if the running time exceeded 10,00083

seconds. The computational resources utilized for this study include a machine equipped with a84

CPU boasting 64 GB of RAM and 32 cores, in addition to a GPU (RTX A5000) furnished with85

24 GB of RAM. We were unable to run GLLVM for 𝑛 = 19998 due to CPU memory limitations.86

Similarly, py-PLN-PCA-GPU could not be run when 𝑛 = 19998 and 𝑝 ≥ 13000 as it exceeded87

the GPU memory capacity.88

Batardiere et al. (2024). pyPLNmodels: A Python package to analyze multivariate high-dimensional count data. Journal of Open Source Software,
0(0), 6969. https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.xxxxxx/draft

DRAFT
10

100

1000

10000

0 5000 10000 15000
Number of variables p

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
) n = 19998

1

10

100

1000

10000

0 5000 10000 15000
Number of variables p

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
) n = 1000

1

100

10000

0 5000 10000 15000
Number of variables p

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
) n = 100

py−PLN−CPU (ours) py−PLN−PCA−CPU (ours) py−PLN−GPU (ours) py−PLN−PCA−GPU (ours)

GLLVM R−PLN R−PLN−PCA

Figure 2: Running time analysis on the scMARK benchmark.

Each package uses variational inference (Blei et al., 2017) to maximize an Evidence Lower89

Bound(ELBO), which serves as an approximation to the model’s log-likelihood. Variational90

inference aims to approximate the posterior distribution of the latent variables by minimizing the91

divergence between the posterior and a variational distribution. To maximize the ELBO, all the92

methods uses gradient ascent. The GLLVM uses the automatic differentiation of Template Model93

Builder (TMB) library (Kristensen et al., 2016) with a C++ backend. PLNmodels uses C++94

backend along with nlopt(Johnson, 2007) optimization library, while pyPLNmodels leverages95

the automatic differentiation from Pytorch to compute the gradients of the ELBO. Each96

PLN-PCA model is estimated using comparable variational inference methods. However, the97

variational approximation for the PLN model in the pyPLNmodels version is more efficient than98

its counterpart in PLNmodels.99

Ongoing work100

A zero-inflated version of the PLN model is currently under development, with a preprint101

(Batardière et al., 2024) expected to be published shortly.102

Batardiere et al. (2024). pyPLNmodels: A Python package to analyze multivariate high-dimensional count data. Journal of Open Source Software,
0(0), 6969. https://doi.org/10.xxxxxx/draft.

5

https://doi.org/10.xxxxxx/draft

DRAFT
Acknowledgements103

The authors would like to thank Jean-Benoist Léger for the time spent giving precious advice104

on how to build a proper Python package.105

Fundings106

Bastien Bartardière and Julien Chiquet are supported by the French ANR grant ANR-18-CE45-107

0023 Statistics and Machine Learning for Single Cell Genomics (SingleStatOmics).108

References109

Aitchison, J., & Ho, C. H. (1989). The multivariate Poisson-log normal distribution. Biometrika.110

https://doi.org/10.1093/biomet/76.4.643111

Batardière, B., Chiquet, J., Gindraud, F., & Mariadassou, M. (2024). Zero-inflation in the112

multivariate poisson lognormal family. https://arxiv.org/abs/2405.14711113

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for114

statisticians. Journal of the American Statistical Association. http://dx.doi.org/10.1080/115

01621459.2017.1285773116

Chiquet, J., Mariadassou, M., & Robin, S. (2018). Variational inference for probabilistic117

poisson PCA. In The Annals of Applied Statistics. https://doi.org/10.1214/18-aoas1177118

Chiquet, J., Mariadassou, M., & Robin, S. (2021a). PLNmodels: Poisson lognormal models.119

https://cran.r-project.org/web/packages/PLNmodels/index.html120

Chiquet, J., Mariadassou, M., & Robin, S. (2021b). The poisson-lognormal model as a versatile121

framework for the joint analysis of species abundances. Frontiers in Ecology and Evolution.122

https://doi.org/10.3389/fevo.2021.588292123

Diaz-Mejia, J. (2021). scMARK an ’MNIST’ like benchmark to evaluate and optimize models124

for unifying scRNA data (Version 1.0) [Data set]. https://doi.org/10.5281/zenodo.5765804125

Johnson, S. G. (2007). The NLopt nonlinear-optimization package. https://github.com/126

stevengj/nlopt.127

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic128

differentiation and laplace approximation. Journal of Statistical Software. https://doi.org/129

10.18637/jss.v070.i05130

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,131

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,132

Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S.133

(2019). PyTorch: An imperative style, high-performance deep learning library. In134

Advances in neural information processing systems 32. http://papers.neurips.cc/paper/135

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf136

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical mod-137

eling with python. 9th Python in Science Conference. https://doi.org/10.25080/138

majora-92bf1922-011139

Batardiere et al. (2024). pyPLNmodels: A Python package to analyze multivariate high-dimensional count data. Journal of Open Source Software,
0(0), 6969. https://doi.org/10.xxxxxx/draft.

6

https://doi.org/10.1093/biomet/76.4.643
https://arxiv.org/abs/2405.14711
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1214/18-aoas1177
https://cran.r-project.org/web/packages/PLNmodels/index.html
https://doi.org/10.3389/fevo.2021.588292
https://doi.org/10.5281/zenodo.5765804
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.18637/jss.v070.i05
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.25080/majora-92bf1922-011
https://doi.org/10.25080/majora-92bf1922-011
https://doi.org/10.25080/majora-92bf1922-011
https://doi.org/10.xxxxxx/draft

	Summary
	Fields of applications and functionalities
	Statement of need
	Benchmark
	Ongoing work
	Acknowledgements
	Fundings
	References

