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Abstract

Tropical moist forests are not the homogeneous green carpet often illustrated

in maps or considered by global models. They harbour a complex mixture of

forest types organized at different spatial scales that can now be more accurately

mapped thanks to remote sensing products and artificial intelligence. In this

study, we built a large-scale vegetation map of the North of Congo and assessed

the environmental drivers of the main forest types, their forest structure, their

floristic and functional compositions and their faunistic composition. To build

the map, we used Sentinel-2 satellite images and recent deep learning architec-

tures. We tested the effect of topographically determined water availability on

vegetation type distribution by linking the map with a water drainage depth

proxy (HAND, height above the nearest drainage index). We also described

vegetation type structure and composition (floristic, functional and associated

fauna) by linking the map with data from large inventories and derived from

satellite images. We found that water drainage depth is a major driver of forest

type distribution and that the different forest types are characterized by differ-

ent structure, composition and functions, bringing new insights about their ori-

gins and successional dynamics. We discuss not only the crucial role of

soil–water depth, but also the importance of consistently reproducing such

maps through time to develop an accurate monitoring of tropical forest types

and functions, and we provide insights on peculiar forest types (Marantaceae

forests and monodominant Gilbertiodendron forests) on which future studies

should focus more. Under the current context of global change, expected to

trigger major forest structural and compositional changes in the tropics, an

appropriate monitoring strategy of the spatio-temporal dynamics of forest types

and their associated floristic and faunistic composition would considerably help

anticipate detrimental shifts.

Introduction

Behind the homogeneous green carpet often illustrated in

maps or considered by global models, tropical forests are

known to harbour a complex mixture of forest types

organized at different spatial scales (Brando et al., 2019;

Chazdon, 2003; Couvreur, 2015). Ecologists and foresters

have long identified major differences between forest

types, leading to different ecosystem services (e.g. carbon

stocks, water regulation, food supplies, etc.; Watson

et al., 2018) and different floristic and faunistic composi-

tions influencing conservation priorities (Asner

et al., 2017; Cannon et al., 2007; Fonteyn et al., 2023).
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However, the large-scale distribution of forest types and

their underlying floristic and faunistic compositions are

poorly known in tropical forests (Fonteyn et al., 2023;

Ordway et al., 2022). The main reasons for this knowl-

edge gap are the inherent difficulties of satellite-based

approaches to detect subtle changes in the structure and

composition of tropical dense forests, and the low signal/

noise ratio and artefacts due to imperfect pre-processing

(Hoekman et al., 2020; Jha et al., 2021). It considerably

limits our understanding of the drivers and of the

dynamics of forest type distribution and thus our ability

to design appropriate management and conservation

strategies in one of the most biodiverse and carbon-rich

biomes on Earth.

Tropical forest dynamics have historically been studied

through ground-vegetation surveys, notably in permanent

forest plots (Anderson-Teixeira et al., 2015; ForestPlots.-

net et al., 2021). Because these plots are extremely labour-

intensive, they can only cover a limited area and do not

necessarily represent all forest types well, often being

over-represented in mature terra firme forests. Larger

commercial inventories have also been used to map forest

types and characteristics (R�ejou-M�echain et al., 2021; Ter

Steege et al., 2006). While these inventories provide

unique large-scale information, they are not reproduced

over time and thus have limited value for monitoring for-

est ecosystems. By contrast, the increasing availability of

remote sensing products, which provide repeated mea-

surements over time, offers invaluable potential for con-

tinuous spatio-temporal monitoring of tropical forests.

Although most current remote sensing data rapidly satu-

rate with forest structure (Jha et al., 2021), some studies

have shown that the spectral and/or textural information

contained in satellite data have some potential to discrim-

inate between tropical forest types (Gond et al., 2013;

Thenkabail et al., 2003, 2004; Viennois et al., 2022).

Recent synergistic advances in remote sensing products

and artificial intelligence open new perspectives in distin-

guishing and mapping different forest types. The increas-

ing availability of satellite data with high spectral, spatial

and temporal resolutions, such as Sentinel 2 data, offer a

great potential, provided that careful image processing is

made to minimize known biases, such as variability in

sun-sensor acquisition conditions (bidirectional reflec-

tance distribution function [BRDF]) or atmospheric pol-

lution (Phiri et al., 2020). Indeed, many vegetation types

can be distinguished from their specific textural and spec-

tral signals (Ordway et al., 2022; Viennois et al., 2022). In

the recent years, deep learning approaches also have per-

mitted significant progress in forest properties mapping

from space-borne data with the development of perfor-

mant convolutional networks (e.g. Kattenborn

et al., 2021; Wagner et al., 2019) and, more recently, of

vision transformer models (e.g. Fayad et al., 2023). How-

ever, so far, studies leveraging deep learning mostly

focused on predicting quantitative metrics of forest struc-

ture (Li et al., 2020) to estimate carbon stocks (Huy

et al., 2022) and their changes over time (Waldeland

et al., 2022). Despite the need for new methods to moni-

tor forest composition, relatively few studies have used

deep learning approaches to predict tropical forest types

from remote sensing images (Kattenborn et al., 2021).

Even fewer have paired their forest type predictions with

extensive field data to understand how the floristic, func-

tional and faunistic compositions vary among predicted

types (Gond et al., 2013).

Different factors are expected to drive the structure and

composition of tropical forests at different spatio-

temporal scales. Among these factors, water availability

appears as a major driver. At the continental to regional

scale, or along marked elevational gradients, climate water

deficit and temperature have been shown to be the main

ecological drivers of the distribution of forest types (R�e-

jou-M�echain et al., 2021; Ter Steege et al., 2006). At the

regional-to-landscape scale, investigated in this study,

geological substrates, soil characteristics and topography

are known to impact both water and nutrient availability

and thus to have a significant impact on forest composi-

tion and structure (Fayolle et al., 2012). The effect of

topography is, however, known to be context-dependent

(Muscarella et al., 2020; Sousa et al., 2022) with for

example, lower canopies in valley bottoms than in hilltops

in high-rainfall areas (e.g. Ferry et al., 2010) while the

reverse is observed in drier contexts (e.g. Detto

et al., 2013). A recent study consistently showed that the

functional composition of trees varies along gradients of

soil–water availability in a non-linear way, with conserva-

tive strategies associated with very shallow water table

depth due to anoxic conditions, acquisitive strategies in

intermediate water table depth values and, again, conser-

vative strategies in deep water table depth areas due to a

marked water deficit in the soil (Costa et al., 2023).

Another potentially important driver of forest composi-

tion and structure is the positive and negative feedbacks

between megafauna and forest structure and composition

(Malhi et al., 2016; Terborgh et al., 2016). For example,

elephants and gorillas are known to be major ecosystem

engineers: They are both important seed dispersers and

can significantly modify forest structure through distur-

bances (Campos-Arceiz & Blake, 2011; Haurez

et al., 2015), with potentially important impacts on forest

composition (Beaune et al., 2013; Terborgh et al., 2008)

and functions (Berzaghi et al., 2019).

Central Africa is home to the second largest tropical

forest block worldwide and hosts some of the world’s

most iconic megafauna. As with any other large tropical
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forest block, several forest types, with specific structure

and functional and faunistic compositions, occur or

co-occur along environmental gradients, from for exam-

ple, permanently flooded to terra firme forests,

semi-deciduous to evergreen forests or open to dense can-

opy forests (Fayolle et al., 2014; Fonteyn et al., 2023; R�e-

jou-M�echain et al., 2014; R�ejou-M�echain et al., 2021).

Besides, central Africa is home to peculiar but widespread

forest types which origins still remain debated, such as

the monodominant Gilbertiodendron dewevrei forests

(Hart et al., 1989; Katembo et al., 2020) and the so-called

Marantaceae forests, a forest type with an understory

dominated by giant herbs and hypothesized to correspond

to an arrested succession (Pouteau et al., 2024). Central

African forests and their fauna are, however, heavily

threatened by both increasing human pressure (Lhoest

et al., 2020; Vancutsem et al., 2021) and climate change

(Bush et al., 2020; Kasongo Yakusu et al., 2023; Wimberly

et al., 2023), highlighting the urgent need for characteriz-

ing and understanding the distribution of forest composi-

tion and structure at scales compatible with ecosystem

management strategies.

The aim of this study was to build a large-scale vegeta-

tion map in the North of the Republic of Congo and to

assess the environmental drivers of the main forest types,

their forest structure, their floristic and functional com-

positions and their faunistic composition. We selected an

area known to contain a mosaic of contrasted forest types

as well as high abundance of megafauna. First, we used

very high (0.5 m) and high (10 m) resolution satellite

images and recent deep learning architectures to map six

vegetation types over 18 500 km2 (Fig. 1). Then, we

linked this map to a water table depth proxy (HAND,

height above the nearest drainage index) and tested

whether soil–water availability drives forest types distribu-

tion. Then, we combined the vegetation map with a large

tree inventory dataset (2524 plots) to investigate how for-

est structure, floristic and functional compositions vary

between forest types. Finally, we combined the vegetation

map with a large megafauna inventory dataset (2667

observations) to compare the faunistic composition of the

various forest types.

Materials and Methods

Study area

The study area is located in the North of the Republic of

Congo (Fig. 2). It covers an area of 18 500 km2

(135 9 137 km) and sits astride the Odzala-Kokoua

National Park and the IFO-Interholco forestry concession

(UFA Ngomb�e). Annual rainfall is about 1500 mm

(Congo National Civil Aviation Agency, 2005–2015), with

a 3-months dry season during December to February.

The average temperature is 25°C. The Sangha department

is mostly covered by forests belonging to the mixed ever-

green and semi-deciduous forest types (R�ejou-M�echain

et al., 2021).

Pre-processing of the Sentinel-2
satellite image

We used Sentinel 2 (S2) data from 11 January 2020 for

wall-to-wall mapping of vegetation types over the study

area. To improve the signal/noise ratio in the data, image

processing consisted in applying three main corrections:

(i) atmospheric effects enhanced correction and dehazing,

(ii) bidirectional effects correction and (iii) instrumental

artefacts correction. The full process is detailed in

Appendix S.1.

Reference dataset of vegetation types

Based on the review of regional literature and on our

ability to visually discriminate forest types from very

high-resolution images, we defined six main forest types

of interest, and roads (Fig. 3). To build a reference data-

set representing the six studied vegetation types plus the

roads, we acquired 2320 km2 of very high-resolution ste-

reo Pleiades images (0.5 m resolution) between January

and December 2022. Due to budget and cloud cover con-

straints, Pleiades images were not acquired for the entire

study area (Figure S1). To improve the spatial representa-

tiveness of some forest types and study zones, we also

used freely available Planet images (5 m resolution) as a

secondary, lower priority option. Our final reference data-

set consisted of 680 well-distributed 1-ha polygons (535

polygons based on Pleiades images and 145 on Planet

images; Figure S1 and Table S1). Polygons labelling was

made by a single expert (JP) based on image visual inter-

pretation on QGIS version 3.22.9 (QGIS.org, 2022) using

criteria such as canopy texture and 3D information from

Pleiades-derived digital surface models obtained from ste-

reo photogrammetry. All areas that burnt or experienced

large-scale disturbance between 2020 and 2022 were

excluded from this dataset. Moreover, a large area

(12 000 ha), which burnt in the early 1970s (pers.

comm.), was excluded from the reference dataset as its

status was uncertain.

Deep learning prediction and validation

We used two types of recent deep learning architectures

to predict the different forest types: a convolutional neu-

ral network EfficientNet-B3 (Tan & Le, 2019), using

pre-trained Noisy-Student weights (Xie et al., 2020), and

ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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a Vision transformer (Dosovitskiy et al., 2021; Khan

et al., 2022), pre-trained on ImageNet (Russakovsky

et al., 2015). To benefit from the pre-trained weights of

both networks, which were based on Red-Green-Blue

(RGB) images, we reduced the dimensionality of the 13

bands of Sentinel data using a principal component anal-

ysis (PCA) and used the first three PCA axes to generate

false-RGB images (code available at https://github.com/

MaximeRM/ScriptDeepLearningCongo).

We used an ensemble-average approach to ensure the

robustness and the accuracy of the predictions. Each

architecture was trained separately three times each using

our reference polygon dataset split into a calibration

(70%) and validation (30%) datasets that preserved the

proportion of the different forest types of the dataset. We

then used these six models to predict forest types over

the whole study area at 100-m resolution (10 9 10

pixels). Post-training, the probabilities from the six

models were averaged, resulting in the probability for

each 10 9 10 pixels corresponding to the seven different

classes (Fig. 3). The assigned class was determined by the

highest averaged probability.

The validation of the map was done using the six origi-

nal maps and their corresponding validation datasets to

build a global confusion matrix and calculate the global

accuracy (ratio of well-classified elements to the total

number of elements). We additionally validated our final

map using independent field- and satellite-based metrics

of forest structure. Field-based metrics were drawn from

Ploton et al. (2020) and included the mean above ground

biomass per ha (in Mg ha�1), the number of trees per ha

with diameter at breast height (DBH) ≥ 20 cm and the

mean quadratic diameter of trees with DBH ≥ 20 cm (in

cm). Satellite-based metrics were obtained from products

derived from the LiDAR GEDI mission (Dubayah

et al., 2020). We used estimates of the mean canopy

height (rh100 in m, L3 version 2) and of the above

ground biomass per ha (in Mg ha�1, L4B version 2), both

Figure 1. Methodological workflow.
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downloaded from https://webmap.ornl.gov/ogc/ on the 7/

11/2023 (Duncanson et al., 2022).

Crossing the map of vegetation types with
environmental, floristic and faunistic data

Topographical variable: A proxy for water
drainage depth

The altitude of our study area varied between 330 and

680 m, mainly according to the hydrological network

(Fig. 2). We thus used an index that captured most of the

topographical variation over our study area: the height

above the nearest drainage (HAND; Nobre et al., 2011).

This index was built using the method developed by

Renn�o et al. (2008) based on data from the shuttle radar

topography mission (SRTM; 30-m resolution). By nor-

malizing topography according to the local relative

heights found along the drainage network, this index cap-

tures the local draining potentials and thus the local soil–
water conditions (water drainage depth), known to

influence forest composition (Guitet et al., 2015). The

lower the HAND index value, the shallower the drainage

level. Because the distribution of the HAND index values

was right-skewed, we log-transformed (ln + 1) its values

in subsequent analyses.

Soil types

Information on soil type composition and structure is

scarce in central Africa and global soil maps often result

from interpolation approaches partly based on remote

sensing products, partly leading to circularity issues in

vegetation studies. We thus used a 1:2 000 000 scale map

of soil types (de Boissezon et al., 1969), which is still

likely the most accurate one for this region (Figure S2).

The map encompassed six soil types from ferralitic desa-

turated modal soils to hydromorphic soils. Hydromorphic

soils are mainly mineral in our study area, and are subject

to hydromorphy that is either total, but not permanent,

or partial. We merged them with organic hydromorphic

Figure 2. Study area, floristic and faunistic data location and HAND index variations in the North of the Republic of Congo (map background

was taken from OpenStreetMap).
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soils, which occupy a very small part of the study area,

and are waterlogged part of the year and flooded the rest

of the time. On the contrary, ferralitic desaturated modal

soils are well-drained soils, even if they can also experi-

ence waterlogging periods depending on their topographi-

cal location (plateau, slope or valley bottom).

Floristic data

We used a floristic dataset of 2524 plots obtained from

forest management inventories conducted in the

IFO-Interholco concession in 2001–2004. Most of the

plots were 0.5 ha in size (200 9 25 m2; 91%), the

remaining being 1 ha (400 9 25 m2; 8%). All trees with

a DBH ≥ 20 cm were identified using vernacular or com-

mercial names and then converted to scientific names

whenever possible (see the general methodology in R�ejou-

M�echain et al. (2011)). We conducted a selection of

seemingly well-identified taxa based on expert knowledge

and using distributional ranges reported in the RAINBIO

dataset (Dauby et al., 2016). We ended up with 159 taxa

and removed an additional 16 species that were repre-

sented by <100 individuals in the dataset. The studied

143 taxa were identified at the species (n = 61) or genus

(n = 82) levels and represented 83% of the originally

inventoried individuals.

Functional traits

The functional trait dataset was compiled from various

sources. We selected two quantitative traits (wood density

and maximum diameter) and three qualitative traits

(deciduousness, seed dispersal mode and shade tolerance)

known to vary between forest types and successional sta-

tus (R�ejou-M�echain et al., 2014). See details on the traits

database construction in Appendix S.2.

Faunistic data

The faunistic dataset was composed of 2667 direct and

indirect observation points of forest elephants (Loxodonta

cyclotis) and western lowland gorillas (Gorilla gorilla

gorilla) recorded by field teams of the Odzala-Kokoua

National Park in August 2016–January 2017 (1113 obser-

vations), February–March 2020 (2585 observations) and

November 2022 (1539 observations; Fig. 2). These data

were collected as part of 3-yearly line-transect distance

sampling surveys to assess wildlife population trends

Figure 3. The six studied forest types illustrated with 100 9 100 m patch examples taken from Pleiades images acquired in 2022 in the study

area. The main criteria that distinguish them (i.e. canopy openness, tree crown size and understorey composition) are displayed in the figure. LF,

monodominant Gilbertiodendron forests; DF, dense forests; MF, Marantaceae forests; OMF, open Marantaceae forests; SecF, secondary forests;

SwF, swamp forests; R, roads.

6 ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Combining satellite and field data reveals Congo’s forest types J. Picard et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.419 by C

IR
A

D
, W

iley O
nline L

ibrary on [16/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(Buckland et al., 2001; Odzala-Kokoua-Lossi Founda-

tion, 2023). The 2.5-km transects were randomly posi-

tioned along a systematic grid using Distance 7.3 (Release

2; Thomas et al., 2010) and the ‘systematic segmented

trackline’ option. Elephant dung piles and gorilla nests

were recorded and the perpendicular distance was mea-

sured from the centreline. Nearly 98% of the perpendicu-

lar observations were made at a distance <10 m. Direct

observations were also taken when travelling between

transects. Note that dung and nest decay rates vary

according to many factors (Morgan et al., 2016) and may

thus generate density-biased estimates between forest

types.

Data analyses

To determine whether the different forest types were asso-

ciated with different topography, soil, floristic and faunis-

tic characteristics, we used non-parametric torus

translation tests to account for spatial autocorrelation

(Harms et al., 2001). These robust tests perform random

two-dimensional translations in the four cardinal direc-

tions to partially rearrange the forest type map preserving

coarse spatial structures in both the response and explan-

atory variable. We generated 999 simulated maps of vege-

tation types and compared the value of the observed

association statistic, Statobs (specific to each variable, see

Appendices S.3–S.5), with the distribution of the simu-

lated statistic, Statsim, and computed the P-value as P =
(N(Statsim ≥ Statobs) + 1)/(Nsim + 1), where N gives the

number or achievements and Nsim the number of simula-

tions. To ensure accurate matches between forest types

and environmental or compositional variables, we

excluded all pixels having an average probability of classi-

fication <70% (39% of pixels).

For the floristic analysis, we performed a correspon-

dence analysis (CA) to detect the main floristic gradients

in our dataset and used a canonical correspondence anal-

ysis (CCA) to assess whether and how the different forest

types differed in taxa composition. Functional composi-

tion was assessed through the mean value (quantitative

traits) and the frequency (one modality for each qualita-

tive trait), weighted by abundance, of the five functional

traits at the community level for each plot. For both flo-

ristic and functional analyses, all plots located in areas

that burned between 2002 and the acquisition of satellite

images in 2020 were excluded from the dataset. To ensure

reliable floristic and functional estimates while minimiz-

ing sampling errors, we also discarded plots with fewer

than 20 trees (1.3% of plots). Note that this arbitrary

threshold is likely conservative, as a lower threshold of 10

trees per plot led to similar results (not shown). Thus,

analyses were run on 2524 plots.

Results

Mapping forest types

The vegetation map achieved an overall accuracy of 83%.

Most classification errors were due to confusion involving

pairs of forest types linked by progressive forest structure

transitions. For instance, dense versus Marantaceae forests

and Marantaceae versus open Marantaceae forests repre-

sented 61% of the errors (Table 1 and Fig. 4). The map is

openly available in DataSuds-geo repository (IRD, France)

at https://doi.org/10.23708/59ed1234-bb7f-4914-be50-

aadeadf67aa0.

The dominant forest type in the area was Marantaceae

forests (48% of the total predicted area), followed by

open Marantaceae forests (21%), swamp forests (22%),

dense forests (4%), secondary forests (2%) and monodo-

minant Gilbertiodendron forests (2%). Vegetation types

presented a structured mosaic with notable big patches of

open Marantaceae forests (up to 10 000 ha) and with

monodominant Gilbertiodendron forests mostly distrib-

uted along the rivers in the eastern part of the study area,

in the close vicinity of swamp forests. Dense forests were

mainly located in the north, but with smaller patches

scattered across the rest of the study area. Interestingly,

our model classified the large forest patch that burnt in

1970 as secondary forest, while all reference areas for sec-

ondary forests were on areas that burnt after 2002 and

mainly in 2016.

Combining this map with forest inventory data and

GEDI products consistently revealed significant structural

Table 1. Confusion matrix summarizing the validation of the six pre-

dictive models.

Reference Total

confusion

error (%)Prediction DF LF MF OMF R SecF SwF

DF 56 2 10 0 1 0 2 21

LF 0 77 0 0 0 0 3 4

MF 41 5 181 29 7 2 10 34

OMF 0 0 38 223 11 17 0 23

R 0 0 2 0 105 0 0 2

SecF 0 0 0 2 3 57 0 8

SwF 4 1 4 0 0 0 216 4

Total

confusion

error (%)

45 9 23 12 17 25 6

A total of 204 validation polygons spread over the seven vegetation

types were repeatedly used to validate the six models (DF, dense for-

ests; LF, monodominant Gilbertiodendron forests; MF, Marantaceae

forests; OMF, open Marantaceae forests; R, roads; SecF, secondary

forests; SwF, swamp forests). Green: correct classification.
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Figure 4. Predicted vegetation map over the study area (A); GEDI-derived characterization of forest types (B, C) and ground-based derived

characterization of forest types (D–F). The statistical differences between the distribution of forest structure values are illustrated with letters in

panels B to F (different letters indicate statistical differences with a 5% risk for the torus test on Wilcoxon effect size).
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differences between the six forest types with a similar

ranking of forest types. However, GEDI’s above ground

biomass (AGB) estimates were 41% lower than the field

estimates on average (153 vs 260 Mg ha�1; Fig. 4). Open

Marantaceae forests were characterized by a significantly

lower number of trees per hectare (but of larger trunk

diameter on average) and a lower mean canopy height

than almost all other forest types, resulting in small AGB

values (mean of 219 � 6.2 Mg ha�1 using field estimates

vs 124 � 0.2 Mg ha�1 using GEDI estimates), similar to

the swamp forests (mean of 247 � 11 vs

149 � 0.2 Mg ha�1) but higher than the secondary for-

ests (mean of 153 � 22.4 vs 106 � 0.6 Mg ha�1). By

contrast, the highest AGB values were observed for the

monodominant Gilbertiodendron (mean of 356 � 27.3 vs

202 � 0.7 Mg ha�1) and dense forests (mean of

306 � 16.7 vs 201 � 0.5 Mg ha�1) while Marantaceae

forests exhibited intermediate values (mean of 286 � 4.9

vs 167 � 0.2 Mg ha�1). The mean quadratic diameter

and number of trees per hectare of secondary forests dis-

played a large variance, probably reflecting the different

age of the forests.

Linking forest types to topography

Vegetation types were significantly associated with topo-

graphical gradient (HAND index), with significant

differences in HAND values between all forest types

except between open Marantaceae forests and secondary

forests, and between Marantaceae forests and dense for-

ests (Fig. 5). Secondary and open Marantaceae exhibited

the highest HAND index values indicating the highest ele-

vation above nearest drainage, Gilbertiodendron and

swamp forests had the lowest values, and Marantaceae

forests and dense forests showed intermediate values.

Testing the role of soil types on forest types
distribution

We found an overall significant association between vege-

tation types and soil types (v2 = 99 507; torus test

P = 0.003). However, our post hoc test based on pairwise

associations revealed that only a few associations between

vegetation and soil types were significant (Table 2). As

expected, swamp forests were significantly associated with

hydromorphic soils but significantly scarce on ferralitic

soils on sandstone and quartzite. Dense forests were sig-

nificantly associated with ferralitic soils on sandstone and

quartzite. Monodominant Gilbertiodendron forests were

also significantly, albeit weakly, associated with ferralitic

soils on sandstone and quartzite. Open Marantaceae for-

ests were scarcer on hydromorphic soils and were signifi-

cantly associated with ferralitic soils on material from the

clayey–sandy series, along with secondary forests, which

Figure 5. HAND index distribution for the different vegetation types (SecF, secondary forests; OMF, open Marantaceae forests; MF, Marantaceae

forests; DF, dense forests; LF, monodominant Gilbertiodendron forests; SwF, swamp forests). Different letters indicate significant differences (torus

test on Wilcoxon effect size, P = 0.001).
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avoid ferralitic undifferentiated soils. Finally, Marantaceae

forests avoided the juxtaposition of ferralitic and hydro-

morphic soils.

Floristic composition

The first two axes of the correspondence analysis (CA)

explained 11.0% of the total variance in floristic composi-

tion (Fig. 6). The axes of the CA were very structured (cf.

bar plot of eigenvalues, Fig. 6) and therefore displayed

marked floristic gradients. Gilbertiodendron dewevrei was

the most represented taxa on the first axis, leading to

negative site scores for the monodominant Gilbertioden-

dron forest plots. Note that some areas classified as

swamp forests by our model also showed negative scores

along this axis, probably illustrating the local coexistence

of both forest types within the 1-ha predicted pixels. The

second axis mostly opposed pioneer taxa, such as Maesop-

sis eminii and Macaranga spp. to taxa known to charac-

terize mature forests in this area, such as Manilkara spp.

and Scotellia spp. This axis consistently opposed second-

ary forests, and to a lesser extent, open Marantaceae for-

ests, to swamp, dense and Marantaceae forests. Thus, as

expected, the predicted forest types from our vegetation

map exhibit marked differences in their tree composition.

The canonical correspondence analysis (CCA) con-

strained by the vegetation types explained a total of 7.6%

of the variance (the first two axes expressed 70.8% of the

explained variance) (Fig. 7). The torus test indicated that

this part of explained variance was significantly explained

by the vegetation types (P = 0.001), confirming that for-

est types exhibited contrasted tree compositions. The first

axis mostly opposed monodominant Gilbertiodendron for-

ests to the other forest types, and the second axis, again

contrasting taxa with different successional affinities,

mainly opposed secondary and open Marantaceae forests

to Marantaceae and dense forests.

Functional composition

The forest types expressed significant differences in func-

tional composition (Fig. 8). All the studied traits followed

a gradient from secondary forest, open Marantaceae and

Marantaceae forests, to dense and monodominant Gilber-

tiodendron forests (except for the deciduous proportion in

secondary forests). Secondary forests displayed a large

variance in wood density and pioneer proportion. They

also had among the lowest mean wood density, maximum

diameter and proportion of deciduous trees, and the

highest pioneer and anemochorous tree species propor-

tions. Note that Macaranga spp., which is highly abun-

dant in this forest type (65% of the tree individuals) is

mostly responsible for some of these patterns. Open Mar-

antaceae and, to a lesser extent, Marantaceae forests were

characterized by low maximum diameter and wood den-

sity, and a high proportion of deciduous, pioneer and

anemochorous trees, compared to the other forest types.

By contrast, monodominant Gilbertiodendron forests had

the highest wood density and maximum diameter, and

the lowest proportion of deciduous, pioneer and anemo-

chorous trees, but, here again, Gilbertiodendron dewevrei

drove these patterns with 46% of individuals in this

forest type.

Megafauna composition

Across the 2667 observation points, 2149 were attributed

by local spotters to elephants and 518 to gorillas. Our

Table 2. Observed and null distributions of the frequency of vegetation types in the different soil types (DF: dense forests, LF: monodominant Gil-

bertiodendron forests, MF: Marantaceae forests, OMF: open Marantaceae forests, SecF: secondary forests, SwF: swamp forests).

Ferralitic, highly

desaturated,

impoverished, modal

soils, on material from

the clayey–sandy series

Ferralitic, highly

desaturated,

modified, modal,

undifferentiated

soils

Ferralitic, highly

desaturated,

modified, modal

soils, on sandstone

and quartzite

Ferralitic,

highly

desaturated,

modified,

modal soils, on

shale

Hydromorphic

mineral and

organic soils

Juxtaposition: highly

desaturated, impoverished,

yellow ferralitic soils +

undifferentiated hydromorphic

soils on alluvial deposits

in

%

DF 19.9 [14.9–53.5] 15.0 [9.5–46.4] 33.2 [7.6–27.1] 14.7 [1–15.9] 9.1 [7–21] 3.3 [1.2–17]

LF 23.2 [11.7–49.6] 13.7 [5.3–59.6] 38.1 [2.7–37.4] 6.0 [0.8–14.7] 15.6 [3.8–29.4] 3.8 [0.6–19.8]

MF 29.1 [23.6–36.3] 32.6 [20.7–36] 18.1 [12.4–21.7] 5.6 [3–7.5] 11.3 [11.3–17.2] 2.3 [3.2–8.5]

OMF 47.4 [19–44.1] 22.0 [15–42.4] 12.6 [8.5–25.5] 1.0 [0.8–10.1] 6.4 [8.3–20.8] 9.0 [1.6–10.2]

SecF 72.2 [5.8–70.3] 2.6 [5.1–54.1] 8.7 [0.5–47.1] 0.9 [0.1–23.6] 6.3 [2–32.7] 9.5 [0.2–19.3]

SwF 28.2 [24.9–36.3] 28.4 [22.7–33] 10.3 [11.4–21.1] 5.6 [3.3–7.6] 21.7 [10.7–18.5] 4.8 [4–8.1]

Observed values are first reported and then compared to the 0.025 and 0.975 quantiles of the null distribution (obtained from the toroidal trans-

lations) reported in square brackets. Values in dark grey indicate that the vegetation type is more frequent, and in pale grey less frequent, on the

soil type than by chance at a 5% risk.
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torus tests revealed that elephant occurrences were

over-represented in Marantaceae forests (66.4% of occur-

rences in Marantaceae forests against the 5% confidence

interval of 6.6–33.8%). Moreover, gorillas were

over-represented in open Marantaceae forests (40.3% of

occurrences against the 5% confidence interval of

0–22.7%) and in Marantaceae forests (45.8% of occur-

rences against 3.3–42%). No other significant difference

between forest types was detected for these two species.

Discussion

In this paper, we combined up-to-date remote sensing

approaches and extensive field- and satellite-based forest

metrics to map the large-scale distribution of forest types

and characterize their structure, composition, function

and environmental drivers in a poorly studied area in

central Africa. Our work demonstrates that such a combi-

nation of data has the potential to generate knowledge on

forest ecology and to support forest management and

conservation strategies at the regional scale. We specifi-

cally found that water drainage depth is a major driver of

forest type distribution and described the different struc-

ture, composition and functions of the different forest

types, bringing new insights into the potential mecha-

nisms responsible for their establishment and

maintenance.

Towards an accurate monitoring of tropical
forest types and functions

So far, tropical forests have often been remotely sensed as

a uniform forest type, and most current research efforts

have concentrated on improving the monitoring of defor-

estation, and to a lesser extent forest degradation (Dupuis

et al., 2020). However, further efforts are also needed to

characterize the diversity and composition of tropical for-

ests at larger scales to better anticipate and monitor their

response to upcoming pressures, such as functional shifts

or possible critical transitions, and to significantly

improve management and conservation strategies.

Recent progress has been made to distinguish and char-

acterize forest types using airborne LiDAR data (Scheeres

et al., 2023). However, airborne LiDAR data are often

Figure 6. Distribution of the tree taxa (left) and the plots (right) on the first two axes of a correspondence analysis (SecF, secondary forests in

yellow; OMF, open Marantaceae forests in green; MF, Marantaceae forests in magenta; DF, dense forests in dark green; LF, monodominant

Gilbertiodendron forests in purple; SwF, swamp forests in pale blue).
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restricted to relatively small-scale areas (Mascaro

et al., 2014). Large-scale LiDAR data, readily available

from the GEDI mission, now plays a crucial role in char-

acterizing forest structure in the absence of extensive field

measurements. Our study demonstrates that GEDI esti-

mates consistently rank forest types based on structural

metrics, providing valuable insights into relative differ-

ences in forest structure. However, we found that GEDI

products significantly underestimate above ground bio-

mass (AGB) by 41% compared to field-derived estimates

in our study area, consistent with findings from another

study in central Africa (Hunka et al., 2023). Therefore,

while these products offer substantial assistance in charac-

terizing differences between forest types, caution is war-

ranted when interpreting their absolute values.

We demonstrated that combining state-of-the-art deep

learning approaches with well-processed Sentinel 2 data

has the potential to generate accurate forest type maps.

Given that Sentinel-2 satellites provide weekly data glob-

ally, under cloud-free conditions, our framework has the

potential to accurately monitor the spatio-temporal

dynamics of forests at both fine spatial and temporal

scales, moving beyond the classical forest and non-forest

dichotomy often used in forest change detection algo-

rithms (Decuyper et al., 2022). It opens several new per-

spectives, such as the improvement of (i) forest carbon

maps, where inversion models would account for allome-

tries specific to forest types (Djomo et al., 2016); (ii)

global vegetation models, where forest types would be

modelled according to their own composition, function

and dynamics (Scheiter et al., 2013); (iii) ecosystem ser-

vice assessments, where the spatio-temporal dynamics of

services would be better anticipated (Alamgir et al., 2016;

Lhoest et al., 2019); (iv) wildlife management, where the

quality, fragmentation and connectivity of habitats would

be better assessed (Foerster et al., 2016); and (v) manage-

ment and conservation strategies, where decisions would

be guided by a deeper understanding of forest composi-

tion and functions and of the complementarity of forest

types (Gavin, 2009).

Thus, further efforts are needed to expand our study

scheme to other tropical regions. Large-scale field datasets

or independent satellite products, such as GEDI or the

upcoming BIOMASS mission (Le Toan et al., 2011), can

be leveraged in combination with these forest type maps

to provide a better understanding of the structure of for-

est types. However, mapping tropical vegetation types

should ideally also provide insights into their functional-

ity. Recent research suggests that satellite data have the

potential to predict functional traits derived from

field-based or airborne measurements, such as leaf mass

per area and canopy phosphorus (Aguirre-Guti�errez

Figure 7. Result of the canonical correspondence analysis (CCA) constraining ordination by vegetation types. Distribution of: (A) tree species and

(B) plots, on the first two axes of the CCA according to vegetation types (SecF, secondary forests in yellow; OMF, open Marantaceae forests in

green; MF, Marantaceae forests in magenta; DF, dense forests in dark green; LF, monodominant Gilbertiodendron forests in purple).
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et al., 2021; Dur�an et al., 2019; Ordway et al., 2022). Fur-

thermore, recent advancements in hyperspectral sensors,

such as EnMAP, offer new perspectives in this area

(Guanter et al., 2015). Given that the response of tropical

forests to environmental change will likely depend on

their functional characteristics, and considering the signif-

icant lack of field-based trait measurements in central

Africa (Kattge et al., 2020), the use of satellite data to

characterize the functional composition of tropical forests

holds great potential for forecasting their future.

The importance of soil–water depth

We found that water drainage depth is an important

driver of forest type distribution at landscape scale.

Swamp forests and monodominant Gilbertiodendron for-

ests were, as expected, found in areas where the water

drainage depth is shallow; dense and Marantaceae forests

were associated with intermediate water drainage depths;

and both open Marantaceae and secondary forests were

associated with the highest water drainage depth values.

This result confirms that soil–water content significantly

affects forest structure, composition and functioning, as

found in other continents (Jucker et al., 2018; Muscarella

et al., 2020; Sousa et al., 2022). We consistently found

that swamp forests were significantly associated with

hydromorphic soils and avoided ferralitic soils on sand-

stone while dense forests tended to be slightly

over-represented on the latter. By contrast, open Maran-

taceae forests were under-represented on hydromorphic

soils and were, along with secondary forests, significantly

associated with ferralitic soils on material from the

clayey–sandy series, where the strongest drainage capacity

occurred in the study area. The soil-vegetation analysis

thus confirms that soil–water availability has a major

impact on the distribution of vegetation types in our

study area, even though the contrasted effect of the juxta-

position of ferralitic and hydromorphic soils on Maranta-

ceae forests remains unclear. More generally, the lack of

information on soil composition and structure in central

Africa constitutes a major limitation for understanding

the role of soil nutrient and water content in the distribu-

tion of forest types. Several global soil datasets were

developed during the last decade, some of which focused

on soil hydraulic characteristics (Dai et al., 2019). How-

ever, most of these products rely on passive remote sens-

ing data that heavily follow vegetation characteristics,

raising important circularity issues when causal links

Figure 8. Distribution of the community mean values of five traits among the vegetation types. SecF, secondary forests; OMF, open Marantaceae

forests; MF, Marantaceae forests; DF, dense forests; LF, monodominant Gilbertiodendron forests; SwF, swamp forests. Different letters indicate

significant differences (torus test on Wilcoxon effect size, P < 0.05).
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between soil and vegetation characteristics are investi-

gated. Therefore, future efforts to develop soil products

independently of vegetation are necessary, even if they

require extensive ground sampling and the development

of new extrapolation or modelling approaches.

If some forest types exhibited significant differences

between their water drainage depth values, an overlap in

HAND values existed between some forest types, for

example, between SecF, OMF, MF and DF. This suggests

either that other environmental or historical factors are in

play or that a form of multistability occurs, such as

recently found for forests and savannas where hydrology

acts as an important mechanism driving their local coex-

istence (Mattos et al., 2023). This result is of importance

given that the climate of central African forests is fore-

casted to be hotter and drier (Fotso-Nguemo

et al., 2017), suggesting that water availability may be

lower in the future. This could trigger important transi-

tions between forest types and thus shifts in functions

and animal composition. It is already known that

droughts affect forests globally (Tao et al., 2022), and the

forest responses to drought can differ, notably according

to topography (Schwartz et al., 2019). Extreme drought

events also worsen fire risk, for example, fires that

occurred in 2016 mostly in areas with the highest water

drainage depths in our study area (Verhegghen

et al., 2016).

Ecological insights on poorly understood,
yet widespread forest types

By producing information on the spatial distribution of

forest types and on their structure and composition, our

work contributed to a better knowledge of the ecology of

central African forests. In particular, both Marantaceae

and monodominant Gilbertiodendron forests constitute

widespread but poorly understood forest ecosystems.

Monodominant Gilbertiodendron forests are dominated

by Gilbertiodendron dewevrei (De Wild.) J. Leonard, a tall

evergreen and shade-tolerant species belonging to the

Detarioideae Burmeist. subfamily and quasi absent from

any other forest type (Hart et al., 1989). Monodominant

Gilbertiodendron forests have a peculiar structure and

composition with a high AGB (Heimpel, 2023; Umunay

et al., 2017); the highest of all forest types in our study

area. The processes and factors explaining the establish-

ment and maintenance of this forest type has been

debated for a long time (Hall et al., 2020; Peh

et al., 2011; Torti et al., 2001). The validation of our

model suggests a very accurate identification of monodo-

minant Gilbertiodendron forest patches, confirming a

highly specific spectral and/or textural signature of this

forest type (Barbier et al., 2016; Viennois et al., 2013).

This opens new perspectives to better understand its spa-

tial distribution and thus, potentially, of its environmental

drivers, if any. So far, monodominant Gilbertiodendron

forests were hypothesized to be mostly distributed along

the rivers, notably due to their seed dispersal (Kearsley

et al., 2017), but monodominant Gilbertiodendron forests

can also be found on plateaus (Katembo et al., 2020;

Lokonda et al., 2018). Closer investigations could also be

carried out on their stability over time, as they appear to

have resisted dry climatic episodes and maintained over

2000 years at least (Tovar et al., 2019).

Marantaceae forests are characterized by a dense con-

tinuous understorey of giant perennial herbs from the

Zingiberales order (Pouteau et al., 2024). Such under-

storey prevents tree regeneration, leading to a lack of

intermediate sized trees and a quite open to very open

canopy (Hecketsweiler et al., 1991; White & Aber-

nathy, 1996). In this study, Marantaceae and open Mar-

antaceae forests were predicted to cover 69% of the

study area, illustrating that they constitute major forest

types in central Africa. While these forest types exhibit a

much lower carbon potential than other mature forest

types, as revealed here, their importance for megafauna

has long been recognized (Blake, 2002; Doran

et al., 2002; White et al., 1995). Our results consistently

showed a higher abundance of gorillas in Marantaceae

and open Marantaceae forests, and of elephants in Mar-

antaceae forests, suggesting potential positive feedbacks

between megafauna and giant herbs. Indeed, being

attracted to Marantaceae forests, notably due to the

availability of food sources and nesting areas, megafauna

may also contribute to their maintenance. For example,

while elephants are known to physically damage small

trees and tree seedlings, giant herbs appear to be little

affected by elephants as they can re-sprout easily thanks

to their hardy rhizomes (Brncic, 2003; Scalbert

et al., 2023). However, the role of megafauna in the

maintenance and spread of Marantaceae forests is still

debated (Pouteau et al., 2024).

More broadly, the origin of Marantaceae forests is still

highly uncertain (Pouteau et al., 2024). While some

authors have argued that this system corresponds to a

successional transition stage between savannas and dense

forests (White, 2001), others state that Marantaceae for-

ests would colonize a forested area after a large-scale dis-

turbance. For instance, it has been shown that fire could

be a factor in the establishment and maintenance, over

>1000 years, of Marantaceae forests (Brncic, 2003; Tovar

et al., 2014). In our study area, most secondary forests

were former Marantaceae forest patches that burnt in the

past (e.g. 83.1% of the burnt areas during the El Ni~no

event in 2016 were open Marantaceae forests; Verhegghen

et al., 2016). Moreover, a careful inspection of aerial

14 ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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photographs taken in 1959 over our study area confirmed

that the large patch that burnt in the late 1960s was an

open Marantaceae forest before the fire (results not

shown). Fifty years after the fire event, this forest patch

remains spectrally more similar to a young secondary for-

est than to any other type of forest according to our

model, suggesting in agreement with the field data that its

canopy is still dominated by the species that recruited

after the fire. Whether these secondary forests will follow

a usual successional pathway towards a mature dense for-

est composition or will come back again to a Marantaceae

forest state after the pioneer cohort disappears is uncer-

tain. Fire could thus have two effects: reinitiate the vege-

tation succession by triggering a bifurcation in forest

trajectory, or contribute to maintaining Marantaceae for-

ests in the long term due to well-known positive feed-

backs of fires on the herbaceous compartment (De Faria

et al., 2021; Flores et al., 2016). Temporal surveys are

needed to understand which hypothesis is the most likely.

Using a time series approach with 12 years of data, a

recent study in the Brazilian rainforest showed that recur-

rent fires can lead forests into an arrested succession with

striking differences in community structure and func-

tional composition compared to old-growth forests (Mata

et al., 2022). However, in the case of the Marantaceae for-

ests, multi-decadal data (e.g. Cuni-Sanchez et al., 2016),

or even historical ecology approaches (e.g. Tovar

et al., 2014), would be necessary to reach robust conclu-

sions due to the expected low temporal dynamics of these

systems.

Conclusion

By combining satellite information and recent

deep-learning architectures with field and satellite data,

we were able to accurately map forest types in the north

of Congo and reveal their contrasting floristic, functional

and megafauna compositions. Our work confirms that

the commonly pictured ‘green carpet’ of tropical forests

in the Congo Basin is a mosaic of forest types with differ-

ent functions, among which understudied forest types

such as monodominant Gilbertiodendron forests and Mar-

antaceae forests exist. Our approach paves the way for a

better understanding of the spatio-temporal dynamics of

tropical forests. It may also constitute an important tool

for designing better management and conservation strate-

gies to tackle carbon and biodiversity challenges, for

instance, within the framework of the global 30 9 30 ini-

tiative launched during the 15th UN Biodiversity Confer-

ence (COP-15). We specifically hope that the

development of such approaches will help to anticipate

ecosystem transitions in the current context of global

change.
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Lhoest, S., Dufrêne, M., Vermeulen, C., Oszwald, J., Doucet,

J.-L. & Fayolle, A. (2019) Perceptions of ecosystem services

provided by tropical forests to local populations in

Cameroon. Ecosystem Services, 38, 100956. Available from:

https://doi.org/10.1016/j.ecoser.2019.100956

Lhoest, S., Fonteyn, D., Da€ınou, K., Delbeke, L., Doucet, J.-L.,
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Appendix S4. Soil types.

Appendix S5. Floristic, functional and faunistic

compositions.

Table S1. Distribution of the polygons and validation

polygons in the vegetation types.

Figure S1. Localisation of the 680 calibration and valida-

tion polygons used to create the vegetation map in the

study area (red points) using Pleiades images (from Janu-

ary to December 2022, 0.5-m resolution, panchromatic)

and Planet images (February 2020, 5-m resolution, NIR

band).

Figure S2. Map of soil types in our study area, digitised

from a part of the map by de Boissezon et al. (1969).
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