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Changement (%)

≥ 50 %

≤ -50 %

Réchauffement marqué et 
augmentation des précipitations

Changements futurs 
relativement peu marqués

Fort réchauffement et fort contraste 
saisonnier en précipitations 

Fort réchauffement et fort 
assèchement en été (et en annuel)
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Three Practical Questions

1 What is the discharge flowing in this river right now?

2 Was the great flood of 1910 in Paris a 100-year event?

3 How much water will flow in French rivers during the summers of
the next 50 years, and how warm will it be?

Common Threads

• Water flowing in rivers

• Estimating unknown quantities affected by uncertainty

• Uncertainty quantification relies on probabilistic models

Methodological Motto

−→ Developing probabilistic models for the uncertain hydrologist
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Production of River Discharge Series

• River discharge: a key variable for hydrology... that can’t be
measured continuously

• But river stage can!

• Rating curve: Q = f (h)
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−→ How to formulate and estimate rating curves?
−→ How to quantify and propagate uncertainties?
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.
with a, b, c related to physical
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Rating Curve Estimation

−→ Bayesian Rating Curve estimation (BaRatin)

Prior distribution p(κ, a, c) = p(θ)

Posterior distribution p(θ,γ|h̃, Q̃)

Probabilistic model linking gaugings (h̃i , Q̃i ) and RC Q̂i = fRC (hi |θ):

Q̃i = fRC (h̃i |θ) + δi + εi

Measurement error δi ∼ N (0, ui ); ui assumed known

Structural error εi ∼ N (0, σi ); σi = γ1 + γ2Q̂i to be estimated
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From BaRatin to BaM

Replacing Q = f (h) by another model does not really change the
statistical framework used in BaRatin.

−→ Development of BaM (Bayesian Modeling)

‘Any’ model can be plugged in. Examples:
sediment transport, optical camera model, chemistry, 1D hydraulics,
hydrologic.
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Uncertainty in & around
hydrologic models
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• Ignoring data uncertainties =⇒ parameters fit to data errors
reliability of streamflow prediction? parameter regionalization?

• Acknowledging data uncertainties =⇒ parameters more stable
vaguely correct rather than precisely wrong!
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iid∼ N (µ, σ)
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Decomposing Predictive Uncertainty

Putting everything together... Q̂t =M(r̃1→t × φ1→t |θ,λ1→t) + εt

• main sources of predictive uncertainty =⇒ ways to reduce it

• specific sources may be turned off or replaced

1 data uncertainties are known beforehand
If you don’t know the quality of data, you won’t know the quality of the model

2 data uncertainties are not too large
A minimal data precision may be necessary to estimate structural uncertainty
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• main sources of predictive uncertainty =⇒ ways to reduce it

• specific sources may be turned off or replaced

−→ Requirements:

1 data uncertainties are known beforehand
If you don’t know the quality of data, you won’t know the quality of the model

2 data uncertainties are not too large
A minimal data precision may be necessary to estimate structural uncertainty

Otherwise, the problem is ill-posed due to non-identifiable parameters
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Hydrologic Variability

crédit: HydroSHEDS
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Estimating Distributions

Managing water resources and risks often requires estimating distributions:

• Dam design: T-year quantile from the
marginal distribution of streamflow

• Does climate change compromise dam
design? time-varying distribution

• Adapt dam operation to climate state:
conditional distribution of streamflow
given some predictor.

• Large hydroelectricity companies ask this
at the national scale: space-and-time
varying distribution

• Renewable energy production depends on
the joint distribution of wind, solar
radiation and streamflow.

Time

S
tr

ea
m

flo
w

20 / 32



Introduction Uncertainty in Streamflow Data Uncertainty in & around Hydro Models Hydrologic Variability Conclusion

Estimating Distributions

Managing water resources and risks often requires estimating distributions:

• Dam design: T-year quantile from the
marginal distribution of streamflow

• Does climate change compromise dam
design? time-varying distribution

• Adapt dam operation to climate state:
conditional distribution of streamflow
given some predictor.

• Large hydroelectricity companies ask this
at the national scale: space-and-time
varying distribution

• Renewable energy production depends on
the joint distribution of wind, solar
radiation and streamflow.

Time

S
tr

ea
m

flo
w

20 / 32



Introduction Uncertainty in Streamflow Data Uncertainty in & around Hydro Models Hydrologic Variability Conclusion

Estimating Distributions

Managing water resources and risks often requires estimating distributions:

• Dam design: T-year quantile from the
marginal distribution of streamflow

• Does climate change compromise dam
design? time-varying distribution

• Adapt dam operation to climate state:
conditional distribution of streamflow
given some predictor.

• Large hydroelectricity companies ask this
at the national scale: space-and-time
varying distribution

• Renewable energy production depends on
the joint distribution of wind, solar
radiation and streamflow.

El Niño Index

S
tr

ea
m

flo
w

20 / 32



Introduction Uncertainty in Streamflow Data Uncertainty in & around Hydro Models Hydrologic Variability Conclusion

Estimating Distributions

Managing water resources and risks often requires estimating distributions:

• Dam design: T-year quantile from the
marginal distribution of streamflow

• Does climate change compromise dam
design? time-varying distribution

• Adapt dam operation to climate state:
conditional distribution of streamflow
given some predictor.

• Large hydroelectricity companies ask this
at the national scale: space-and-time
varying distribution

• Renewable energy production depends on
the joint distribution of wind, solar
radiation and streamflow.

20 / 32



Introduction Uncertainty in Streamflow Data Uncertainty in & around Hydro Models Hydrologic Variability Conclusion

Estimating Distributions

Managing water resources and risks often requires estimating distributions:

• Dam design: T-year quantile from the
marginal distribution of streamflow

• Does climate change compromise dam
design? time-varying distribution

• Adapt dam operation to climate state:
conditional distribution of streamflow
given some predictor.

• Large hydroelectricity companies ask this
at the national scale: space-and-time
varying distribution

• Renewable energy production depends on
the joint distribution of wind, solar
radiation and streamflow.

Streamflow

S
ol

ar
 R

ad
ia

tio
n

20 / 32



Introduction Uncertainty in Streamflow Data Uncertainty in & around Hydro Models Hydrologic Variability Conclusion

Estimating a Marginal Distribution

A simple statistical problem, plagued with sampling
uncertainty.
Ex: estimate GEV (µ, σ, ξ) with 40 years of data.
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1 Hydraulics to translate this information in terms of streamflow.

2 Adapted statistical methods (censoring, data uncertainties, etc.)
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Estimating a Time-Varying Distribution

−→ Time-varying models

M0 : Y (t) ∼ GEV (µ, σ, ξ)

M1 : Y (t) ∼ GEV (µ× (1 + λx(t)) , σ, ξ)
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Estimating Space-and-Time-Varying Distributions

−→ Space-and-time-varying models (X. Sun PhD)

Mloc : Y (s, t) ∼ GEV (µ(s)× (1 + λ(s)x(t)) , σ(s), ξ(s))
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Mloc : Y (s, t) ∼ GEV (µ(s)× (1 + λ(s)x(t)) , σ(s), ξ(s))

Mreg : Y (s, t) ∼ GEV (µ(s)× (1 + λ x(t)) , σ(s), ξ )

• All sites contribute to the estimation of regional parameters

• Less stringent hypothesis possible (hierarchical models)

• Need to describe spatial dependence (elliptical copulas)

(b)  DJF, 0.99-quantile, Strong La Niña (SOI=20) vs. Neutral phase(SOI=0) 
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Hidden Climate Indices Models

−→ Standard vs. Hidden Climate Index model
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Hidden Climate Indices Models

−→ Generalization to non-homogeneous regions

M0 : Y (s, t) ∼ D (θ(s)× (1 + λτ(t)))

M : Y (s, t) ∼ D (θ(s)× (1 + λ1(s)τ1(t) + . . .+ λK (s)τK (t)))

−→ Multi-variate extension + large-scale scalability
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Hidden Climate Indices Models

−→ A global-scale analysis of floods and heavy precipitation

P Q
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Summary

• Development of probabilistic models enabling the production of
uncertain hydrologic predictions

• Key contributions:

1 Uncertainties affecting streamflow time series
2 Uncertainties affecting hydrologic models
3 Modeling hydrologic variability in space, time and between variables
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Perspectives

−→ Uncertainties in Hydrologic Data and Models

1 Treatment of structural errors
• Further assess the interest of stochastic parameters
• Evaluate non-zero-mean residual models (conditional biases)

2 Distributed models
• Hydrologic (SMASH) or Hydraulics
• Define spatialized error models

3 Beyond streamflow series
• What other data types are valuable to constrain model calibration?
• Sporadic gaugings, flood videos, flood marks, satellite (SWOT), etc.
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Perspectives

−→ Hydrologic Variability

1 Methodological questions
• Using Hidden Climate Indices to derive spatial extremes models?
• Clarify the link between HCI models and Machine Learning

approaches such as probabilistic PCA

2 Applications
• Global droughts (low flows and precipitation deficit)
• Relation with the wildfire hazard: a testbed for multi-risk assessment?
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Key aspects

• Probabilistic modeling is central

• Data are invaluable, and models should adapt to data

• Coding is an important component

• Operational transfer as both an output and an input of research work
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And most importantly... Thank You!
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Complex Rating Curves Q = f (h, . . .)

−→ Stage-Fall-Discharge model (V. Mansanarez)

Q = f (h1, h2) due to variable backwater (dam, tide)
Used operationally for dam-influenced stations
Work still in progress for tide-influenced stations
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Estimating a Time-Varying Distribution

−→ Trend detection studies

Drought duration, 1968-2008 
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Snowmelt flows start, 1961-2006 
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Error Sources in Hydrologic Modeling
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Model
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Input errors
e.g. rainfall measurement + sampling errors

Structural errors
due to the imperfect nature of the model

Response errors
e.g. rating curve errors

Reality

True Input(s) True processes True response(s)

Observed Input(s) Observed response(s)

+ Parametric uncertainty
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Systematic Rating Curve Errors

(a) (b)

←  calibration validation →
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Rainfall Uncertainty
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Non-identifiability

Model: ŷ = θ1θ2x
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Identifying θ1 and θ2 based on this information is an ill-posed problem.

Non-identifiability and ill-posedness are frequently encountered in the
calibration of hydrologic models
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Non-identifiability

Solution 1: ‘under-parameterize’, ŷ = γx with γ = θ1θ2
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Non-identifiability

Solution 2: use prior, θ1 ∼ N (1, 0.12)
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ŷ = θ1θ2x and ŷ ′ = exp(θ1x

′)

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4 5
x

y

1.5

2.0

2.5

0.2 0.4 0.6 0.8
x'

y'

1

2

3

4

1 2 3 4
θ1

θ 2

unnormalized pdf

0e+00

1e−10

2e−10

3e−10

41 / 32



Xtra slides

Non-identifiability

Solution 2: use prior, θ1 ∼ N (1, 0.12)

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4 5
x

y

1

2

3

4

1 2 3 4
θ1

θ 2

unnormalized pdf

0.0e+00

5.0e−10

1.0e−09

1.5e−09

Solution 3: use other data (not more of the same!)
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HCI framework
Spatial process

3. Spatial processes for HCI effects
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Hidden Climate Indices Models

−→ Generalization to non-homogeneous regions

M0 : Y (s, t) ∼ D (θ(s)× (1 + λτ(t)))
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Hot-and-Dry Australian Summers
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Flood Marks Case Study
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(b) 1604 flood marks at 327 sites
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Floods and Heavy Precipitation at the Global Scale



P (s, t) ∼ Beta (µP (s, t) , νP (s, t)) ;Q (s, t) ∼ Beta (µQ (s, t) , νQ (s, t))

logit (µP (s, t)) = ζµP (s) +
K∑

k=1

λk,P(s)τk(t) +
K∑

k=1

θk,P(s)δk(t)

logit (µQ (s, t)) = ζµQ (s) +
K∑

k=1

λk,Q(s)τk(t) +
K∑

k=1

θk,Q(s)ωk(t)
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