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A B S T R A C T

Cereal-legume intercrops have numerous advantages over monocultures. However, the intercrop’s performance 
depends on the plant genotypes, management, and environment. Process-based agro-ecosystem models are 
important tools to evaluate the performance of intercrop systems as field experiments are limited in the number 
of treatments. The objective of this study was to calibrate and evaluate a new process-based intercrop model 
using an extensive experimental data set and to test whether the model is suitable for comparing intercrop 
management strategies. The data set includes all combinations of 12 different spring wheat entries (SW, Triticum 
aestivum L.) with two faba bean (FB, Vicia faba L.) cultivars, at two sowing densities, in three different envi
ronments. The results show that the intercrop model was capable of simulating the absolute mixture (intercrop) 
effects (AME) for grain yield, above-ground biomass, and topsoil root biomass, for both crops. However, the 
intercrop model does not perform better than a benchmark that ignores the intercrop effects when simulating 
plant height, fraction of intercepted radiation, volumetric soil water content, and subsoil root biomass. The 
intercrop model predicted reasonably well the differences between species and between SW cultivars for grain 
yield and aboveground plant biomass. Overall, the tested process-based model can be a useful tool for designing 
and pre-evaluation multiple combinations of crop management, species, and cultivars suitable for intercropping 
in diverse conditions.

1. Introduction

Intercropping is a cropping system where more than one species or 
cultivar is grown at the same time on the same field. Also referred to as 
‘crop mixtures’, intercropping provides multiple advantages over 
monocultures, including on average higher yield on a given piece of land 
(Lithourgidis et al., 2011; Li et al., 2023), reduced production risk 
(Vandermeer, 1989), improved weed suppression (Lithourgidis et al., 
2011), increased (sub) soil nitrogen (N) availability (Seidel et al., 2019), 
decreased nitrate leaching (Tribouillois et al., 2016), improved soil 
organic matter content, carbon sequestration (Lithourgidis et al., 2011; 
Shili-Touzi et al., 2010), and increased biodiversity (Kremen and Miles, 
2012; Brandmeier et al., 2023). One of the prevalent intercrop systems is 

mixing cereals (such as wheat, barley, and maize) with grain legumes 
(such as bean, pea, and faba bean), which are often mixed within the 
row (Fischer et al., 2020; Malagoli et al., 2020). Research has shown that 
in comparison to their respective monoculture systems, wheat-faba bean 
intercrop significantly increases productivity and reduces nitrate 
leaching and runoff (Xu et al., 2019).

The numerous processes and mechanisms involved in intercrops 
highlight the need to deal with their complexity by combining concepts 
from diverse disciplines such as agronomy, physiology, and ecology. 
Additionally, there is a lack of information regarding intercropping 
management such as crop species, genotype selection and combination 
(Demie et al., 2022), spatial arrangement, and sowing proportion 
(Chimonyo et al., 2016). Several studies have shown that intercrop 
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performance depends on the genotype combination (Annicchiarico 
et al., 2019; Demie et al., 2022). However, evaluating a high number of 
genotypes and their traits under different environments and manage
ment under field conditions is costly and laborious. To address these 
challenges, process-based crop simulation models are widely recognized 
tools to examine cause-and-effect relationships in crop production. 
Virtual experiments using crop models can contribute to process un
derstanding and cropping system design (Malézieux et al., 2009). They 
can be used to study the influence of climate variability, soil, or man
agement options (Seidel et al., 2019; Asseng et al., 2019; Chenu et al., 
2017), and for real-time simulation-based crop management (Seidel 
et al., 2016).

Currently, a handful of models simulate mixed cropping systems for 
yield and water use (Chimonyo et al., 2016; Miao et al., 2016; Pinto 
et al., 2019), light distribution (Munz et al., 2014; Tsubo et al., 2005), 
nitrogen transport and uptake (Shili-Touzi et al., 2010; Whitmore and 
Schröder, 2007), and weed suppression (Baumann et al., 2002). One 
approach to simulate intercrops is the light sharing in strip intercrop 
systems. Pierre et al. (2023) developed an approach to allow the model 
Decision Support System for Agro technology Transfer (DSSAT) to run 
two crop species in intercropping. Berghuijs et al. (2021) calibrated and 
tested The Agricultural Production Systems sIMulator (APSIM) for 
wheat-faba bean intercrops, and Vezy et al. (2023) proposed a set of 
generic formalisms for the simulation of intercrops, with an imple
mentation in Simulateur mulTIdiscplinaire pour les Cultures Standard 
(STICS).

Nevertheless, the previously published studies on intercrop models 
have been limited by relatively small data sets, predominantly assessing 
aboveground plant growth and performance to evaluate the model. 
These studies often ignored different management strategies such as 
species and cultivar choice, or sowing densities. Therefore, the objec
tives of this study were 1) to evaluate a new intercrop model, based on 
the LINTUL5 model (Wolf, 2012) and (2) to assess the suitability of the 
model to compare intercrop management strategies concerning the 
interaction between the intercrop effect and the environment. The 
intercrop model is implemented within the modeling framework SIM
PLACE (Scientific Impact Assessment and Modeling Platform for 
Advanced Crop and Ecosystem Management) by combining existing 
biomass, soil water, and nutrients components for monocultures with 
intercropping components for radiation and below-ground competition 
and distribution. The model framework has been developed during the 
last decade and allows the integration of climate change impact as
sessments, model uncertainty, and crop management (Enders et al., 
2023).

An innovation in this study, compared to previous studies, is that the 
evaluation is based on a comparatively extensive experimental dataset. 
The experimental data are from spring wheat/faba bean (SW/FB) in
tercrops, for three environments, each with twelve SW entries, two FB 
cultivars, and two sowing densities (Paul et al., 2023). Measured vari
ables are plant height, radiation interception, plant above-ground 
biomass, root biomass, soil moisture, and grain yield. The same mea
surements were also carried out on the monocultures in all cases. This 
data set allows us to evaluate the intercropping model more thoroughly 
in terms of above and below-ground dynamics, including roots, which is 
a major aspect of the interaction in the intercropping systems. A second 
innovation is the way the evaluation is performed. Evaluation concerns 
specifically the difference between the intercrop and the average of the 
monocultures. This is more pertinent than evaluating the error in 
simulating directly the results of the intercrop since it is specifically the 
effect of intercropping compared to the monoculture that is of major 
interest. Note also that no intercrop data are used here for calibration of 
the model. Thus, the evaluation is a measure of how well the model, 
integrating various mechanisms of interaction between the partner 
crops, simulates the intercrop effect, given information about the per
formance of the monocultures. We also introduce a new model skill 
measure (Wallach et al., 2019), which compares the error of the 

intercrop model with a benchmark. The benchmark is the error if one 
assumes that there is no intercrop effect so that the results of the 
intercrop are exactly equal to the average of the monocultures. The 
intercrop model has positive skill if the error is smaller than that of the 
benchmark.

2. Material and methods

2.1. Field experiments

2.1.1. Experimental site
The field experiments were conducted at two research facilities in 

one and two years, respectively. Experiments were conducted in 2020 
and 2021 at the research facility Campus Klein-Altendorf (CKA) of the 
University of Bonn located in Rheinbach near Bonn, Germany (50◦ 37’ 
N, 6◦ 59’ E) at an altitude of 186 m a.s.l. The soil at the experimental 
station is classified as Haplic Luvisol (hypereutric, siltic) from loess 
(IUSS Working Group WRB, 2006) and characterized by a silty-loamy 
texture with clay accumulation in the subsoil between about 45 and 
95 cm soil depth (Barej et al., 2014). The mean annual air temperature 
and precipitation (2008–2021) were 10.5 ◦C and 652 mm, respectively. 
In 2020, an experiment was also conducted at the organically managed 
research facility Wiesengut (WG) of the University of Bonn, which is 
located at 50◦ 47’ N, 7◦15’ E at an altitude of 65 m a.s.l. The WG soil is 
characterized as a silt loam texture with Haplic Fluvisol (IUSS Working 
Group WRB, 2006) soil type. The average yearly temperature and 
annual rainfall at WG were 10.7◦C and 733 mm (1991–2020), respec
tively. The mean monthly temperature and precipitation of the growth 
period are given in Fig S1: (A) CKA2020, (B) CKA2021, and (C) 
WG2020. A detailed description of these experiments is available in Paul 
et al. (2024, 2023).

2.1.2. Experimental setup and cultivars
The field experiments were performed as a randomized complete 

block design with four replicates except in CKA 2021 where a sowing 
error occurred, leading to less than four replications in most of the 
treatments. Some treatments were replicated three times, some two 
times, and some treatments were not replicated. Despite this, we pro
ceeded to analyze the data from the treatments that adhered to the 
originally intended sowing ratio of spring wheat (SW) to faba bean (FB) 
(50:50) and respective monocultures. In CKA2021, the considered 
treatments included all monocultures crops and 50:50 intercrops of the 
twelve SW entries (ten cultivars and two mixtures of these SW cultivars), 
and two FB cultivars similar to the treatments in WG2020 and CKA2020 
(Table S1). The plot size was 1.5 × 10 m with a 21 cm row distance, 
respectively (Table S2). The SW cultivars were selected based on their 
similarity regarding grain quality and maturity time, but divergence in 
terms of plant height, i.e. including shorter, medium, and taller geno
types. All combinations were each sown using two sowing densities, 
80 % (low density, LD) and 120 % (high density, HD) of the crop density 
typically used by farmers in the region for monocultures (100 %, 400 
seeds m− 2 for SW and 45 seeds m− 2 for FB). At both densities, SW and 
FB were mixed in a 1:1 ratio, i.e. in substitutive mixtures, which means 
50 % of seeds of each species from the respective monocultures crops 
(high/low density) were mixed to obtain the respective density (high/ 
low) in the intercrop (Paul et al., 2023). No fertilizer, pesticide, or 
irrigation was applied during the growth period. FB was sown at 6 cm 
soil depth by a seeding machine type Hege 95 B. Subsequently, SW was 
sown directly over FB with a Hege 80 seeder at 3 cm soil depth. Me
chanical weeding was performed twice, about three and five weeks after 
sowing. For more details see Paul et al. (2023). However, due to the 
research site WG being organically managed, there was a higher weed 
infestation.
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2.1.3. Measurements

2.1.3.1. Crop phenology and above-ground biomass growth. Crop devel
opment was observed based on the BBCH-scale (Biologische Bunde
sanstalt, Bundessortenamt and CHemical industry), Meier (2001) which 
is a common system to monitor crop phenological development of 
mono- and dicotyledonous plant species. Agronomic data including 
plant above-ground biomass at three different plant growth stages, plant 
height at two distinct growth stages, root biomass, and grain yield, were 
collected. Results on grain yield (Paul et al., 2024) and partially on 
biomass have been already published (Paul et al., 2023). Table 1 shows a 
summary of the plant and soil-related data and measurement frequency 
for the data used in the current study. Treatments composed of two SW 
cultivars with both FB cultivars were selected as key treatments where 
the data collection was intensified.

2.1.3.2. Photosynthetically active radiation (PAR) interception and leaf 
area index. The PAR was measured two times in 2020 and three times in 
2021 with an SS1 Sunscan canopy analysis system (Delta T- devices 
Cambridge, UK). The fraction of intercepted photosynthetically active 
radiation (fIPAR) was calculated as the difference between PAR 
measured below the canopy and global PAR, divided by global PAR. The 
LAI (leaf area index) was determined destructively by cutting plants 1 m 
long sections from the 3rd and 4th rows of the plots, scanned using the 
LI-3100 C Area Meter (Li-Cor, Biosciences GmbH, Bad Homburg, Ger
many), and calculated for one square meter.

2.1.3.3. Soil water content. FDR moisture sensors HH2 with ML3 Theta 
Probe, (ecoTech Umwelt-Meßsysteme GmbH, Bonn, Germany) were 
used to measure volumetric soil water content at different soil depths 
(30 cm, 45 cm, 60 cm, and 90 cm). The soil moisture content was 
measured four times on different days after sowing (DAS) during the 
growth period in 2020 (CKA2020: DAS ~55, ~ 73, ~ 97, ~ 114) and 
(WG2020: DAS ~ 57, ~ 77, ~ 104, ~ 119 DAS) and three times in 2021 
(CKA2021: DAS ~ 67, ~98 and ~ 129).

2.1.3.4. Root biomass. Root samples were taken with a soil auger with 
an inner diameter of 9 cm down to 100 cm (divided every 10 cm) soil 
depth in the selected plots planted with two spring wheat cultivars, 
Anabele and SU Ahab, and one faba bean cultivar, Fanfare, on June 9th 
and on July 5th/6th 2021 at CKA. The root sampling in intercrops 
covered always one FB and one SW plant For a detailed description see 
Hadir et al. (2024). Soil cores were washed, sorted, oven-dried at 40 

◦

C 
for 48 h, and weighed. An FTIR spectroscopy (Kemper et al., 2023) was 
used to quantify the root mass proportion per species and layer.

2.2. Model description

All crop models are simplifications of the complex dynamics of crop 
growth, and necessarily make a large number of assumptions. However, 
process-based dynamic models are still the best quantitative source of 
our knowledge of plant growth (Stöckle and Kemanian, 2020). Model 
complexity depends on the type of research question, data available, and 
efficiency in terms of demand for parametrization. This is particularly 
difficult for intercropping since multiple and complex interactions are 
known to occur between the intercrop components with their environ
ment, but are difficult to quantify in the field. Our model makes several 
simplifying assumptions that help to make it more manageable. In 
particular, we assume that (a) there are no interactions with pests and 
diseases; (b) facilitation such as in-season N transfer from the legume 
crop to the cereals (as studied by Jensen, (1996) was not considered, and 
(c) the radiation interception model we used was developed for strip 
intercropping system (Gou et al., 2017b). However, the intercrop model 
considers various processes on a daily time step such as crop growth, soil 
water and N dynamics and water and N uptake by the roots, atmospheric 
N fixation of legumes, temporal and spatial niche competition for radi
ation, soil water and soil N, and grain yield production. The major 
processes will be explained in the following.

The simulations were conducted in the modeling platform SIM
PLACE (Scientific Impact Assessment and Modelling Platform for 
Advanced Crop Ecosystem Management, Enders et al., 2023). The 
framework comprises a series of SimComponents, which are a set of 
functions that represent important crop and soil-related processes.

Selected SimComponents for the current study were LINTULPhe
nology, LINTUL5NPKDemand, SlimNitrogen, LINTUL5Biomass, Slim
Roots, and SlimWater. An overview of key SimComponents is given by 
(Wolf, 2012) and Seidel et al. (2019).

The LINTULPhenology component calculates the crop develop
mental stages (DVS) based on the ratio between accumulated degree 
days and species-specific temperature sum requirement. Temperature 
sum starts to be accumulated at emergence, the crop reaches flowering 
at DVS 1, and physiological maturity at DVS 2. The DVS for each species 
in the intercrop is modeled separately. However, each species in the 
intercrop was simulated with the same crop parameters as the mono
cultures without re-parameterization. The radiation use efficiency 
(RUE) approach was implemented in the RadiationInterception Sim
Component based on the approach of Monteith and Moss (1977), with a 
linear relationship between the accumulated crop biomass and inter
cepted radiation (IPAR). To calculate potential biomass, a linear 
regression between accumulated biomass and radiation interception is 
used. The LINTUL 5 default canopy extinction coefficient (k) value was 

Table 1 
Measured plant and soil variables used in the current study. Group 1 comprises the key treatments, namely the monocultures of two SW cultivars Lennox and SU Ahab, 
two FB monocultures, and intercrops of both wheat cultivars with the Mallory FB cultivar. Group 2 comprises the remaining 10 SW cultivars grown as monocultures 
and intercropping with two FB cultivars. Data was collected during field experiments (CKA, 2020 and 2021 ad (WG, 2020).

Measured variables Group11 

measurement 
frequency

Growth stage Group2 
measurement 
frequency

Growth stage Measurements from

developmental stage 3 emergence, flowering, and 
maturity

3 emergence, flowering, and 
maturity

each species

grain yield 1 maturity 1 maturity each species
above-ground biomass 3 vegetative, flowering, and 

maturity
1 flowering each species

plant height 2 flowering and maturity 1 flowering each species
leaf area index 2 vegetative and flowering 0 - each species
root biomass 2 vegetative and flowering 0 - each species
volumetric soil water 

content
3–4 vegetative and flowering, 

maturity
0 - monocultures and 

intercrops
PAR 2–3 ​ 0 - monocultures and 

intercrops

1 key treatment. Volumetric soil water content and intercepted photosynthetically active radiation (PAR) were measured three times in 2021. Leaf area index and root 
biomass were measured only in 2021.
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used to calculate daily radiation interception.
The SimComponent LINTUL5NPKDemand calculates the daily up

take rates of NPK (nitrogen, phosphorous, and potassium) depending on 
plant-available NPK in the rooted soil layers, root properties, and crop 
NPK demand (Wolf, 2012). In the case of FB, it is assumed that 80 % of 
the daily demand for nitrogen is fulfilled through biological fixation, 
while the remaining 20 % is sourced from soil N (Klippenstein et al., 
2022). Faba bean in both monocultures and intercrops was simulated 
with the same assumption of biological nitrogen fixation (g m− 2) and 
soil nitrogen source.

The SimComponent LINTUL5Biomass calculates the biomass part 
from LINTUL5 taking the NPK stress factor NPKI into account. The daily 
increase in biomass may be reduced by reduction factors for transpira
tion (TRANRF, in case of drought stress) and nitrogen nutrition index 
(NNI), in case of N limitation. TRANRF is based on the ratio between 
actual and potential crop transpiration which are both calculated by the 
SimComponent SlimWater. The factors NNI and TRANRF range from 
0 (full N or drought stress, no biomass increase) to 1 (no N or drought 
limitation).

The component SlimNitrogen calculates the plant N uptake, N 
turnover, and leaching of soil mineral N in layered soil (Addiscott and 
Whitmore, 1991). For each layer, the calculation considers the appli
cation of nitrate or ammonium fertilizer (if there is an application), 
leaching of nitrate and ammonium, supply from organic matter miner
alization, nitrification, and crop N uptake to calculate the daily changes. 
The SlimWater SimComponent simulates soil water dynamics using a 
tipping bucket approach (Addiscott et al., 1986; Addiscott and Whit
more, 1991). Soil water movement is simulated by layer by considering 
plant water uptake, soil evaporation, surface runoff, and percolation.

The SlimRoot SimComponent (Addiscott and Whitmore, 1991) cal
culates the daily increase of seminal and lateral root biomass in different 
soil layers and converts it to root length per layer. Maximum rooting 
depth and maximum growth per day are crop-specific. At sowing, the 
initial biomass is provided via the seed parameters and used for the daily 
growth of the seminal roots which determine the vertical root penetra
tion. Lateral roots are produced if the assimilates provided by the shoot 
are more than the assimilates needed by the seminal root. Root decay 
starts to occur at a user-defined DVS, in this case, at DVS 1.

2.2.1. Intercrop model description
The new intercrop model implemented in SIMPLACE1 was assembled 

by using all crop-related SimComponents twice (one for each crop) and 
by using soil-related SimComponents once (one common soil) adding 
components to split radiation and water/nutrient uptake. The crop 
water demand per species was aggregated, potential transpiration of 
both crops was summed up and weighted by their area fraction to get 
field-scale data, and handed over to the root water uptake routine. The 
uptaken water was then disaggregated. For example, the actual tran
spiration was split up to calculate it per crop by using the below-ground 
allocation SimComponent (see below) while considering water uptake 
per layer and root length densities of both crops. The details of the 
equation were documented in Krauss, (2018).

2.2.1.1. Radiation interception in intercrop model. The radiation inter
ception for intercrops is based on the proportion of each species and 
further species-specific plant characteristics. The radiation interception 
model is based on Gou et al. (2017b) in which two intercropped species 
share the incoming radiation based on their actual plant height, actual 
LAI, predefined proportion of each species in intercropping and a can
opy extinction coefficient. The radiation interception model in inter
cropping was originally developed to simulate radiation interception in 
a strip intercropping system. Here we tested the model for in-row mixing 

of two species. The daily plant height increment was simulated by using 
the temperature-based approach of Gou et al. (2017b), but a stress effect 
was used in case of drought and/or nitrogen limitation. The equation is 
given as follows: 

Hd+1 = Fstressd ∗ r ∗ (Td − Tb) ∗ Hd ∗

(

1 −
Hd

Hmax

)

+ Hd (1) 

Where Hd+1 is plant height increment, r is a relative plant growth rate, 
d is day, Td is the temperature (◦C) at day d, Tb is the base temperature, 
Hd is the height at day d, Hmax is the maximal crop height, and Fstressd 
is a factor between 0 and 1 that reduces the daily potential growth due to 
drought (TRANRF) or N (NNI) stress at the day d. The model considers 
the minimum stress as a decision rule i.e. Fstress_d = min(TRANRF, 
NNI). The height growth stops when the temperature sum is higher than 
the maximum temperature sum. The relative plant growth rate is 
adapted from Berghuijs et al. (2020).

2.2.1.2. Root growth, water, and N uptake in the intercrop model. The 
below-ground factor calculates the below-ground resource allocation 
according to the proportion of each species in intercrop and crop- 
specific root parameters. The below-ground allocation factor considers 
the root length density (RLD), the Root Restriction Factor (RRF), which 
is calculated by the SlimRoot SimComponent considering RLD and root 
age, and the proportion of each species in intercropping. The SplitWa
terUptake SimComponent calculates the root water and N uptake of each 
species per soil layer from the mobile and the retained soil water. The 
details of the equation are documented in Krauss (2018). The potential 
transpiration for each crop is then scaled to the proportion of each 
species in intercropping, the demands of each crop in intercrops, and its 
root distribution. The below-ground allocation component calculates 
the water uptake and N as well as the root growth of each species from 
their root distribution and species-specific parameters. Further details 
can be found in Kraus, (2021). The RLD and RRF are scaled according to 
the proportion of each crop and the common RLD and RRF are the sum 
of the scaled RLDs and RRFs.

2.3. Model setup and inputs

The intercrop model was set up for the three environments. The 
required daily weather data minimum, mean, and maximum air tem
perature, wind speed, precipitation, and global solar radiation were 
available from the research facilities. Soil properties such as soil texture, 
bulk density, soil carbon, and hydraulic properties were collected as 
reported elsewhere (Seidel et. al. 2019). The crop proportion in inter
cropping (equiproportional substitutive mixture) and sowing dates were 
set according to the field experimental design and management 
(Table S2). The initial soil mineral nitrogen was set according to mea
surements conducted around sowing. The initial soil volumetric water 
content values were set to field capacity (Table S3). The maximum plant 
height (as observed in CKA2021, where it was assumed potential growth 
due to the good growth conditions) was set for each species and cultivar.

2.4. Model calibration

The model was calibrated with the data of the two SW cultivars 
Lennox and SU Ahab as we have the most measurements for them and 
for both FB cultivars (key treatments). The other SW cultivars were 
simulated with the same parameters calibrated for the selected two 
cultivars and kept the maximum measured plant height and initial 
biomasses respective for each cultivar. We compared the data from 
monocultures of all three experimental environments with the obser
vation, minimized the deviation (calibration) and then applied the 
calibrated model to the intercrop data (validation). Firstly, the 
phenology parameters were calibrated to fit the observed emergence, 
anthesis, and maturity dates. For this, the temperature sum from sowing 

1 SIMPLACE Documentation. https://simplace.net/doc/simplace_modules/i 
ndex.html

D.T. Demie et al.                                                                                                                                                                                                                                Agriculture, Ecosystems and Environment 378 (2025) 109302 

4 

https://simplace.net/doc/simplace_modules/index.html
https://simplace.net/doc/simplace_modules/index.html


to emergence (parameter TSUMEM), temperature sum from emergence 
to anthesis (TSUM1), and temperature sum from anthesis to maturity 
(TSUM2) were adjusted for each species (Table S4). Following this, the 
parameter RUE and developmental stage at which leaf death starts 
(parameter DVSDLT) were estimated using the leaf area index and 
fIPAR. Furthermore, the proportion of dry matter translocated to leaf 
and stem was calibrated for FB comparing observed and simulated leaf 
area index and shoot biomass values. The daily root elongation rates per 
species (parameter MSRLD) were adjusted to simulate the maximum 
rooting depth measured on two dates at field experiment CKA2021. 
Estimated parameter values are shown in Supplementary (Table S4). 
Parameter estimation was done by trial and error, without optimization 
software, given that the number of parameters adjusted was few and 
field experiments were only three (Seidel et al., 2018). Since the aim of 
this study is to test how well the model can simulate the differences 
between monocultures and intercropping, the intercrop model was 
calibrated, using only the monocultures.

2.5. Model evaluation

2.5.1. Model evaluation in capturing the intercropping effect
The model evaluation in this study was focused on how well the 

intercrop model simulates the intercrop effects. The selected metric for 
this is the Absolute Mixture Effect (AME), defined as 

AMEtotal = yintercrop − 0.5(ySW,mono + yFB,mono) (2) 

where yintercrop is the value of the variable in question (e.g. grain yield) 
for the intercrop and ySW, mono and yFB, mono are the values for the SW 
and FB monocultures respectively. The factor 0.5 is appropriate here 
because all the intercrops are 50:50 intercrops (substitutive intercrop
ping). If each species in the intercrop behaves simply like the mono
culture (no intercrop effect) then AMEtotal = 0.

If there are separate measurements for each species in the intercrop 
(grain yield, biomass, root biomass, etc.), then one can evaluate an AME 
for SW and for FB separately: 

AMESW = ySW,intercrop − 0.5(ySW,mono) (3) 

AMEFB = ySW,intercrop − 0.5(yFB,mono) (4) 

Note that AMEtotal can be 0 while both AMESW and AMEFB are not 0 if 
there is compensation of effects between the two species. For the case of 
plant height, Eqs. 4 and 5 are replaced by 

AMESW = ySW,intercrop −
(

ySW,mono

)
(5) 

AMEFB = ySW,intercrop − yFB,mono

)
(6) 

For those variables where species-specific values were not available 
separately (i.e soil water content and fIPAR), the AME was calculated 
according to the following equations: 

AMESWC = SWCintercrop − 0.5(SWCSW + SWCFB) (7) 

AMEfiPAR = fiPARintercrop − 0.5(fiPARSW + fiPARFB) (8) 

Where AMESWC is AME of soil water content; SWCintercrop is soil water 
content in intercropping; SWCSW is soil water content in SW mono
cultures and SWCFB soil water content in FB monocultures. AMEPAR is 
AME of fIPAR; fIPARintercrop is fIPAR in intercropping; PARSW is fIPAR in 
SW monocultures and PARFB is fIPAR in FB monocultures.

To improve the statistical robustness when evaluating a model, Yang 
et al. (2014) suggested the use of more than one performance measure; 
therefore, to evaluate how well the intercrop model simulates AME, we 
used the metric of mean squared error (MSE, to calculate the model skill) 
and relative mean squared error (RMSE) defined as: 

MSE =

(
1
n

)
∑n

i=1
(AMEobs

i − AMEsim
i )

2and RMSE

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
AMEobs

i − AMEsim
i
)2

√

(9) 

where AMEi,
obs (treatment mean of the replication) and AMEi,

sim are the 
observed and simulated values of AME for situation i, respectively. The 
above equation can be applied to AMEtotal or AMESW and AMEFB, for any 
of the measured variables.

The simplest assumption about AME is that AME is 0 (no intercrop 
effect). In the case of mixture effects, we assume that the process-based 
intercrop model agrees better with the measurements than that simple 
assumption (observed AME=0). Thus, the latter is used as a benchmark. 
We introduced the skill score (Wallach et al., 2019) in model evaluation, 
which is measured in terms of the likelihood ratio of a model concerning 
some reference (benchmark). Therefore, we define the model skill 
measure: 

model skill = 1 −
MSE of intercrop model

MSE of benchmark
(10) 

A positive skill value indicates that the intercrop model has a smaller 
MSE than if one assumes no intercrop effect. A value of 1 indicates that 
the intercrop model is perfectly simulating these values (e.g. observed is 
equal to simulated yield). This skill measure can be thought of as the 
fraction of the intercrop effect that is explained by the intercrop model.

2.5.2. Model evaluation in capturing management effects
To evaluate how well the model simulates management effects 

(choice of species, cultivar, sowing density) we look at differences in 
AME between two different management (mgt) decisions, mgt1 and 
mgt2 for both simulated and observed values. For example, mgt1 could 
involve SW cultivar1, while mgt2 could involve SW cultivar2. Given that 
multiple cultivars of SW were used in the field experiment, we selected 
two cultivars that showed very low and high observed AME of grain 
yield from each of the three environments. We then compared the 
simulated AME differences between selected cultivars with the observed 
differences (simulated differences vs. observed differences between the 
two cultivars). Similarly, for sowing density, we considered high sowing 
density for mgt1 and low sowing density for mgt2. Then we assessed 
how much these differences can be explained by the intercrop model 
compared to the benchmark that assumes no intercrop effect. The 
measure of the management effect is then expressed as: 

ΔAME = AMEmgt2 − AMEmgt1 (11) 

Where ΔAME is the difference between AME of management2 and AME 
of management 1; AMEmgt2 is AME of trait in question, for example grain 
yield for management2; AMEmgt1 is AME of trait in question for example 
grain yield for management1.

3. Results

3.1. Model calibration with monoculture data

The fit of the calibrated model to the observations of the mono
culture treatments in all three environments was generally good with 
RMSE of 0.6 t ha− 1, 2.1 t ha− 1, 0.15 m, 0.08 for grain yield, shoot 
biomass, plant height, and fraction of intercepted radiation respectively 
(Fig.S2 - S6). Exceptions were biomass at flowering and harvest at 
WG2020, where the simulated values were strongly overestimated 
compared to the measured values.
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3.2. Model evaluation with intercrop data

3.2.1. Grain yield and absolute mixture effect
The intercrop model performed well in simulating the absolute grain 

yield (Fig. 1) and AME (Table 2 and Fig. 2). The experimental data 
consistently showed positive AME for SW grain yield, though with a 
substantial range between 0.56 and 0.84 t ha− 1 (Table 2). In contrast, 
the AME for FB grain yield ranged from − 0.79 ha− 1 to +0.41 ha− 1, 
depending on the environmental conditions. In both observed and 
simulated AME of SW grain yield was consistently larger than AME of 
FB. In most cases, the skill of the intercrop model was substantial, 
ranging from 0.29 to 0.84 (Table 2). The skill was negative, i.e. MSE was 
larger than for the benchmark, in the two cases with the smallest AME 
values, which favored the benchmark model since it assumes AME=0. 
RMSE for the intercrop model was not particularly large for those two 
cases, but those were the two cases with the smallest values of RMSE for 
the benchmark.

3.2.2. Above-ground biomass
The observed and simulated above-ground biomass AME of SW was 

consistently positive. However, the AME for FB was negative in many 
cases (Fig. 3). The skill was 0.37 for FB, 0.46 for SW, and 0.33 for the 
total of both species, based on squared error averaged over the envi
ronments, growth stages, cultivars, and sowing densities. In CKA2020 
and CKA2021, skill varied between 0 and 0.91, while in WG2020 many 
of the skill measures were negative (Table S5).

3.2.3. Plant height
The observed AME for plant height was low for both species (Fig. 4

and Table S6). As a result, the skill was negative in most cases, showing 
the benchmark performed slightly better than the intercrop model 
(Table S6). However, the RMSE was 0.05 m and 0.08 m which is quite 
low for SW and FB, respectively highlighting the low impact of inter
cropping on plant height.

3.2.4. Fraction of intercepted radiation
Observations showed that intercropping had a minor effect on the 

fraction of intercepted radiation for both crop species (fIPAR, Fig. 5). 
The measurements are shown only for the two species together since it 
was not possible to measure radiation interception of SW and FB sepa
rately in in-row intercropping. The intercrop model performed reason
ably well (RMSE 0.04–0.05), but the benchmark performed slightly 
better (Table S7).

3.2.5. Root biomass
Observations showed that there was a root mass advantage in 

intercropping for SW at both observed dates compared to monocultures, 
especially in the topsoil layers (0–20 cm) (Fig. S8-9). However, the 
model underestimated the root biomass in the upper 10 cm (Fig. S8, S9). 
The AME values for both species were much larger in the top layer 
(0–30 cm) than in the lower layers. For the 0–30 cm layer, the model 
skill was large, in the range of 0.46–0.86 depending on the development 
stage and species (Table S8). For the lower soil layers, the AME was 
small, and skill was often negative.

3.2.6. Volumetric soil water content
The effect of intercropping on soil moisture was small, with values of 

RMSE ranging from 0.01 to 0.042 volumetric soil water content (VSWC). 
The skill scores here are all close to 0, indicating the similar performance 
of the intercropping model with the benchmark (Table S9).

3.3. Intercrop model capability to simulate management effects

3.3.1. Effect of species and environment
In general, both observed and simulated AME values were substan

tially larger for SW than for FB. The skill for simulating ΔAME of grain 
yield ranged between 0.12 and 0.92. For above-ground biomass, the 
model effectively represented the differences between species at 
CKA2020 and CKA2021, with skill values between 0.24 and 0.81. 
However, model performance at WG2020 showed that the model was 
not able to capture species differences (Table 3).

3.3.2. Effect of cultivars
We considered here only two SW cultivars in each environment, the 

Fig. 1. Simulated and observed absolute dry matter grain yield (t ha− 1) of faba bean (left panel) and spring wheat (right panel) grown under an intercropping system 
(average for all intercropping treatments), across three environments. Observations per site were 48 per species for CKA2020 and WG2020 and 38 per species 
for CKA2021.
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cultivars with the smallest and largest observed AME values averaged 
over sowing densities. The two SW cultivars for each environment were: 
CKA2020- KWS starlight vs Anabel; CKA2021: Lennox vs Sonett and 
WG2020: Lennox vs mix_group 1. The two FB cultivars were Mallory and 
Fanfare. The intercrop model was capable of simulating the cultivar 
differences between the two SW cultivars AME of grain yield though 

consistently underestimating the size of the difference, with a skill range 
of 0.21–0.24. For faba bean, the intercrop model performed similarly to 
the benchmark that considers no intercrop effects, with a skill that 
approached zero (Table 4).

3.3.3. Effect of sowing density
Observations showed that the sowing density had a significant effect 

on the AME of grain yield for both crop species. However, this effect i.e. 
the difference between the AME of two densities was not captured by the 
intercrop model, except in very few cases (Table 5).

4. Discussion

The current study specifically focused on evaluating the capability of 
a process-based intercrop model to simulate the intercropping effects of 
a spring wheat/faba bean intercropping under different management 
conditions. In this study, the crop parameters were calibrated for 
monoculture using the data from monoculture treatments without 
recalibration for intercrops. Therefore, this is not a test of how well the 
model simulates the effect of the environment on a monoculture. It is 
however a rigorous test of how well the model can simulate the differ
ences between monocultures and intercropping. This approach differs 
from previous studies that have evaluated intercrop models. Past studies 
typically looked at errors in the model, but not at the errors from the 
difference between monocultures and intercrop, focusing mostly on the 
model’s capability to simulate environmental effects on the mono
cultures and the effects of intercropping (Berghuijs et al., 2021; Gou 

Table 2 
Model evaluation of absolute mixture effect (AME) of grain yield (t ha-a) in both monocultures and intercrops. Results are averages over cultivars of faba bean (FB) and 
spring wheat (SW) and sowing densities for three environments.

Environment AMEa Observed Simulated Model skillb RMSE IMc RMSEe Bd

CKA2020 AMEtotal − 0.13 0.33 − 3.00 0.50 0.20
AMEFB − 0.79 − 0.46 0.77 0.38 0.82
AMESW 0.66 0.79 0.84 0.27 0.69

CKA2021 AMEtotal 1.25 0.57 0.60 0.80 1.30
AMEFB 0.41 0.15 0.29 0.48 0.58
AMESW 0.84 0.42 0.59 0.59 0.93

WG2020 AMEtotal 0.55 0.35 0.74 0.20 0.50
AMEFB − 0.01 − 0.37 − 18.00 0.38 0.08
AMESW 0.56 0.72 0.84 0.22 0.58

a Absolute mixture effect;
b Model skill is the skill measure compared to the no-mixture effect (benchmark),
c Intercrop model;
d Benchmark model and
e RMSE IM and RMSE B are respectively root mean squared errors of the intercrop model and the benchmark.

Fig. 2. Simulated and observed absolute mixture effect (AME) of dry matter 
grain yield (t ha− 1) for faba bean (FB) and spring wheat (SW) grown under 
three environments (CKA 2020 and 2021, WG2002) and two plant densities 
(HD- high sowing density, LD- low sowing density). Overall R2 is 0.59.

Fig. 3. Simulated and observed absolute mixture effect (AME) for above-ground biomass during A) the vegetative stage, B) around flowering, and C) at maturity, for 
faba bean (FB) and spring wheat (SW) grown under three environments (CKA 2020 and 2021, WG2020) and two planting densities (HD- high sowing density, LD- low 
sowing density). The distance of a point from the vertical line is the error of the benchmark. Overall R2 for AME is 0.42.

D.T. Demie et al.                                                                                                                                                                                                                                Agriculture, Ecosystems and Environment 378 (2025) 109302 

7 



Fig. 4. Simulated and observed absolute mixture effect (AME) for plant height at A) vegetative and B) flowering stage for faba bean (FB) and spring wheat (SW) for 
three environments (CKA 2020 and 2021, WG2020) and two planting densities (HD- high sowing density, LD- low sowing density). Overall R2 for AME is 0.30.

Fig. 5. Simulated and observed A) fraction of intercepted photosynthetically active radiation (fPAR) and B) absolute mixture effect (AME) of the fraction of 
intercepted photosynthetically active radiation (fIPAR) at different measurement dates. Overall R2 is 0.88 for fPAR and 0.05 for AME of fPAR. Three environments 
(CKA 2020 and 2021, WG2020), HD- high sowing density, LD- low sowing density.

Table 3 
Evaluation of the intercrop model simulating species interaction in intercropping (all cultivars and both densities) in grain yield in (t ha-a) and shoot biomass (t ha-a) for 
both monocultures and intercrops at different growth stages.

Environ-ment Traits Develop-ment Stage Faba bean 
AMEa

Spring wheat 
AME

ΔAMEd Model skill RMSEg

obsb simc obs sim obs sim IMe Bf

CKA2020 Grain 
yield

Maturity − 0.79 − 0.46 0.66 0.79 1.45 1.25 0.92 0.41 1.40
CKA2021 0.41 0.15 0.84 0.42 0.43 0.27 0.27 0.70 0.83
WG2020 − 0.01 − 0.37 0.56 0.72 0.57 1.09 0.12 0.55 0.59
CKA2020 Biomass vegetative − 0.17 − 0.08 0.35 0.05 0.52 0.13 0.39 0.44 0.56

flowering − 0.84 − 0.75 1.42 1.09 2.26 1.84 0.81 1.02 2.44
maturity − 1.21 − 1.19 1.50 1.86 2.71 3.05 0.95 0.55 2.77

CKA2021 vegetative − 0.16 − 0.03 0.71 0.11 0.88 0.14 0.24 0.70 0.90
flowering − 0.41 − 0.04 1.88 0.41 2.29 0.45 0.25 2.27 2.63
maturity 0.44 0.12 1.36 0.69 0.92 0.57 0.25 1.40 1.70

WG2020 vegetative 0.02 − 0.12 0.06 0.01 0.05 0.13 − 0.2 0.11 0.10
flowering − 0.14 − 0.58 0.42 0.81 0.56 1.39 − 1.0 0.90 0.60
maturity 0.14 − 0.90 0.57 1.45 0.43 2.34 − 9.0 1.90 0.50

a Absolute mixture effect;
b observed;
c simulated;
d the difference between the AME of two species;
e Intercrop model;
f Benchmark and
g RMSE IM and RMSE B are root mean squared errors of the intercrop model and the benchmark respectively.
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et al., 2017a; Munz et al., 2014a; Githui et al., 2023; Version et al., 
2023). To evaluate the model, we introduce an original measure of 
intercrop model performance, namely a model skill measure that mea
sures model MSE compared to MSE assuming that there is no intercrop 
effect.

A major objective of the simulation of intercrops is to improve pro
cess understanding and to develop a rapid screening tool for possible 
management strategies. It is therefore important to evaluate how 
accurately the model can evaluate differences between different man
agement strategies. This has not been done in previous studies but is 
done here for three major management decisions, namely choice of 
species, choice of cultivars, and choice of sowing density.

The calibrated and evaluated model, despite its simplifications, is a 
promising tool to simulate the effects of intercropping systems and, thus, 
to support their design. This should be of particular interest as experi
mental capacities are limited to studying the large range of factors and 
treatments to optimize intercropping systems. Such models can also help 
to interpret experimental results in terms of crop growth dynamics and 
resource acquisition. Though only calibrated based on sole crop treat
ments, the presented intercrop model was able to simulate in-row 
mixture effects on grain yield, shoot, and root biomass, while consid
ering species and cultivars differences. The relatively simplistic as
sumptions in the model to account for above and below-ground 

competition of considered species for resources may be of use for other 
intercropping systems including other species combinations, but this 
awaits further testing.

4.1. Capability of the model to simulate intercropping effects

Considering the aboveground plant growth, the intercrop model 
captured the intercropping effect on most of the variables. The model 
skill was large for grain yield and above-ground biomass when intercrop 
effects were large. When intercrop effects were small, which was, in 
general, the case for plant height and light interception, the benchmark 
was quite good and the intercrop model often did not perform better. 
Additionally, we evaluated the model capabilities in terms of simulating 
the crop species individually, as well as the model performance of the 
SW and FB under an intercropping system and for different plant den
sities in terms of above and below-ground biomass production and soil 
moisture. The field experiment dataset offered substantial opportunities, 
as data on key variables were collected separately for each species 
including root biomass, facilitating a comprehensive evaluation of the 
model. It was assumed that there are no substantial effects of one crop on 
a given process of another crop, for instance, radiation use efficiency, 
therefore the model explicitly simulates species interactions and traits’ 
plasticity such as grain yield and biomass due to competition. Evaluating 

Table 4 
Evaluation of the intercrop model in regards to the effect of spring wheat (SW) and faba bean (FB) cultivars on AME of grain yield at three environments. The two SW 
cultivars for each environment were: CKA2020- KWS starlight vs Anabel; CKA2021: Lennox vs Sonett and WG2020: Lennox vs mix_group 1. The two FB cultivars are 
Mallory and Fanfare. See Table S1 for the details about the cultivars.

Environment AME Cultivar 1 Cultivar 2 ΔAMEd Model skill RMSEg

AMEa

obsb
AME 
simc

AME 
obs

AME 
sim

obs sim IMe Bf

CKA2020 AMESW 0.38 0.72 0.75 0.78 0.37 0.06 0.24 0.34 0.39
CKA2021 0.55 0.39 0.96 0.48 0.41 0.09 0.21 0.45 0.51
WG2020 0.45 0.71 0.66 0.73 0.20 0.02 0.21 0.19 0.21
CKA2020 AMEFB − 0.89 − 0.46 − 0.69 − 0.47 0.08 − 0.18 − 0.02 0.28 0.28
CKA2021 0.1 0.12 0.69 0.16 0.17 − 0.05 0.07 0.72 0.75
WG2020 − 0.04 − 0.37 0.03 − 0.37 0.11 − 0.01 − 0.06 0.12 0.12

a Absolute mixture effect;
b observed;
c simulated;
d the difference between the AME of the two cultivars;
e Intercrop model;
f Benchmark and
g RMSE IM and RMSE B are respectively root mean squared errors of the intercrop model and the benchmark.

Table 5 
Evaluation of intercrop model in simulating the effect of sowing density of faba bean (FB) and spring wheat (SW) on absolute mixture effect (AME) of grain yield t ha-a.

Environment AME Low density High density ΔAMEd Model skill RMSEg

AMEa

Obsb
AME 
Simc

AME 
obs

AME 
sim

obs sim IMe Bf

CKA2020 AMEFB − 0.73 − 0.41 − 0.85 − 0.51 0.12 0.10 0.25 0.18 0.21
CKA2021 0.34 0.17 0.48 0.12 − 0.14 0.05 − 0.04 0.58 0.57
WG2020 − 0.04 − 0.34 0.02 − 0.41 − 0.06 0.07 − 1.30 0.16 0.10
CKA2020 AMESW 0.58 0.79 0.73 0.79 − 0.15 0.00 0.04 0.26 0.27
CKA2021 0.89 0.34 0.71 0.52 0.18 − 0.18 − 0.32 0.65 0.56
WG2020 0.48 0.69 0.65 0.74 − 0.17 − 0.05 0.14 0.24 0.26
CKA2020 AMEtotal − 0.07 0.38 − 0.12 0.28 − 0.03 0.10 − 30.0 0.27 0.23
CKA2021 0.6 0.51 1.19 0.64 0.04 − 0.13 − 0.09 0.71 0.68
WG2020 0.22 0.36 0.67 0.33 − 0.23 0.02 − 0.13 0.33 0.31

a Absolute mixture effect;
b observed;
c simulated;
d the difference between the AME of two densities;
e Intercrop model;
f Benchmark and
g RMSE IM and RMSE B are respectively root mean squared errors of the intercrop model and the benchmark.
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the intercrop model based on how well the model simulates the inter
crop effect on each species in intercropping enables to ensure that the 
model could be employed for in silico analysis of different species 
intercropping and management effects as it was used by Launay et al. 
(2009) and (Githui et al., 2023).

Modeling below-ground resource (water, N) competition is an 
important element for designing optimal field arrangements for inter
cropping systems (Gaudio et al., 2019). We have found that the intercrop 
model has reasonable skill in simulating the effect of intercropping on 
the topsoil root biomass of each species. As below-ground competition 
depends strongly on root biomass, the good performance of the intercrop 
model shows the potential to reasonably capture belowground dynamics 
in terms of water and nutrient uptake (Table S8). To our knowledge, this 
is one of the first studies that specifically address below-ground dy
namics of root growth and resource uptake of row intercropping sys
tems, which can further help to elucidate competition and 
complementary effects of intercropping systems.

The intercrop model performance in simulating the AME of soil 
water content was similar to the benchmark. Both, the measured and the 
simulated data showed low AME values, meaning that soil water content 
in intercropping is similar to the average of the two monocultures (SW 
and FB). There is limited research on water use of intercropping, 
particularly in row mixed intercropping. Our results suggest that the 
total water consumption of the intercrop is perhaps similar to the 
average water consumption of the monocultures. However, the study by 
Mao. et al. (2012) highlights that actual water use in intercropping from 
expected use ranged from − 13.7 % to +19.8 %. However, since the 
study is based on a relay intercrop experiment of maize/pea intercrop it 
is not directly comparable with our design of mixing within the row. Few 
modeling studies have been published on evaluating competition for soil 
water in strip intercropping systems (Tan et al., 2020; Miao et al., 2016), 
but no studies have looked into the competition for soil water in row 
intercropping.

In the current study, the intercrop model successfully simulated the 
intercrop effects on key variables such as grain yield, above-ground 
biomass, and root biomass without re-parametrization for intercrop
ping. This highlights the ability of the intercrop model to simulate 
interspecific interactions and plant plasticity due to competition (Ajal 
et al., 2022). In this model, the daily increment in plant growth was 
regulated by water (TRANRF) and nitrogen availability (nitro
gen-limited, NNI). Thus, under limited resources, the competition of one 
species affects the growth of the other species (Justes et al., 2021). For 
instance, cereals are highly competitive (Miao et al., 2016) for soil 
water, resulting in drought stress for intercropped legumes, hence, the 
plant growth of legumes is limited while that of cereals increases, 
allowing them to capture more resources. Likewise, under limited ni
trogen availability, the growth of cereals can be limited, however, since 
the legumes fix atmospheric nitrogen and fulfill most of its demand 
(Klippenstein et al., 2022) they grow faster. Therefore, the ability of the 
model to capture the traits of plasticity due to intercropping is important 
because it is relevant for understanding the productivity of species 
grown in intercrops as compared to sole crops (Ajal et al., 2022).

4.2. Intercrop model performance on simulating management strategies

It was often reported that the performance of intercropping depends 
on the genotypes and their traits, the environment, and the management 
(Demie et al., 2022; Paul et. al., 2024). Optimizing species and cultivar 
combinations allows for maximizing the overall performance of inter
cropping (Berghuijs et al., 2020). However, the complexity of the in
teractions in intercropping makes it a challenging task to understand the 
drivers for high productivity in intercropping.

The intercrop model demonstrated a high skill level, indicating the 
capability to simulate species differences and intercropping regarding 
the AME of above-ground biomass and grain yield. The SW cultivar 
differences observed in the field experiment (lowest and highest 

observed AME of grain yields) were also reasonably predicted by the 
intercrop model. Consequently, the model can assist in making informed 
choices in selecting SW cultivars, optimizing their suitability for inter
cropping scenarios, and potentially enhancing overall grain yields 
(Brooker et al., 2015).

Understanding species-interspecific interactions is important in the 
decision of species choice for intercropping (Cheriere et al., 2020). SW in 
intercropping exhibited a higher degree of competitiveness than FB 
hence SW in intercropping was more productive than SW in mono
culture, resulting in a consistently positive AME of grain yield and 
above-ground biomass. A similar response was reported in the literature, 
where cereals are considered strong competitors in cereal/legumes 
intercropping (Yu et al., 2016; Paul et al., 2023). On the contrary, FB 
tended to exhibit a negative AME at CKA2020 and WG2020 which are 
characterized by drought stress environment, and a positive AME, at 
CKA2021 which is characterized as a relatively moist environment. This 
trend is particularly observed in key plant traits such as grain yield and 
above-ground biomass. The crops grown in 2020 (CKA2020 and 
WG2020) suffered from drought stress. Under these conditions, SW with 
its deeper root system (Fig. S7) accessing subsoil water tends to suppress 
FB. This phenomenon of vigorous rooting system of cereals suppressing 
legume intercropping was demonstrated in Corre-Hellou and Crozat., 
(2005), and early rapid growth hence resulted in early dominance and 
legacy effect at a later stage of SW (Paul et al., 2023). Consequently, FB 
in mixtures faces a disadvantage compared to FB in monocultures, while 
SW in mixtures takes an advantage over SW monocultures. However, in 
2021 (CKA2021), there was an adequate amount of precipitation and 
thus plant available water, allowing both species to grow almost as well 
as they do in respective monoculture. Site-specific partner combinations 
of cereals and legumes together with appropriate management practices 
are a key element in enhancing total productivity in intercropping (Paul 
et. al.,2024; Nelson et al., 2021; Zhu et al., 2023). Launay et al. (2009)
reported that the relative productivity depended on the selected species 
and cultivars and environment.

Planting density significantly affects the growth dynamics and 
overall productivity of intercropping (Hadir et al., 2024). According to 
Yu et al. (2016) and Paul et al. (2024), higher grain yields in mixed 
cropping systems are observed at increased sowing densities compared 
to lower sowing densities. The management strategy sowing density was 
poorly simulated compared to the benchmark. The model’s approach, 
which relies on considering only initial crop dry weight (seed weight) 
and the number of plants that emerged per m2 (model parameter RIN
POP) which mainly affects root growth as a proxy for sowing density 
effects, may be overly simplistic and inadequate in capturing the true 
complexity of density-dependent processes in plant growth. Conse
quently, poor simulation results are plausible given these limitations. 
Therefore, improved equations need to be implemented in the model to 
simulate the sowing density effect in intercropping. A similar approach 
is used in the STICS model as mentioned in Brisson et al. (2003) in which 
plant density introduced as an input parameter corresponds to the 
density of emerged plants. However, it was not tested if the approach 
captures the density effect in intercropping.

4.3. Specifications and limitations

Compared to the crop model applied in monocultures, the only new 
mechanism in the intercrop model is the shading of one species by 
another, which determines the radiation interception by each species. 
The model was able to simulate the competition for and complementary 
use of water and N by the two intercropped species. Each species takes 
up water and N as in the monocultures models depending on the de
mand, root biomass, root length density, and available soil N and water, 
but by doing so depletes the amount available for the other species. 
Biological nitrogen fixation (kg N ha− 1) by the legume in the intercrop 
follows the same equation as for the monoculture but is increased 
because the cereal reduces available soil N. Thus competition and 
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complementarity are a consequence of modeling the two species 
together, without any new mechanisms being required other than 
competition for light.

A limitation of this study was that the model was evaluated only for 
the spring wheat-faba bean intercropping dataset, even though this 
allowed a thorough model evaluation. Expanding the scope by including 
simulations of intercrops with various other cereals/legumes would 
enhance the model’s applicability. In addition, the field experimental 
data exhibited high variability among different replicates, with only a 
few treatments showing significant differences. The preselected SW 
cultivars used for calibration (key treatments with higher intensity of 
data collection) had similar characteristics and differed only slightly in 
plant height and initial biomass. This consequently led to minor differ
ences in simulated values. Additionally, the experiment at the organi
cally managed research station (WG), was partly affected by weed 
infestation. The weed infestation varied between monocultures and in
tercrops, leading to high data variability. In the simulation, no compo
nent accounted for weed competition, resulting in a disparity between 
the simulated and observed mixture effects in this specific environment. 
Additionally, at CKA2021 there was no replication in most of the 
treatments leading to further uncertainties.

5. Conclusions

The intercropping model based on the soil-crop model LINTUL5 is 
found to be a promising tool for designing intercropping systems, 
despite its simplifications. Experiments are limited in the number of 
treatments but models can help to interpret experimental results in 
terms of crop growth dynamics and resource acquisition. Calibrated 
using only data for sole crop treatments, the intercrop model was able to 
simulate in-row mixture effects on grain yield, shoot, and root biomass, 
while considering species and cultivar differences. The intercrop model 
demonstrated a high skill level, underlining the capability to simulate 
species differences and intercrop performance regarding the AME of 
above-ground biomass and grain yield. The effect of SW cultivar choice 
was also reasonably predicted by the intercrop model. The limitations of 
using a soil-crop model to design intercropping systems must however 
be kept in mind. It must also be considered that many of the hoped-for 
benefits of intercropping, such as increased biodiversity or reduced 
weed populations, are not simulated by crop models. Crop models can be 
an important aid in intercrop design, but will need to be coupled with 
other considerations.
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F. Döring: Writing – review & editing, Methodology, Funding acquisi
tion, Data curation, Conceptualization. Frank Ewert: Methodology, 
Funding acquisition, Conceptualization. Thomas Gaiser: Writing – re
view & editing, Methodology. Ixchel M. Hernández-Ochoa: Writing – 
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