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The recent acceleration of global climate warming has created
an urgent need for reliable projections of species distributions,
widely used by natural resource managers. Such projections,
however, are produced using various modeling approaches with
little information on their relative performances under expected
novel climatic conditions. Here, we hindcast the range shifts of
five forest tree species across Europe over the last 12,000 years to
compare the performance of three different types of species dis-
tribution models and determine the source of their robustness.
We show that the performance of correlative models (CSDMs)
decreases twice as fast as that of process-based models (PBMs)
when climatic dissimilarity rises, and that PBM projections are
likely to be more reliable than those made with CSDMs, at least
until 2060 under scenario SSP245. These results demonstrate
for the first time the well-established albeit so far untested idea
that explicit description of mechanisms confers models robust-
ness, and highlight a new avenue to improve model projections
in the future.
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Introduction
Modelling is essential for understanding and predicting the
impacts of climate change on ecosystems and biogeochemi-
cal cycles. Credible model projections are critical for natu-
ral resource managers, decision makers and stakeholders to
make informed decisions. To meet the demand for reliable
projections of ecosystems and biodiversity dynamics, com-
prehensive assessments of ecological model performances
must be a priority (1–3).
One approach to evaluate model reliability is to compare their
predictions to observations from previous time periods, i.e.
hindcasting. Hindcasting can inform whether models cap-
ture, implicitly or explicitly, the essential processes required
to provide reliable projections in conditions significantly dif-
ferent from the present. By looking far into the past, paleo-
archives have proven to offer a unique opportunity to both un-
derstand long-term climate and biodiversity dynamics (4, 5)
and test model robustness and transferability (i.e. model ca-
pacity to maintain its performance in changing conditions; 6)
(7, 8).
Yet, models prediction of past species distribution and bio-
spheric components have rarely been consistent with paleo-
climate reconstructions and fossil records (9–13) . Interpret-
ing model projections in climatic conditions that differ signif-

icantly from the present, such as future no-analogue climatic
conditions (14), remains challenging. Therefore, the guaran-
tee that ecological model forecasts for the 21st century will
be reliable is limited (15).
While exact matches to expected 21st-century climatic con-
ditions do not exist in historical records (16), the dissimilar-
ity between 20th and 21st century median climatic conditions
(Methods) falls within the range of dissimilarity encountered
since the beginning of the Holocene (12 kyr BP, with kyr =
1000 years and BP = Before Present (1950); Figure 1). This
period takes place after the Last Glacial Maximum (26.5-19
kyr BP; 17) and began with an abrupt climate warming fol-
lowed by a long, almost uninterrupted, period of climatic sta-
bility until recent anthropogenic warming (Figure S1). The
fossil pollen data accumulated over these last millennia pro-
vides us with an unique extended timeframe to test the reli-
ability of ecological models, in particular those designed to
predict changes in species distribution.
Species distribution models (SDM) are powerful tools to pre-
dict species geographical distribution as a function of envi-
ronmental data (e.g., mean annual temperature and annual
total precipitation). Most studies have focused on correlative
models (CSDMs, also called environmental niche models),
which infer statistical relationships between observations of
species occurrences and environmental predictors (18). Their
high flexibility and low computational complexity make them
the most widely used tool for deciding on species conserva-
tion plans and policy regimes (e.g. 19). However, under novel
climatic conditions, new unobserved portions of a species’
climatic niche may appear, which are not captured by these
correlative (or phenomenological) approaches. For example,
when tested under distant past climates, the predictive perfor-
mance of CSDMs significantly decreased (13), questioning
their ability to provide reliable projections in the future (15).
Alternative approaches to CSDMs are process-based mod-
els (PBMs, or process-explicit models) that rely on explicit
formulations of the mechanisms driving the distribution of a
given species (e.g., physiological, ecological and/or demo-
graphic processes). They come from decades of experiments
and observations, including extreme conditions in laboratory
(20), and climate manipulations such as CO2 enrichment (21)
or rainfall exclusion (22). The reliability of PBMs depends
on our level of understanding of how environmental condi-
tions affect ecophysiological processes, and the availability
of large amount of observations to calibrate their many pa-
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Fig. 1. Evolution of climatic dissimilarity during the Holocene (12k-500 yr BP) and the 21st century (2005-2100), relative to 1901-2000. Climatic dissimilarity is computed as 1-
Sørensen similarity between bootstrapped climatic hypervolumes. Lines represent median dissimilarity, shaded areas represent 90% confidence intervals. Blue corresponds
to paleoclimate based on HadCM3B model. Yellow and red correspond to future climatic conditions according to SSP245 and SSP585 scenarios respectively, predicted by
34 global climate models of NEX-GDDP-CMIP6. The blue triangle on y-axis indicates the level of climatic dissimilarity 8500 years ago, at the limit between the Early and
Late-Middle Holocene. Yellow and red triangles indicate the expected level of climatic dissimilarity in 2060 for SSP245 and SSP585 scenarios. Note that the x-axis scale is
different between past and future panels.

rameters (23). Because these models do not rely on statis-
tical relationships between present-day species occurrences
(presence/absence) and environmental variables, but rather
describe explicit causal relationships between biological pro-
cesses and environmental variables, they are believed to pro-
vide more reliable predictions of species distribution changes
under novel climatic conditions (24, 25). However, another
possible reasons why PBM projections might be more re-
liable than CSDM projections under novel climatic condi-
tions could also come from their calibration methods. Unlike
CDSMs that are calibrated using species presence/absence
data, PBM parameters are either measured directly (e.g. spe-
cific leaf area, leaf frost hardiness), or inferred statistically
when direct measurement is not an option, using data on spe-
cific functional traits measured in the field or in laboratory
(e.g. parameters of bud dormancy break date models).

The assumption that PBMs could provide more reliable pro-
jections of future range shifts of species is widely accepted
and taken for granted (24, 26–28) although it has never really
been demonstrated. Furthermore, the reasons behind this
assumption have not been clearly articulated. Qualitative
models comparison under future climatic conditions have
shown that PBMs often make more conservative projections
in future climates than CSDMs which predict larger changes
(29–31) but they have not provided any confidence level in
these results. Very few studies have actually gone beyond
qualitative comparisons between CSDMs and PBMs and
compared thoroughly their performance, for example using
virtual species (32), exotic species in native and newly
colonized areas (33), or in the recent past (34). While PBMs
have shown their usefulness for paleoecological studies
(35–37), the extent to which they can provide more reliable
predictions than CSDMs under different climatic conditions
from the historical period remains unknown (6, 38).

Here, we address this critical gap by using multiple CSDMs
and PBMs to simulate paleodistributions of five emblematic
tree species of Europe at a high temporal resolution since 12
kyr BP. We used daily paleoclimatic data at 0.25° spatial reso-
lution, generated from HadCM3B-M2.1 coupled general cir-
culation model simulations, which includes both inter-annual
variability, and millennial scale variability for rapid Dans-
gaard–Oeschger events before 11 kyr BP (39). Species mi-
gration ability was also incorporated into the simulations to
represent more comprehensively changes in species’ realized
distribution and not merely changes in their climatic niches to
allow for a more accurate comparison with the paleorecords.
We first assessed which modelling approach best predicts
past species distributions, and second whether model per-
formance was related to their hypotheses (relationships de-
scribing explicit biological mechanisms or not) or to their
calibration methods (calibrated on species occurrence data or
not). To do so, we compared three types of models: CS-
DMs, PBMs (hereafter called expert PBMs) and fitted PBMs
calibrated in the same way as CSDMs (inverse calibration
using species occurrence data and a novel type of algorithm;
Methods; 40). The comparison between CSDMs/fitted PBMs
and expert PBMs allowed us to determine whether the dif-
ferences in model performance arise from their calibration
methods, whereas the comparison between CSDMs and ex-
pert/fitted PBMs allowed us to determine whether the differ-
ences in model performance arise from the model hypothe-
ses. We assessed the performance of the models for the max-
imum level of climate dissimilarity possible, i.e. over the last
12,000 years, which corresponds to the climate dissimilarity
expected by the end of the century according to SSP245, and
by the middle of the century according to SSP585 (Figure 1).
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Methods

Correlative and process-based species distribution
models. We used PHENOFIT and CASTANEA, two
process-based models which differ by their underlying hy-
pothesis and complexity. PHENOFIT simulates the fitness
of an average adult tree (41). It estimates fitness compo-
nents (survival and reproductive success) by simulating the
precise phenology (dates of leaf unfolding, flowering, fruit
maturation, leaf senescence) and damages caused by abiotic
stress (frost, drought) which effects depend on their occur-
rence relatively to the development stages of the different or-
gans. It has been validated for several North American and
European species (35, 42–44). The model has ~30 param-
eters. CASTANEA simulates carbon and water cycles of an
average adult tree by simulating many processes such as pho-
tosynthesis, stomatal opening, maintenance and growth res-
piration, transpiration and carbon allocation (45). It has been
used to predict carbon and water budgets of several European
species (46–48). The model has ~80 parameters. Both mod-
els require daily meteorological variables and soil character-
istics. Two versions of both models were employed: one was
calibrated with expert knowledge and statistical inference us-
ing observations and measurements of the processes mod-
elled (version called expert), and a second one was entirely
calibrated using species distribution data (version called fit-
ted; 40) like correlative models. For the latter, we used the
optimization algorithm CMA-ES (49) as described in (40),
and retained the best calibrations in terms of AUC.
We selected correlative models based on the thorough model
comparison made by (50). Among the most performant
models, we selected five well-established models: GLM
with lasso regularization, GAM, BRT, MaxEnt and down-
sampled Random Forest. Some of these models are known
to struggle when applied to extrapolation domains, but are
nevertheless widely used by ecologists to provide projec-
tions of species distribution change in future climatic con-
ditions. We chose four uncorrelated climate predictors re-
lated to ecological processes to calibrate these models: min-
imum temperature of the coldest month (representing frost
tolerance), total precipitation (representing available wa-
ter), GDD5 (growing degree days >5°C) between April and
September (representing available thermal energy for vege-
tation growth and fruit maturation), water balance between
June and July (precipitation−evapotranspiration, represent-
ing summer drought tolerance). We also included two soil
covariates (pH and Water Holding Capacity).
While by construction correlative models directly output
species habitat suitability, we used fitness predicted by the
model PHENOFIT and net primary production predicted by
the model CASTANEA as a proxy of species habitat suitabil-
ity as they have already been used to predict species pres-
ence in previous studies (29, 30, 35). CSDMs and inverse-
calibrated PBMs were calibrated for five species (Fagus syl-
vatica L., Abies alba Mill., Quercus robur L., Quercus pe-
traea (Matt.) Liebl. and Quercus ilex L.) using historical cli-
mate (1970-2000) extracted from ERA5-Land hourly dataset
(51), soil data from EU-SoilHydroGrids (52) and SoilGrids

(53) databases and species presence data from the dataset as-
sembled in (40), mostly based on EU-Forest inventory data
(54). To calibrate the CSDMs, we additionally sampled
50,000 background points, which should properly represent
the variation in the environmental conditions across the study
area (50). For each CSDM and each species, we run a five-
fold environmental cross-validation to estimate model perfor-
mance in novel extrapolation conditions (Figure S8; 55). We
then used all the available training data to calibrate the mod-
els for the hindcasting in order to favour final prediction qual-
ity (55). We could not run the same cross-validation method
for fitted process-based models because it would have been
too computationally expensive.
Model simulations over the Holocene were run for 30-year
periods every 250 years, for the five above mentioned species.
Model outputs were averaged over each 30-year period. Note
that soil conditions (needed both for correlative and process-
based models) were held constant throughout the simula-
tions, and were bilinearly interpolated from closest coastal
cells where data was missing (because of different land-
sea masks between present and past). Note also that for
CASTANEA model, species-specific thresholds of net pri-
mary production determining the presence or absence of the
species were computed with the CO2 level at the beginning
of the Holocene (~240ppm).

Late Quaternary climate and vegetation. We used the
monthly paleoclimate simulation dataset generated with the
HadCM3B-M2.1 coupled general circulation model (39),
starting from 18 kyr BP at 0.5° spatial resolution for Europe
(Figure S1). We chose this dataset for several reasons. First,
it includes both inter-annual variability, and millennial scale
variability for rapid Dansgaard–Oeschger events before 11
kyr BP. Second, it shows generally a good agreement with
ice-core datasets (39). Third, it provides all the necessary
input variables necessary to run all the models selected. For
this work, several variables were specifically produced: mean
temperature, average minimum and maximum daily temper-
atures, precipitation, number of rainy days, cloudiness, and
wind speed. We further downscaled temperature and precip-
itation monthly data to 0.25° resolution, by applying an ele-
vation correction of coarse-scale variables towards the ICE-
6G-C elevation level at high resolution (56). We then gen-
erated daily data for temperatures, precipitation, cloud cover
and wind speed from the monthly data with the weather gen-
erator GWGEN (57), for 30-year periods every 250 years.
We also simulated daily extra-terrestrial solar radiation with
the same orbital forcing conditions used in HadCM3B-M2.1
(39) and then computed daily global radiation taking into ac-
count previously generated daily cloud-cover data as imple-
mented in LPJ-LMfire global model (58). Finally, we com-
puted daily potential evapotranspiration following the stan-
dard FAO Penman-Monteith method (59).
Fossil pollen records were extracted from the Legacy-
Pollen dataset (60). This dataset is mainly based on the
Neotoma database (61), and provides samples with standard-
ized chronologies and age uncertainties. We removed sites
that had marine depositional environments (13), and only
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kept samples with more than 200 pollen grain counts and
age uncertainty of less than 500 years. Pollen relative abun-
dances were aggregated to consecutive 500-year intervals. If
multiple samples from the same site belonged to the same pe-
riod, we averaged their pollen abundances, weighting by their
age uncertainty and temporal distance from the center of the
period. Relative pollen abundances were converted to pres-
ence/absence using thresholds based on biome reconstruc-
tions (62): 1% for Fagus and Abies, and 2.5% for Quercus. If
several sites fell within the same grid cell (0.25°), we consid-
ered the species as present if there was at least one site where
the species could be considered as present. Fagus pollen data
were used to assess the presence of Fagus sylvativa L., sole
species of the genus present in Europe. Abies pollen data
were used to assess the presence of Abies alba Mill., most
abundant and widespread fir species present in Europe. When
possible, deciduous and evergreen Quercus pollen were dis-
tinguished based on Neotoma data. Some Quercus pollen re-
main undetermined beyond the generic level, either because
discrimination between evergreen and deciduous oak pollen
was impossible or because authors were not specific. They
were assigned to two categories, based on the evergreen nat-
ural range as defined by Atlas Flora Europeae (63) and Eu-
roVegMap (64): pollen outside range were considered as de-
ciduous only occurrences, whereas pollen inside range were
considered as both evergreen and deciduous occurrences. De-
ciduous Quercus pollen data were used to assess the presence
of Quercus petraea (Matt.) Liebl., and Quercus robur L.,
the two most abundant and widespread deciduous oak species
in Europe. Evergreen Quercus pollen data were used to as-
sess the presence of Quercus ilex L., the most abundant and
widespread evergreen oak species in Europe.

Tree migration. Models used in this study predict species
potential distribution based solely on climatic and soil con-
ditions. To compare model predictions to pollen paleo-
records, species migration needs to be simulated as well,
as it can be the primary factor limiting species distribution
before climatic conditions, especially when climatic condi-
tions are changing rapidly as it was the case during the Dans-
gaard–Oeschger events (35, 65).
To implement migration in the simulations, we run a cellular
automaton (66) which has proven to be as accurate as more
complex approaches (32). We modified the initial version
of this dispersal model in order to use both short- and long-
distance dispersal kernels (long distance events could occur
with a probability of 0.01). We used species-specific fat-
tailed kernels (67) at a 500 m resolution, and assumed that
trees can disperse once a year (Figure S7a). Model outputs
were assigned to two classes using specific optimal thresh-
olds maximizing model performance (TSS) in the historical
climate (Figure S8): (i) cells where the model output was
under the specific threshold were assigned a zero suitabil-
ity (species cannot survive), and (ii) cells where the model
output was above the threshold, the suitability was rescaled
between 0 and 1 (species can migrate). We considered the
deciduous Quercus suitability as the maximum suitability be-
tween Q. robur and Q. petraea. Migration simulations started

from 12 kyr BP (or 11.75 kyr BP when a model simulates no
presence at 12 kyr BP). Note that starting at 11.75 kyr BP
or 12 kyr BP does not change our results (Figure S10e-h),
and that we could not start earlier (e.g. ~15 kyr BP) as most
models predict no presence at all around 12.5 kyr BP. We
also checked that dispersal process stochasticity at 500m res-
olution (Figure S7a) had no significant effect on the model’s
performance at the scale of Europe, by simulating deciduous
Quercus migration 10 times for each of the 8 models (Figure
S7b).

Models’ performance. We used the Sørensen’s similarity
index to measure the hindcast performance of the models,
based on the confusion matrix. This discrimination measure
has been shown to provide adequate estimations of model dis-
crimination capacity, not biased by species prevalence or an
inflated number of true negative predictions (68). This fea-
ture is important when working with fossil pollen data, for
which the number of species absence can be much higher
than the number of species presence. Note that we obtained
similar results when using TSS as the performance metric
(Figure S10b). We compared the area potentially occupied
(not taking migration into account) and occupied (taking mi-
gration into account) by the species to the presence/absence
data extracted from the LegacyPollen dataset every 500-year
interval. Kruskal-Wallis tests followed by multiple pairwise
post-hoc Conover-Iman tests (using Benjamini-Yekutieli ad-
justment, as implemented in the R package conover.test) were
computed to assess stochastic dominance among model per-
formance and transferability (Fig. 3b-d).
To quantify the climatic differences between historical cli-
mate (1901-2000, based on the CRU TS v. 4.07 gridded
dataset; 69) and Holocene climate (hindcasting conditions),
we computed the climatic dissimilarity as the Sørensen dis-
similarity between climatic hypervolumes (a metric of over-
lap in multidimensional space). We first generated for each
period (500-year intervals from -12 kyr BP to 500 BP and
1901-2000) a set of 20 bootstrapped hypervolumes, using R
package hypervolume (70). Hypervolumes were computed
with a Gaussian kernel density estimation method based upon
the first three principal component axis from three-month
means temperature and three-month sums of precipitation.
We then computed overlap statistics (mean and standard de-
viation of Sørensen index) between the bootstrapped hyper-
volumes of each time points of the Holocene and the boot-
strapped hypervolumes of the historical period (i.e. 20x20
overlaps). As a comparison, we also computed the climate
novelty based on Mahalanobis distance (Figure S2; 71).
We also computed these metrics under future conditions to
compare the dissimilarity of future climate to that of the
Holocene climate, both relative to 20th century climate.
To assess future conditions, we used all the global cli-
mate models from NEX-GDDP-CMIP6 dataset (72) – except
HadGEM3-GC31-MM, not available for SSP245 – and 2 sce-
narios (SSP245 and SSP585). To make the comparison, both
paleoclimate and future climate data were uniformized with
the CRU dataset to maximize comparability between paleo-
climate and future climates. The difference (for three-month
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temperature average) and the ratio (for three-month precip-
itation sum) between the observations (from 1901 to 2000)
and simulations (1901-1950 for HadCM3B, 1951-2000 for
CMIP6 projections) were calculated and applied to the whole
modelled time period, assuming that the bias was constant.
Finally, we estimated the effects of past climate novelty
(Sørensen’s climatic dissimilarity) on model performance
(Sørensen index) with a Bayesian ordered beta regression,
considering the different types of models (correlative, fitted
process-based and expert process-based), using the R pack-
age ordbetareg (73) and RStan (74). Compared to a standard
beta regression model, this model allows for observations at
the bounds (i.e. Sørensen index = 0 or = 1). We took into ac-
count the standard deviation of Sørensen’s climatic dissimi-
larity (computed with sets of bootstrapped hypervolumes, see
above) as a predictor measurement error.

Results
As observed in previous long-term historical assessments,
all models showed a decrease of their performance when
moving further into the past, i.e. into more different
climatic conditions than historical conditions (Fig. 3a).
However PBMs showed smaller decrease in their predic-
tive performance (slope of Beta regression, fitted PBMs:
−6.07, 95% CI [−8.62,−3.55], expert PBMs: −4.44,
95% CI [−7.07,−1.77]) than CSDMs (−11.0, 95% CI
[−13.2,−8.91]). PBMs also showed higher transferability
in the most distant climatic conditions of the early Holocene
than CSDMs (Fig. 3d). PBMs, either expert or fitted, are thus
less affected by the increase in climate dissimilarity than CS-
DMs. In the near past (Late-Middle Holocene, < 8.2 kyr BP),
CSDMs were not significantly better at predicting tree dis-
tribution than any PBMs (pairwise Conover-Iman tests: vs.
expert PBMs t-statistic = 1.68/P = 0.128, vs. fitted PBMs
t-statistic = −1.55/P = 0.112; Fig. 3b), despite their closer
fit to current species distributions (Figure S8). In the dis-
tant past (Early Holocene > 8.2 kyr BP), CSDMs performed
worse than both expert and fitted PBMs (pairwise Conover-
Iman tests: respectively t-statistic = −4.80/P < 0.0001 and
t-statistic = −5.07/P < 0.0001; Fig. 3b). The maximum
climatic dissimilarity during this period corresponds to the
climatic dissimilarity expected as soon as 2060 according to
the scenario SSP245 (Fig. 3a).
These differences between PBMs and CSDMs are closely
related to their ability to predict species recolonisation dy-
namics in the Early Holocene (~11.5-8.5 kyr BP). Both types
of PBMs, fitted and expert, predicted more accurately refu-
gia locations at -12 kyr BP, which were the starting points
for the migration (Fig. 2; Methods). This period corre-
sponds to a global deglaciation which lasted for a few cen-
turies and occurred after the cooling of the Younger Dryas
interval (~13-11.5 kyr BP; Figure S1). This rapid warming
episode explains the strong decrease of climate dissimilar-
ity relative to present between 12 kyr BP and 11.5 kyr BP
(Fig. 1). If we had not considered the 12-11.5 kyr BP period
of high climatic dissimilarity (i.e. without simulating migra-
tion from refugia), we would have missed the opportunity to

B
R

T

11750BP 11000BP 7000BP 500BP

R
an

do
m

 F
or

es
t *

G
A

M
G

LM
M

ax
E

nt
P

H
E

N
O

F
IT

C
A

S
T

A
N

E
A

P
H

E
N

O
F

IT
 fi

tte
d

C
A

S
T

A
N

E
A

 fi
tte

d

Fig. 2. Example of paleosimulations obtained with the nine models used in this
study for deciduous oaks. The five first rows correspond to the five correlative mod-
els (boosted regression tree, down-sampled random forest, generalized additive
model, generalized linear model with lasso regularization, MaxEnt). The four last
rows correspond to two different versions (expert calibration and inverse calibra-
tion using occurrence data) of two process-based models (PHENOFIT and CAS-
TANEA). Light green area is the modelled suitable area, dark green area is the
colonized area (after migration). Light blue represents the ice sheet extent. Black
dots are deciduous oak fossil pollen occurrences. The model for which migration
started at 11.75 kyr BP rather than 12 kyr BP is marked with an asterisk. "BP"
stands for "before present" (1950).

take into account model projections within the same dissim-
ilarity level to what we expect between 2050 and 2100 (Fig.
1). When models are compared after 11kyr BP, i.e. when
climate dissimilarity is more similar to present, CSDMs and
PBMs’ abilities to predict fossil pollen occurrence are simi-
lar (Figure S10cd), with an average Sørensen index decrease
of −0.205 ± 0.0224 (paired Wilcoxon-test: P < 0.0001) be-
tween Late-Middle Holocene and Early Holocene.

Our results also revealed that inverse calibration improved
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process-based projections in recent past without altering
significantly PBM long-term transferability (Fig. 3). In
Middle-Late Holocene, when climate conditions were not
drastically different from present, performances of fitted
PBMs was higher than those of expert PBMs (t-statistic
= 2.70/P = 0.020). In most distant climatic conditions of
Early Holocene, their performances were similar (t-statistic
= 0.220/P = 0.757; Fig. 3b).
Models performances were not stable across species, and ex-
hibited both similarities and differences across time (Figure
S9). More specifically, models exhibited the same overall
performance decrease against Fagus pollen records, whereas
CSDM performance decline was substantially faster than ex-
pert and fitted PBMs for deciduous Quercus. All mod-
els show low predictive power regarding evergreen Quercus
distribution even in the Late Holocene compared to other
species, especially CSDMs which failed to predict its pres-
ence along the Atlantic coast (S6). Fitted PBMs, however,
showed the lowest variability of performance across species
(Fig. 3c).

Discussion
Our results suggest that the transferability and robustness of
models are more strongly influenced by the processes explic-
itly represented in the models than by their method of calibra-
tion. PBMs consistently show a better performance through-
out the 12 kyr simulation period, even when calibrated using
the same method as CSDMs (i.e. fitted PBMs). Therefore,
beyond enabling a more detailed mechanistic understanding
of the effects of environmental conditions on species survival,
growth, and reproduction, biological processes represented
in PBMs are also critical to ensure higher model robustness
under more novel climatic conditions. This important new
finding advocates for a wider use of PBMs to predict biodi-
versity and ecosystems distributions in the future and opens
a new avenue to reach this goal by using inverse modelling
approaches to calibrate them.
Our results also suggest that predictions of PBMs, either fit-
ted or expert, should be more reliable at least up to 2060 ac-
cording to the scenario SSP245 (Fig. 3a) and 2050 according
to SSP585. The rate of anthropogenic climate change and the
increased probability of occurrence of novel climates (Fig. 1;
14) are challenging the reliability of both CSDMs and PBMs
especially since they are intended to be used in more complex
models such as biosphere-atmosphere models and used by
natural resource managers and policy makers to guide man-
agement plans and policies. Acknowledging these uncertain-
ties is as important as making the forecasts themselves (75)
and contributes to the public trust in scientists (76).
Simulating migration allowed us to take into account the dif-
ferences between the models under the most challenging con-
ditions, i.e., when the climate dissimilarity was at its greatest,
closely approximating what is projected for the end of the
21st century. Since the migration model is identical across
all simulations, differences of performance between mod-
els across the Holocene very much depended on their abil-
ity to predict the potential refugia of the species during the

Early Holocene. For example, some models were not able
to predict evergreen Quercus refugia in Southern Spain, thus
missed an important migration route and failed predicting
their presence in vast areas in the Late Holocene (Figure S6).
As PBMs, either fitted or expert, describe the response of
ecophysiological processes to a wide range of environmental
conditions, they can provide a better estimate of the envi-
ronmental conditions in which species could have survived
12000 years ago, under climates much more dissimilar to
present conditions. A potential limitation of our approach
though is that we cannot account for very rare and really
long-distance dispersion events, as well as the influence of
humans. For example all models failed to predict decidu-
ous Quercus in the British Isles before the Early Holocene
sea level rise and the opening of the Strait of Dover (Fig.
2; 77), even though the land-sea mask changed throughout
the simulations. It remains unclear whether this failure is
due to the migration models’ misrepresentation of very long-
distance dispersion events of seeds (e.g. by humans or jays,
across major dispersal barrier), or a consistent misprediction
by both CSDMs and PBMs of more northern refugia.

The recent efforts to gather fossil pollen data and make them
openly available (61) allow us to objectively assess model
performance under climate conditions vastly different from
those used for their calibration. From 11.5 kyr BP onwards,
climate dissimilarity varies between 0.29 and 0.08, a level
equivalent to what we might experience in the second quarter
of the 21st century (Fig. 1). The consistency of model projec-
tions with past observations does not demonstrate that model
projections will be valid in the future (78), but making such
comparisons allows to make a critical step towards enhanc-
ing our understanding of model transferability. As more and
more pollen data becomes available, we could cover a wider
range of conditions, notably prior 11.5 kyr BP. Our simula-
tions nevertheless started at 12 kyr BP, when climatic dissim-
ilarity was at its highest, and transitioned rapidly to a climate
more analogous to historical state. The uncertainties on the
initial conditions had thus a significant influence on the sim-
ulation outcomes. In the future, on the contrary, uncertainties
on the initial conditions will be much lower as models will
start from the known distributions of species, and uncertain-
ties will increase as simulations proceed towards increasingly
dissimilar climatic conditions, especially since these condi-
tions will extent beyond the range experienced in the past
(Figure S3).

While quantifying the uncertainty in model projections re-
mains challenging, our results pave the way for drastic im-
provement in model evaluation. The discrepancies between
model performances we observed highlights the importance
of considering various modelling methods to capture the full
range of uncertainties associated with future projections. It
implies that we should not rely solely on the model’s own
prediction dispersion to estimate projection uncertainties, nor
on very similar modelling approaches, especially when cli-
mate dissimilarity sharply increases. Moreover, models will
have to consider that tree colonization dynamics will likely
be very different in the future because it will not only occur
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Fig. 3. Performance of correlative models, fitted process-based models (inverse calibration using occurrence data) and expert process-based models (classical calibration)
against Holocene paleoecogical evidence (fossil pollen) for 4 tree genera (Abies, Fagus, Quercus deciduous and Quercus evergreen). (a) Bayesian beta regression of
model predictive performance (Sørensen index) against climatic dissimilarity relative to 1901-2000 (1-Sørensen similarity between climatic hypervolumes). Shaded areas
represent 2.5% and 97.5% quantiles of the posterior predictive distribution. Points represent the average model performance (and lines the standard deviation) grouped
by similar level of climatic dissimilarity. Blue triangle on x-axis indicates the limit between Early Holocene (> 8.2 kyr BP) and Late-Middle Holocene (< 8.2 kyr BP).
Yellow and red triangles indicate the expected level of climatic dissimilarity in 2060 for SSP245 and SSP585 scenarios. Legend on the right: top row represents drivers of
modelled distributions (correlations/mechanisms), bottom row represents calibration method (species distributions/measurements). Panels (b) and (c) show the difference in
performance (Sørensen index) and variability in performance (standard deviation of Sørensen index) across models. Panel (d) shows the transferability of the models (relative
change in model performance between distant past periods and historical period). A negative transferability means that model performance is lower in the distant past periods
than in the historical period. CSDM predictive errors in the historical period was assessed by two different methods: (i) against the same data used for calibration (leading to
an overestimation of historical model performance – but more comparable to fitted PBM estimates), (ii) using an environmental block cross-validation, noted as "CV" (leading
to a better estimation of true model errors in the historical period, and thus a higher transferability – but less comparable to fitted PBMs for which cross-validation would have
been too computationally expensive). The grouping letters represent the multiple comparisons with pairwise Conover-Iman tests.

from a few refugia but from wider continuous ranges, and di-
rect anthropogenic factors, such as sylvicultural practices and
assisted species migration, will also shape the composition of
forests (79).

Fitted PBMs bring together the strengths from both CSDMs
and expert PBMs approaches by describing causal relation-
ships between environmental conditions and species perfor-
mance (i.e. from process-based approaches) and precise esti-
mates of parameter values (from correlative approaches). The
differences between expert and fitted PBMs in the Middle-
Late Holocene pinpoint some issues in expert parameteriza-
tion that requires to combine various methods to cope with
both the scarcity of data for each ecophysiological process
modelled and sometimes non-measurable parameters (e.g.
80). Some parameters in these relations can be measured
directly, and exhibit little variability across a species range
(e.g. water potential leading to 50% of vessels embolism).
However, the measurement of parameters in controlled con-
ditions does not necessarily guarantee their external valid-
ity in natura (81) where numerous factors, not represented

in laboratory conditions, can also affect the process mod-
elled (but see (82)). Other parameters are in addition either
highly variable because of local adaptation over long period,
difficult-to-measure or so far unmeasurable (e.g. bud dor-
mancy). Therefore, expert PBMs can suffer from uncertain-
ties entailed in the measurements of some of their parameters,
and from spurious data specific to few locations which do not
represent sufficiently well all the conditions the species can
experience all over its range. For these reasons, inverse cali-
bration presents a valuable opportunity to estimate the values
of PBM parameters especially difficult to estimate otherwise
(23, 83). However, inverse calibration does not warranty the
correct estimation of parameter values and needs to be used
critically and with caution (40).

Our unique multi-model comparison across the Holocene
demonstrates that our understanding of biological mecha-
nisms embedded into process-based models represent a real
advantage over the empirical relationships used in CSDMs to
increase projections reliability for the coming decades. How-
ever, data availability limits our ability to parameterize these
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models, and could explain the difficulty to use them more
widely for global impact studies. Fitted PBMs may over-
come this problem by using more data at a larger geographi-
cal scale, while keeping the predictive strength of causal re-
lationships. Given ongoing improvements in computational
methods and the availability of new global-scale measure-
ments (e.g. forest structure and growth with remote sensing
and LiDAR data), extensive calibration and more widespread
application of process-based models seems now possible as
well as an increase in model projections reliability.
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