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The Global Dam Watch database of 
river barrier and reservoir information 
for large-scale applications
Bernhard Lehner   1 ✉, Penny Beames   1,2, Mark Mulligan   3, Christiane Zarfl   4,  
Luca De Felice   5, Arnout van Soesbergen   3,6, Michele Thieme   7, Carlos Garcia de Leaniz   8, 
Mira Anand   1, Barbara Belletti   9, Kate A. Brauman   2, Stephanie R. Januchowski-Hartley   8,  
Kimberly Lyon   10, Lisa Mandle   11, Nick Mazany-Wright12, Mathis L. Messager   1,13, 
Tamlin Pavelsky   14, Jean-François Pekel   5, Jida Wang   15,16, Qingke Wen17, Marcus Wishart10, 
Tianqi Xing   1, Xiao Yang   14,18 & Jonathan Higgins19

There are millions of river barriers worldwide, ranging from wooden locks to concrete dams, many of 
which form associated impoundments to store water in small ponds or large reservoirs. Besides their 
benefits, there is growing recognition of important environmental and social trade-offs related to 
these artificial structures. However, global datasets describing their characteristics and geographical 
distribution are often biased towards particular regions or specific applications, such as hydropower 
dams affecting fish migration, and are thus not globally consistent. Here, we present a new river 
barrier and reservoir database developed by the Global Dam Watch (GDW) consortium that integrates, 
harmonizes, and augments existing global datasets to support large-scale analyses. Data curation 
involved extensive quality control processes to create a single, globally consistent data repository of 
instream barriers and reservoirs that are co-registered to a digital river network. Version 1.0 of the GDW 
database contains 41,145 barrier locations and 35,295 associated reservoir polygons representing a 
cumulative storage capacity of 7,420 km3 and an artificial terrestrial surface water area of 304,600 km2.

Background & Summary
Human societies have altered rivers for millennia. Across the world, barrier structures serving a wide variety 
of purposes have been built to store, divert, or regulate flows in order to either harness the benefits of water 
resources (e.g., water supply, irrigation, hydropower generation, navigation) or prevent harmful events (e.g., 
flood protection). However, the proliferation of instream barriers built over the past century is unprecedented. 
These barriers include a wide spectrum of types, sizes, and functional designs, ranging from regulation weirs on 
small creeks to shipping locks across some of the largest rivers in the world and tall concrete dams that can store 
multiple years’ worth of river flow in their associated reservoirs (see Table 1). While built to provide services to 
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humans, mostly related to economic growth and development, these structures can cause unintended and often 
complex ecological and societal consequences, ranging from modified aquatic habitats and natural flow regimes 
to human health implications1–5. Even when only considering the largest ~20,000 dams, the majority of large 
rivers worldwide are fragmented, with free-flowing rivers mostly confined to remote regions of the Arctic, the 
Amazon Basin, and, to a lesser extent, the Congo Basin6. The number of smaller barriers is much higher with 
more than 1 million barriers fragmenting Europe’s rivers alone7.

Given their importance, existing river barrier and reservoir datasets at full global extent (see Table 2) 
have facilitated a multitude of studies to assess the individual and cumulative effects of instream barriers and 
impounded waters on people, ecosystems, and river dynamics across the world (e.g., refs. 6,8–12). But despite 
many iterations of dataset improvements and the increased inclusion of novel remote sensing imagery and 
machine learning techniques, each of the existing datasets has its own challenges and limitations. These short-
comings are typically a reflection of the different goals, intentions, or data sources used in the dataset creation. 
For example, constraints may be due to a focus on large dams or certain types of dams only; records may be 
missing precise location information; and spatial coverage may be skewed due to data gaps in some regions and 
duplicates in others. In particular, all contemporary global datasets fail to capture smaller barriers on small- to 
mid-sized rivers, yet these can have outsized cumulative effects13–17. In addition, some of the datasets are not 
freely available for general use.

Overall, the lack of a consistent and regularly updated, fully georeferenced global dataset of river barriers and 
reservoirs is a major challenge for understanding the benefits, impacts and dependencies associated with these 
structures, tracking the status of river health at different spatial scales and over time, and measuring progress 
towards global social and environmental goals.

Notwithstanding the challenges outlined above, emerging regional and global efforts to catalogue instream 
barriers and reservoirs at enhanced spatial precision, completeness, and overall quality have made substantial 
progress in recent years. These efforts often rely on the inclusion of existing national datasets, which typically 
offer more comprehensive coverage of smaller barriers. For example, the Adaptive Management of Barriers 
in European Rivers (AMBER) dataset7 includes the location of 629,955 barriers across Europe; and the US 
National Inventory of Dams (NID)18 offers more than 90,000 point locations of dams for the United States. But 
the existence and maintenance of regional or national datasets is highly dependent on individual resources and 
priorities, and their use and distribution are often governed by restrictive licenses. Amalgamating these data to 
make them useful for global research is a complex and demanding task. Barriers and reservoirs differ in type and 
purpose, and the data used to represent them have typically been built following specific norms, often tailored to 
support institutional requirements rather than for general application. Simply merging existing regional datasets 
can thus introduce high uncertainties, major regional biases, and distortions in barrier density. As a particular 
problem, overlapping datasets can produce cascading duplicates of barriers in slightly different spatial locations; 
the resulting inflated numbers may have caused previous global assessments to overestimate the total amount of 
dams and their storage volumes. Therefore, researchers who need to blend multiple regional and global datasets 
to increase the coverage and accuracy of their results face time-consuming data harmonization tasks.

Advances in remote sensing technology and analyses seek to offer global coverage of river barriers and reser-
voirs down to ever smaller structures. For example, methods that classify land and water raster cells in millions 
of Landsat images over decades can detect changing waterbodies, such as reservoirs, on the Earth’s surface19–23. 
Combined with artificial intelligence and machine learning algorithms, this allows for certain aspects of the river 
barrier and reservoir identification process to be automated. However, methods to automatically detect small 
barriers without a reservoir, such as weirs and locks, across large spatial extents are more challenging, more prone 
to false positives and negatives, and are thus still being developed and refined for smaller extents (e.g., refs. 24,25).  
Moreover, a shift to entirely automated detection risks losing some important advantages of manual data 

Term General definition or usage

Barrier Used here as a catch-all term for infrastructure that sits across all or part of a river or stream bed, i.e., a longitudinal barrier.

Dam
A solid barrier that can be made of earth, wood, metal, rock, concrete, or a combination of materials that is built across a river to 
impound and manage its flow. Dams typically create reservoirs but can also be run-of-river structures. Many types of dams exist, 
including main dams that expand beyond the river into the adjacent floodplain, or subsidiary (saddle) dams constructed at low 
points along the perimeter of the reservoir. In some regions, the term dam is used interchangeably with reservoir.

Weir
A barrier built across the width of a river to alter the river’s flow characteristics. Other purposes of weirs can include sediment 
regulation and riverbed stabilization. Weirs generally allow water to flow over the crest, but they can cause temporary or limited 
ponding effects. These structures can also be referred to as low-head dams.

Barrage A barrier built in a river to divert water into a channel typically for navigation or irrigation purposes.

Lock A device used for raising and lowering boats and other watercraft between stretches of a river of differing levels. These structures 
typically only create small and temporary reservoirs.

Reservoir
Used here as a catch-all term for the artificial waterbody formed behind an instream barrier or through other means of storing water 
(such as by excavation or diversion into a depression). Reservoirs can range from small ponds to lake-size waterbodies and can be 
permanent or fluctuate in their water volume and extent. They may also include regulated lakes.

Impoundment Can be used synonymously with reservoir, but often refers to more specific types of impounded reservoirs such as tailings ponds, 
water-filled mining pits, or wastewater lagoons.

Regulated lake Natural lake whose water level can be regulated by some form of controlling structure. Its storage capacity typically refers only to the 
controlled part of the entire water volume. Examples include lakes Baikal, Victoria, and Superior.

Table 1.  Terminology for different types of river barriers and reservoirs as commonly used, including in this 
study. Adapted and expanded from Belletti et al.7 and Garcia de Leaniz & O’Hanley47. Terms and definitions are 
not meant to be mutually exclusive and may have varying regional interpretations.
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collection and curation—including the documentation of key attribute information like dam name, purpose, 
designed storage volume, and construction year. The storage volume can, in some cases, be inferred using auxil-
iary information such as digital elevation models developed prior to dam construction or during different filling 
stages, yet remains challenging to ascertain for older reservoirs with little water level fluctuation. As a proxy for 
the construction year, the filling year of relatively recent reservoirs can be derived through automated methods 
that detect the onset of surface water appearances in remote sensing imagery (see Methods), but these estimation 
approaches cannot be applied for the majority of global barriers and reservoirs that were built before satellite 
data became available (~1980s).

The Global Dam Watch (GDW) initiative (https://www.globaldamwatch.org) has made it its mandate to 
address some of these challenges as a global consortium of academic institutions and non-government organiza-
tions with an interest to study dams and reservoirs (of all sizes and types) and their role within land and freshwa-
ter systems. As part of their goals, GDW aims to create and maintain the world’s most comprehensive and freely 
available global river barrier and reservoir repository, including associated analysis tools26. This aspiration is 
implemented by consolidating, harmonizing, and curating existing barrier and reservoir datasets, and their aug-
mentation with missing structures and specific information on barrier and reservoir attributes. The globally con-
sistent database described in this paper, hereon termed the GDW database (or GDW v1.0), is intended to serve 
as a foundational platform on which subsequent efforts can be built, in particular as new instream structures are 
automatically detected through time-series analyses of remote sensing imagery or machine learning techniques.

Several existing global datasets which were built using a variety of methods, from compiling repositories to 
remote sensing, machine learning and citizen science, were combined, cleaned, and harmonized, and new data  
were added (see Methods and Tables 2 and 4 for details). During various steps of data consolidation and cura-
tion, extensive manual inspections were carried out, and a variety of quality control techniques (see Methods  
and Technical Validation) were applied to detect potential errors or issues in the provided data, including incon-
sistencies in location, attribute information, or potential duplicate records. The locations of all river barriers and 
reservoirs were verified through manual or supervised automated processes, and the data records were updated 
and/or newly georeferenced as needed. This manual curation process was guided by a variety of online digital 
mapping resources, including Google Earth, ESRI Basemaps, and Bing maps.

The long-term goal of the GDW database is to encompass all types and sizes of anthropogenic instream 
barriers across rivers and their associated reservoirs. However, the initial mapping efforts of version 1.0, as 

Dataset name
and reference Number and type of records Focus Number/type of attributes Versioning and license

World Register of Dams (WRD)
ICOLD45 58,713 dams* Dams >15 m high, or 3–15 m with  

a reservoir greater than 0.03 km3
>40 attributes, incl. height, 
purpose, year, volume

Annual updates
Paid subscription fee

FAO AQUASTAT Database on Dams
FAO48 >14,000 dams Medium to large dams; records 

were partially included in GRanD
>25 attributes, incl. height, 
purpose, year, volume

Last update in 2014
Free (non-commercial)

GRanD (v1.4)
Lehner et al.27

7,424 dams
7,378 reservoirs

Large reservoirs (volume ≥0.1 km3) 
and their dams, incl. attributes

>50 attributes, incl. height, 
purpose, year, volume, discharge

Sporadic updates
Free (non-commercial)

GOODD
Mulligan et al.33 38,667 dams Medium to large dams >150 m long 

and with reservoirs >500 m long
Only the point locations of 
barriers are provided

Sporadic updates
Free (non-commercial)

GROD (v1.1)
Yang et al.34 30,549 barriers Multiple types of barriers on rivers 

wider than 30 m
Barrier class, incl. dam, lock, 
low-head dam

No updates pending
Free (CC BY 4.0)

FHRED
Zarfl et al.35 >3,700 dams Proposed hydropower dams with 

nominal capacity ≥1 MW
River name, nominal capacity 
(MW), proposed year

Sporadic updates
Free (non-commercial)

GeoDAR (v1.1)
Wang et al.46

24,783 dams
21,515 reservoirs

Georeferenced location of dams 
from WRD and their reservoirs

Attributes from GRanD (v1.3) 
included, from WRD excluded

Sporadic updates
Free (CC BY 4.0)

Global Water Watch (GWW)
Donchyts et al.49 71,208 reservoirs†

Reservoirs ≥10 ha derived  
from multi-annual multi-sensor  
satellite data

Surface water area changes, as a 
proxy for storage dynamics

Regular updates
Free (CC BY 4.0)

Global Dam Tracker (GDAT)
Zhang & Gu39 >31,780 dams‡

Global dam locations, their 
catchment areas, and other 
attributes

Multiple attributes, incl. height, 
purpose, year, installed capacity

Unknown updates
CC BY-NC-ND 4.0 
(non-commercial,  
no derivatives)

Open Street Map
www.openstreetmap.org

>50,000 dams
>35,000 reservoirs

Free cartographic database incl. 
tagged dam & reservoir features Dam/reservoir name Continuous updates

Free (ODbL 1.0)

IHA database
IHA50 >13,000 dam locations

Database of hydropower dams  
and their hydropower capacities  
in >150 countries

Unknown (not publicly available) Unknown updates
Not publicly available

GDW database
(this paper)

41,145 barriers 35,295 
reservoirs

Multiple types of barriers with 
and without associated reservoirs

>50 attributes, incl. height, 
purpose, year, volume, discharge

Regular updates
Free (CC BY 4.0)

Table 2.  Contemporary, fully global river barrier and reservoir datasets, including the GDW database, and 
their main characteristics. Dams refer to generally larger river barriers. Underlined datasets were included in 
the creation of the GDW database (for more detailed information on them see Table 4). For the meaning of 
abbreviated dataset names, if not provided here, see the respective references. *ICOLD catalogues coordinates 
of dams but releases only unreferenced images for some dams showing their location on Google Maps. †Some 
reservoirs are formed by multi-polygons; and some polygons represent buffered outlines of reservoirs. ‡In total, 
the database includes >35,000 dams, but only 31,780 were georeferenced.
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presented here, prioritize larger dams that form reservoirs, as well as run-of-river barriers on larger rivers, for 
which more initial information was available in well-established global sources. We intentionally refrained from 
including more detailed national or regional datasets of barrier locations to avoid issues of spatial bias and to 
provide a database that is as consistent as possible across space to support global and transboundary analyses. 
It should be noted that the GDW database, despite its design as a consensus product, is not aiming to supersede 
any existing global, regional, or national barrier or reservoir datasets, nor to make them obsolete, as each of 
them has their own particular focus, characteristics, and purpose, which the generic design of the GDW data-
base cannot encompass. The one exception to this is the Global Reservoir and Dam (GRanD) database27, which 
is fully embodied in the GDW database and will therefore be discontinued.

Version 1.0 of the GDW database contains point locations of 41,145 river barriers and 35,295 polygons rep-
resenting their associated reservoirs (Fig. 1). It offers a wide range of barrier and reservoir attribute information, 
where available, and is connected to the global river network of the HydroSHEDS28 and RiverATLAS29 databases 
to allow for topological up- and downstream analyses and enrichment with preprocessed hydro-environmental 
attributes for each feature, including estimates of upstream catchment areas and discharge. GDW v1.0 is distrib-
uted under a free CC BY license.

Figure 2 shows a) the latitudinal distribution of river barriers and reservoirs in GDW v1.0 with respect to 
their number, surface area, and storage capacity; b) a breakdown of the total storage volume per continent and 
per primary reservoir purpose; and c) a timeline of construction. In total, the GDW v1.0 database contains res-
ervoirs with a cumulative storage capacity of 7,420 km3 which add a combined surface area of 304,600 km2 to the 
global inland water extent (Table 3), thus artificially expanding the global lake storage volume by about 4% and 
the global lake surface area by about 11%30. While most barriers and reservoirs have been built between 25 and 
50 degrees north (Fig. 2a), including most of the United States, Europe, and China, the largest storage volumes 
and surface areas are reached even further north, mostly due to very large structures in Canada, Scandinavia, 
and Russia. Storage quantities are dominated by hydropower reservoirs across all continents, followed by dif-
ferent other purposes regionally, such as flood control in North America and irrigation in Africa and Europe, 
with unknown reservoir types contributing substantial uncertainties, in particular in Asia (Fig. 2b). The median 
residence time of all reservoirs (i.e., storage capacity divided by discharge) is 1.1 years, indicating that about half 
of the reservoirs are capable of storing the incoming flows that they receive in an entire year. The acceleration of 
dam construction (by number) after around 1985 (Fig. 2c) may be caused, in part, by the methods applied here 
to estimate construction years for reservoirs monitored by remote sensing information (i.e., after 1984). The 
concurrent decline in the rate of reservoir volume and area expansions, in contrast, suggests an actual slowdown 
in the construction of very large reservoirs. The plateauing of all curves around 2015 is likely due to incomplete 
records of the most recent reservoirs in GDW v1.0.

Table 3 provides a summary of global reservoir statistics by reservoir size category, including an extrapolation 
to smaller reservoirs using a Pareto distribution model (see Methods for details). While the Pareto model cor-
roborates the assumption that the GDW database is comprehensive for reservoirs larger than 10 km2 in surface 
area, records for smaller reservoirs are increasingly incomplete. Using the extrapolation from the Pareto model, 
we estimate that there are a total of 4.4 million reservoirs worldwide exceeding 0.1 ha (0.001 km2) in surface 

Fig. 1  Global distribution of river barriers and reservoirs in the GDW v1.0 database. Points with reservoir 
capacities <1 km3 include river barriers that do not create a storage reservoir.
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area, providing a combined artificial water extent of 365,910 km2 (excluding regulated lakes) and a total storage 
volume of 8,110 km3. The missing reservoirs would thus expand the recorded surface area of the GDW database 
by ~61,000 km2 and its storage volume by ~700 km3. When applying an even lower size threshold of 0.01 ha, the 
number of artificial reservoirs and ponds may exceed 27 million worldwide, adding another 6,500 km2 in sur-
face area and 60 km3 in storage volume. Despite high uncertainties in these extrapolations, they are in general 
accordance with independent studies that estimated about 2.9 million small reservoirs (0.0003 to 0.1 km2) in 
semi-arid regions of the world alone31, and about 1.8 million farm dams (0.0001-0.1 km2) in Australia32.

Methods
Overview.  The foundational river barrier and reservoir database introduced here, GDW version 1.0, has been 
assembled by first combining the barrier and reservoir information from several complementary global source data-
sets: the GlObal GeOreferenced Database of Dams (GOODD)33; the Global Reservoir and Dam Database (GRanD)27, 
and the Global River Obstruction Database (GROD)34. Barrier and reservoir locations from these datasets were 
supplemented by the geographic coordinates of recently completed hydropower dams extracted from the Future 
Hydropower Reservoir and Dam database (FHReD)35. Reservoir polygons, where applicable, were derived from 
the existing GRanD reservoir dataset, the global HydroLAKES30 dataset, and from the remote sensing products of 
the Global Surface Water Explorer from the European Commission’s Joint Research Centre (JRC-GSW)19. As such, 
the GDW v1.0 database is an amalgamation of four point-based geospatial datasets (GOODD, GRanD, GROD, and 
FHReD), two polygon-based geospatial datasets (GRanD and HydroLAKES), and a new set of polygons and associ-
ated barrier points derived from one raster-based dataset (JRC-GSW). These data and their origins are fully described 
in their respective publications; an overview of their main characteristics is provided in Tables 2 and 4, and the meth-
ods by which they have been harmonized are described below and in Fig. 3. Other existing global data products (see 

Fig. 2  Spatial and temporal distribution of global river barriers and reservoirs. (a) Latitudinal distribution of river 
barriers and their associated reservoirs in the GDW v1.0 database; values were calculated in 5-degree latitudinal bins 
and drawn with smoothed lines. Grey shaded area represents distribution of global land area for reference. (b) Total 
storage capacity of all reservoirs in GDW v1.0 database by continent, indicated by their respective wedge sizes, and 
by primary reservoir purpose per continent, including ‘other’ and ‘unknown’ (based on main purpose, see Table 5 
for more details on purpose types). (c) Timeline of cumulative number of river barriers and their associated total 
reservoir surface area and storage capacity; graphs represent only those 15,230 records (37% of entire database) 
which have a construction year, yet they cover 92% and 91% of surface area and storage capacity, respectively.
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Table 2) were omitted at this stage in order to avoid licensing issues (WRD) or partial duplication of records (GeoDAR, 
GWW, GDAT); instead, they served for validation purposes and may be integrated at a later stage as licenses permit.

Our main approach in combining the different datasets was to include the unique barrier and reservoir 
records of each source dataset while removing duplicate records across datasets. The workflow was designed 
to include some automated—yet supervised—steps of data amalgamation, and to visually inspect all cases of 
ambiguity. This approach also allowed for error detection and correction if multiple datasets showed different 
interpretations of the same barrier or reservoir objects (e.g., differing locations for a given barrier, or reservoir 
polygons with different shapes). To avoid areal overestimation, multiple overlapping reservoir polygons were not 
dissolved into one, but only one representative polygon was selected. To streamline the removal of duplicates 
and to guide the selection of representative polygons, the input datasets were prioritized and the feature from the 
most reliable source was chosen unless there was evidence to the contrary. GRanD (version 1.4) was selected as 
the highest order dataset, because it was the only dataset containing both point and associated polygon features, 
and it provided the largest number of attributes (which also increased its reliability due to inherent plausibility 
testing); as such, it was fully included in the GDW database. GOODD, with the largest number of dam and 
barrier points among the source datasets and with a focus on dams that form visible reservoirs, was prioritized 
second, followed by GROD, which was mostly used to add barriers that do not create well-defined reservoirs 
(i.e., weirs, locks, barrages). The global lake polygon database of HydroLAKES and the satellite-based JRC-GSW 
dataset were used to extract or create new reservoir polygons; in turn, polygons from JRC-GSW were also used 
to infer new barrier locations that were missing in the other data sources. Finally, the FHReD dataset contrib-
uted a small number of barrier points representing mostly run-of-river and newly built hydropower dams.

To enrich the attribute information and extend its versatility for subsequent applications, the GDW database 
has been co-registered to the global hydrographic databases of HydroSHEDS and RiverATLAS by allocating 
each barrier and its associated reservoir to a raster cell of the HydroSHEDS drainage direction map at a cell reso-
lution of 15 arc-seconds (~500 m at the equator). HydroSHEDS is a mapping product that provides global-scale 
geospatial data on river networks and their associated catchments in a consistent format28,36. RiverATLAS is a 
postprocessed extraction of the global river network from HydroSHEDS representing all river reaches with a 
drainage area ≥10 km2 or a long-term mean discharge ≥0.1 m3 s−1, or both29. Each river reach is augmented by 
more than 50 hydro-environmental characteristics, including discharge estimates and catchment attributes. The 
GDW database has also been fully integrated into the global HydroLAKES dataset (version 1.1), i.e., each GDW 
reservoir is part of HydroLAKES, to avoid duplication or misalignment of lake outlines. The co-registration 
of the river barrier and reservoir information with the global river and lake network products enables the 

Table 3.  Global totals of the number, surface area, and storage volume of reservoirs by size category. Results 
are shown for all records in the GDW v1.0 database that have both area and volume information (excluding 
reservoirs that have been replaced, removed, subsumed, or destroyed), as well as extrapolated using a Pareto 
distribution model. Combined totals are derived by summing values from the GDW database for reservoirs 
≥10 km2 and from the Pareto model for smaller size categories (dashed boxes). In the Pareto model, total area 
is derived by multiplying the number of reservoirs with the average area per category; total volume is derived 
using Eq. 2 (see Methods) to estimate the volume of the average reservoir per category and then multiplying by 
the number of reservoirs. For details on the Pareto model see Methods. aIncluding surface areas of regulated 
lakes. bExcluding surface areas of regulated lakes.
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derivation of attributes such as catchment characteristics for each barrier and reservoir in the GDW database, 
facilitates the calculation of flow connections between the geographic features, and supports hydrologic mode-
ling applications and the assessment of up- and downstream effects due to the instream structures.

The following sections explain the construction of the GDW database in more detail. However, as the often 
complex, multi-step data harmonization and fusion procedures involve information from across many “parent” 
datasets, reporting on every individual data manipulation step is challenging. Thus, the explanations aim to 
strike a reasonable balance in describing all key steps while avoiding excessive detail. Some additional informa-
tion, such as a quantification of the different polygon sources, can be found in the Technical Documentation that 
accompanies the GDW database.

Main data sources.  The development of version 1.0 of the GDW database is primarily aimed at compiling 
available global barrier, dam, and reservoir information; harmonizing and curating it through both (supervised) 
automated and manual cross-validation, error checking, and identification of duplicate records, attribute con-
flicts, or mismatches; and augmenting missing information from a multitude of sources or statistical approaches. 
Table 4 describes the main input datasets used in this process. While the extent of all these data repositories 
is fully global, they show different characteristics regarding their content, comprehensiveness, and the type of 
attributes they provide. Differences are mostly due to the objectives of each dataset and the underpinning sources 
used to assemble them. For example, many of the sources for the GRanD database used a height threshold of 15 m 
for dams in their original collections, introducing a bias in the initial selection towards higher and larger dams.

All barriers and dams were geospatially referenced as point coordinates and co-registered to the global river net-
work of HydroSHEDS and RiverATLAS (for more details see Co-registration to a global river network below). Where 
possible, the barrier/dam records were also associated with reservoir polygons. If no polygons existed in the respec-
tive input datasets, reservoir outlines were either sourced from the global HydroLAKES dataset or derived from 
the surface water extent maps of the JRC-GSW dataset (see Provision and creation of new reservoir polygons below).

While the GDW database aims to include all types of anthropogenic instream barriers, mapping efforts for ver-
sion 1.0 prioritized major dams that form larger reservoirs, as well as instream barriers on larger rivers, for which 

Dataset name
and reference Data characteristics or main purpose in creation of GDW database

Contributed objects and 
attributes

Number of contributed 
records*

GOODD (GlObal geOreferenced 
Database of Dams)
Mulligan et al.33

Locations of medium to large dams that are visible on satellite imagery (dams 
≥150 m long and with a reservoir ≥500 m long). River barriers were digitized 
by visually inspecting 1° x 1° tiles on Google Earth. Most records were compiled 
between 2007 and 2011 with additional updates in 2016. Most barriers contained 
in GOODD are associated with a reservoir, as barriers without reservoirs are more 
difficult to positively identify in low-resolution satellite imagery.

Barrier points 25,931

GRanD (Global Reservoir  
and Dam database) v1.4
Lehner et al.27

Large dams and reservoirs (≥0.1 km3); compiled from freely available data, 
peer-reviewed and grey literature, internet; manual inspection and validation of 
all records; extensive attribute information. In parallel to the creation of the GDW 
database, new river barriers, reservoirs, and attributes were added to the latest 
version 1.4 of GRanD, some errors were corrected, and new polygons were derived 
from JRC-GSW surface water data19. More details on updates can be found in the 
Technical Documentation of version 1.351.

Barrier points and 
reservoir polygons; 
multiple attributes incl. 
name, year, height, 
purpose, reservoir volume

7,424

FHReD (Future Hydropower 
Reservoirs and Dams database)
Zarfl et al.35

Hydropower dams ≥1 MW; compiled from freely available data, peer-reviewed 
and grey literature, internet; manual inspection and validation of all records. The 
original dataset focused on planned projects, from which those that were completed 
by 2022 were selected and transferred to the GDW database. Details of a review 
carried out in 2018 that identified ~400 planned hydropower projects that had 
subsequently been built can be found in Zarfl et al.52.

Barrier points; 
hydropower capacity,  
year of construction

205

JRC-GSW (Global Surface Water 
Explorer of European Commission’s 
Joint Research Centre)
Pekel et al.19

Time series of surface water extents of reservoirs, mapped at a resolution of 30 m, 
derived from Landsat imagery. The Maximum Water Extent map of the JRC-GSW 
dataset was used to delineate reservoir polygons at known barrier locations. Also, 
new reservoirs that appeared after 1984 were automatically extracted by employing 
advanced big-data mining techniques and analyzing spatiotemporal dynamics 
derived from the JRC-GSW time series data.

Reservoir polygons; some 
years of construction 
inferred from time series 
of satellite imagery

1,451 newly detected 
reservoirs (and source of 
14,015 polygons for other 
known barrier points)

GROD (Global River Obstruction 
Database)
Yang et al.34

Instream barriers on rivers wider than 30 m at mean annual discharge, mapped 
through manual detection from remote sensing imagery. River barriers were 
digitized by visually inspecting satellite imagery at sub-meter spatial resolution 
against imagery of rivers identified in the Global River Widths from Landsat 
(GRWL) database53. Barriers were classified into most likely categories (incl. dams, 
locks, and other barrier types).

Barrier points; barrier type 6,113

HydroLAKES
Messager et al.30

Polygon outlines for all lakes globally with a surface area ≥10 ha; these polygons 
were used as reservoir outlines if a barrier/dam (from GOODD, FHReD or GROD) 
was associated with them. The HydroLAKES database was created by compiling, 
correcting, and unifying several near-global and regional lake datasets.

Reservoir polygons  
and barrier points  
(lake outlets)

No new records (but 
source of 13,854 polygons 
for known barrier points)

HydroSHEDS and RiverATLAS
Lehner et al.28; Linke et al.29

Global digital river network to which the barrier/dam locations were co-registered 
and from which some hydrometric attributes were derived. The river network 
represents all streams with a drainage area ≥10 km2 or a long-term mean discharge 
≥0.1 m3 s−1, or both29 and was extracted from a gridded drainage direction map at 
15 arc-second (~500 m at the equator) resolution.

Catchment area, long-term 
mean discharge, degree of 
regulation

No new records (but 
source of attributes for all 
records)

Table 4.  Global data sources used in the development of the GDW v1.0 database and their characteristics. It 
should be noted that these collections, in turn, used underpinning information from a much wider range of 
sources which can be found in their respective reference papers. *For original number of available records per 
dataset see Table 2; it is reduced here due to removal of duplicates.
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more information was available. This focus on ‘larger’ structures was already inherent in the source datasets used 
in the compilation of the GDW database. For example, the intent of the GRanD database was to include all reser-
voirs with a storage capacity of more than 0.1 km3; the GOODD database mapped medium to large dams visible 
in publicly accessible remote sensing imagery; FHReD focused exclusively on proposed hydropower dams with a 
hydropower capacity exceeding 1 MW; and GROD mapped river barriers for rivers wider than 30 meters.

Provision and creation of new reservoir polygons.  Reservoir polygons provide detailed information on 
the spatial extent of the reservoir that can be incorporated into modelling studies and can be used to statistically 
generate attribute information (e.g., reservoir volume) where none is reported. As GRanD v1.4 was the only data-
set to natively provide reservoir polygons, additional candidate polygons needed to be created for barrier points 
that originated from the remaining datasets (see Fig. 3 for an overview). Candidate reservoir polygons were either 
copied from the existing HydroLAKES dataset or created from scratch using the global surface water layers of the 
JRC-GSW dataset (Fig. 4 outlines the process for the example of GOODD points). Choices were made between 
the two polygon source datasets based on characteristics of reliability and appropriateness: HydroLAKES was con-
sidered the more reliable source for reservoirs that are located on the stream network of RiverATLAS as the “lake” 
polygon has already been separated from the adjoining river course, a distinction that is not inherent in the surface 
water representation of the JRC-GSW dataset. On the other hand, reservoir outlines are typically subject to strong 
seasonal fluctuations due to variations in water levels; and because many polygons included in HydroLAKES are 
originally delineated from static remote sensing imagery taken in February 2000 (i.e., a snapshot in time), they may 
reflect a low-fill or dry-season state with significantly smaller-than-maximum area30. For that reason, off-stream 
reservoirs were preferentially sourced from the long-term (1984 to present) JRC-GSW dataset.

Following this prioritization, existing “lake” polygons from HydroLAKES were selected to become reservoir 
polygons in the GDW database if a barrier point was located inside the polygon or if they were the closest polygon 
to a barrier point within a distance of 1 km; only barriers that coincided with a river reach of the RiverATLAS data-
set were considered in this selection (Fig. 4). For all remaining barriers without a polygon, new candidate polygons 
were produced from the JRC-GSW data product which is based on Landsat imagery at 30-m resolution for the time 
period 1984 to present19. First, all JRC-GSW raster cells representing the maximum surface extent of inland waters 
(from 1984 to 2022) were extracted within a 20-km radius of each remaining barrier point. This radius was chosen 
to include most of the surface area of nearby large reservoirs which can sometimes span many kilometers in length, 
with the understanding that a 20-km radius may also detect multiple unrelated waterbodies. Before vectorization, 
the JRC-GSW raster maps were modified with boundary cleaning filters to consolidate connected water surfaces 
and to reduce noise at reservoir edges (where the uncertainties in water classification algorithms are highest)23,37. 
The preprocessed surface water raster was then converted to polygons and postprocessed using a smoothing algo-
rithm to slightly generalize the rasterized shorelines (i.e., to avoid sharp angles resulting from pixel edges). This 
procedure resulted in discrete waterbodies for the entire analyzed area (i.e., within 20 km of a barrier point). All 
islands smaller than 3 ha (0.03 km2) within a candidate reservoir polygon were dissolved into the water surface.

After the JRC-GSW candidate reservoir shorelines were created, the polygons and their associated barrier 
points were manually inspected and only those polygons that corresponded to a visible barrier were selected. In 
this consolidation process, barriers were validated and manual corrections to the reservoir polygons were applied 
by comparing them to ESRI Basemaps, Google maps, Yandex maps, Mapbox, JRC-GSW Occurrence Change 
Intensity maps, NASA Worldview imagery, and any auxiliary documents pertaining to each barrier and reservoir. 

Fig. 3  Flow diagram of the main methodological steps involved in creating, augmenting, and combining data 
for the creation of the GDW v1.0 database. See main text and Fig. 4 for more details. Data sources, including 
HydroLAKES, JRC-GSW, and RiverATLAS are described in Tables 2 and 4 and in the main text.
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In particular, adjustments were made, mostly by visual image interpretation, to isolate the reservoir from inflowing 
rivers, or to merge multiple pools which were falsely separated by a bridge or due to a narrow channel.

Furthermore, after employing advanced big data mining techniques and analyzing the spatiotemporal 
dynamics of surface waterbodies from the JRC-GSW time series data, a total of 1,451 new reservoirs filled after 
1984 were identified (Fig. 3). The corresponding reservoir surfaces were extracted and vectorized into poly-
gons. To achieve this, a growing-region algorithm, based on JRC-GSW layers and elevation data, was applied to 
delineate the maximum water extent associated with each of the reservoirs. New barrier points were created and 
associated with these reservoirs as described in the following section.

In a postprocessing step, the new reservoir polygons derived from the JRC-GSW dataset were checked for 
potential overlaps with the existing HydroLAKES dataset (Fig. 4). Necessary adjustments and corrections were 
made to remove any overlaps, either by deleting the overlapping HydroLAKES polygon or by modifying the respec-
tive shorelines. This step also informed the creation of a new version 1.1 of the HydroLAKES dataset which is fully 
compatible with the GDW database. Finally, for a few exceptions (n = 48), missing reservoir polygons were manu-
ally digitized using alternative sources, e.g., if new constructions existed but were not yet visible on satellite imagery.

Pairing of corresponding barrier (point) and reservoir (polygon) objects.  Where possible, the 
GDW database provides paired barrier (point) and reservoir (polygon) objects which are linked via unique bar-
rier/reservoir IDs. In a first step, the new reservoir polygons derived from the HydroLAKES or JRC-GSW datasets 
(see above) were paired with their respective barriers. In this step, corresponding polygons were either identified 
through a semi-automated ‘spatial join’ procedure (i.e., associated to barrier points that fell inside or were within 
a distance of 1 km from an existing candidate polygon), or by manual allocations of candidate polygons that were 
in close vicinity (1–5 km) of barrier locations. The two largest sets of semi-automated allocations were formed 
by associating a total of 13,201 GOODD points with lake polygons of HydroLAKES, and 13,151 GOODD points 
with polygons created from JRC-GSW data. For a validation of this procedure, including manual inspections and 
some corrections, see section Technical Validation below.

Remaining barrier points that could not be associated with a reservoir in any of the polygon datasets, 
yet showed a discernable barrier structure in reference remote sensing imagery, were annotated as having  
‘no polygon’ in the point version of the GDW database, and no associated reservoir record exists in the polygon  
version. These barriers, representing mostly records from the GROD dataset, may include types that do  
not create obvious reservoirs, such as locks and weirs, or in some cases depict barriers with reservoirs that have 
not yet been filled.

In a second consolidation step, each paired reservoir was associated with a final representative barrier location, 
which involved replacing or adjusting some of the original point coordinates. For records derived from the GRanD 
database, the barrier location already existed in the original source data. For reservoir polygons added from the 
HydroLAKES dataset, the original barrier locations could be located anywhere within the polygon or within a 
distance of 1 km. To introduce consistency with the HydroLAKES data format, the original barrier locations were 
replaced by the existing outlet points of the HydroLAKES polygons to serve as a representative barrier location. 
For newly created polygons from the JRC-GSW data (or from exceptional manual digitization), the final barrier 
locations were derived as the raster cell (at 15 arc-second resolution) with the highest upstream flow accumulation 
within the reservoir polygon according to the HydroSHEDS drainage maps28. Like in GRanD and HydroLAKES, 
this procedure assumes that this raster cell is the main river fallout which can serve as a proxy for the barrier 
location. All barrier points were placed inside the intersection between the respective reservoir polygon and the 
selected raster cell. Except for very small reservoir polygons, the point was typically placed at least 80 m from the 
polygon boundary to ensure it will remain inside the polygon even if the data were to be reprojected. Some addi-
tional exceptions and corrections were applied during manual inspections. Note that in instances where multiple 
barrier points were associated with a single reservoir polygon, only one point was maintained to represent the 

Fig. 4  Example of reservoir creation and pairing process using barrier points from the GOODD dataset. For the 
JRC-GSW grid, the Maximum Water Extent map of the dataset was used. See main text for more details.
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‘main’ barrier and information on secondary dam structures on the same reservoir was stored in the attribute table 
(these cases are further described in columns ‘Multi_dams’ and ‘Comments’ in Table 5).

As a result of this processing workflow, each record in the GDW database—as identified by a unique ID—
typically represents a paired ‘barrier-and-reservoir object’ which is defined by both a point location and a poly-
gon outline. The point represents the location of the barrier or dam, or the ‘main’ dam in case of multiple barriers 
forming a single reservoir. Furthermore, barrier objects can also be defined by a point only, representing an 
independent barrier or dam without a ‘traditional’ reservoir, including run-of-river hydropower stations, navi-
gation locks, diversion barrages, check dams that only briefly create storage reservoirs during flood events, weirs 
and other instream control barriers, or dams under construction that do not yet have a filled reservoir.

Identification and removal of duplicates.  Linking the original records of all source datasets to the same 
polygon features introduced a clear relationship between reservoirs and their associated barrier(s), which sup-
ported the identification and elimination of duplicate barriers. If dam or barrier points from multiple source data-
sets were associated with the same reservoir polygon, they were considered duplicates and only one consolidated 
record was kept in the GDW database. Where information existed that multiple dams are correctly associated 
with one reservoir (such as a main dam plus saddle dams), the main dam was kept as a point location and infor-
mation about the additional dam structures was recorded in the attribute table.

For barrier and dam locations without reservoirs, duplicates were harder to detect. In iterative, semi-automated 
detection procedures, point locations were assigned the distance to their nearest neighboring point. Similar to the 
variable duplication exclusion radii applied by Belletti et al.7, all points closer than 2 km from another point or 
reservoir polygon were flagged and manually inspected as to whether they resembled the same object.

Co-registration to a global river network.  To enable follow-on assessments that require river network 
topology, such as up- and downstream analyses, each barrier was co-registered to the global digital river network of 
the HydroSHEDS28 and the related RiverATLAS29 databases. We chose this river network over others as it is widely 
used38 and its associated datasets provide a rich set of hydro-environmental attributes that can be utilized to derive 
barrier and reservoir characteristics. For all records represented by a barrier only (i.e., without an associated reser-
voir), the points were manually allocated to the nearest ‘topologically correct’ raster cell in the HydroSHEDS drain-
age map at a resolution of 15 arc-seconds (~500 m at the equator). In other words, each barrier was moved to the 
respective river mainstem or tributary cell that it is located on. This process was guided by remote sensing imagery 
(mostly Google Earth, ESRI Basemaps, and Bing maps). For records with a reservoir polygon, the reservoir’s outlet 
point was used as a proxy for its barrier location (see Pairing of corresponding barrier and reservoir objects above), 
which by default is located inside the raster cell that represents the main river draining the reservoir.

As the RiverATLAS dataset is directly extracted from the HydroSHEDS drainage network, the co-registered 
barrier locations also correspond to the river segments of RiverATLAS, thus facilitating a direct transfer of the 
hydro-environmental information offered in this dataset. It is critical to note, however, that the original allo-
cation of barrier points to raster cells (rather than to line segments) enables the distinction of barriers that are 
not located on a mapped stream segment (see Table 4 for mapping thresholds used in the stream delineation 
of RiverATLAS) but instead are situated in a cell that represents a minor tributary or an off-stream location. This 
detailed information is essential for river network analyses and provides an important advantage over automated 
“snapping” approaches, such as applied in the GDAT database39, which can falsely co-register barriers that in 
reality are located on minor tributaries to the nearest mapped and therefore larger river, potentially causing 
incorrect catchment considerations and an erroneous overestimation of river fragmentation issues.

Although visual inspections showed good spatial correspondence between the barrier points, reservoir polygons,  
and the river network of HydroSHEDS and RiverATLAS, spatial offsets and uncertainties in the range of 500 m 
are inherent in the river delineations due to the applied raster cell resolution. Therefore, the representative bar-
rier location on the river network is only an approximation of the true dam location. For the 6,113 barrier loca-
tions sourced from the GROD dataset, which is considered the most spatially accurate barrier dataset used here, 
the coordinates of both the original barrier location and the representative location on the river network were 
recorded in the attribute table.

Derivation of general barrier/dam and reservoir attribute information.  During the creation of the 
GDW database, we aimed to identify and utilize all reliable sources of attribute information available. As a foun-
dational step, the broad range of dam and reservoir information from the GRanD database was fully transferred. 
Other source datasets offered only specific information, such as hydropower capacity in the FHReD dataset. 
Where available, reported information from these sources was integrated into the GDW database. Additional 
attributes were inserted from alternative sources, including regional and national datasets (see attribute column 
‘URL’ in the GDW database for links to such sources, as well as https://www.globaldamwatch.org/directory for a 
range of national and regional datasets that we drew from). For instance, available dam and reservoir character-
istics were added from the US National Inventory of Dams (NID)18 through a spatial join to the nearest reservoir 
polygon (up to a distance limit of 500 m).

Furthermore, the linkage of the GDW records with the RiverATLAS dataset29 allowed for the derivation of 
additional attributes, in particular catchment area and long-term mean discharge. The discharge values provided 
by RiverATLAS are based on downscaled runoff estimates from the global hydrological model WaterGAP40 for 
the period 1971–2000 and were also used to calculate the ‘Degree of Regulation (DOR)’ index for every reservoir 
(see Table 5). Elevation values in the GDW database were derived from the EarthEnv-DEM90 digital elevation 
model41 which was also used in HydroLAKES.
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Estimating missing reservoir volumes.  During the development of the GDW database, two regression 
models were derived and applied to complete missing information on reservoir volumes, following the approach 
by Lehner et al.27:

·V 0 553(A h) (1)0 941= . .

= . .V 15 662A (2)1 059

where V = storage volume of the reservoir in 106 m3, A = surface area of the reservoir in km2, and h = dam height 
in m.

Both equations were determined through a bias-corrected power law regression analysis of 7,348 reservoirs 
worldwide contained in the GDW v1.0 database which were selected based on data reliability using the following 
criteria: each record showed a reported reservoir volume, a reported dam height, and a calculated surface area from 
the associated reservoir polygon; the calculated mean depth of each reservoir (reported volume divided by poly-
gon area) was less than the reported dam height and more than 1 m (to exclude potential lake control structures); 
and the quality of the record was reported as ‘Fair’ or better. Four additional records in GDW v1.0 matched these 
requirements but were dismissed as clear outliers after inspecting the regression scatter plots (three of these records 
represented an extremely large but shallow reservoir, and one had an exceptionally high dam wall). Equation 1 was 
used to estimate the missing storage volumes of 89 reservoirs for which both area and dam height were available 
(R2 = 0.95 for reservoirs used in the determination of the equation’s parameter settings); Eq. 2 was used to estimate 
the missing storage volumes of 25,504 reservoirs for which only the surface area was available (R2 = 0.82); see Fig. 5 
for a scatterplot of both regression models. The statistical volume estimation approach was chosen over alternative 
methods, such as using remotely sensed surface water dynamics in combination with satellite altimetry (e.g., ref. 42), 
as it can be consistently applied for all reservoirs requiring only a surface area record. We anticipate that alternative 
volume estimates will be added, where available, in future versions of the GDW database.

It should be noted that Eqs. 1 and 2 were derived by relating reported storage capacities to measured polygon 
areas. As the polygons in many cases depict a status below full capacity, the equations may not be appropriate to 
estimate capacities from maximum reported areas. In instances where natural lakes are regulated by dams, such 
as Africa’s Lake Victoria, reported reservoir storage volumes were used; if absent, volumes were estimated from 
reported regulated lake depth, or by assuming a 1 m depth otherwise (such estimates were only made for 72 records).

Extrapolating the number and size distribution of smaller reservoirs.  To estimate the number, 
surface area, and storage volume of smaller reservoirs that are not recorded in the GDW database, we conducted 
a statistical assessment following the approach proposed by Downing et al.43 and applied in Lehner et al.27. This 
approach assumes that a Pareto model can be fitted to the reported reservoir distribution in the form of a power 
law to estimate the number of reservoirs exceeding a given surface area threshold. Using the same procedures and 
bias corrections as described in Lehner et al.27, yet replacing the records of the GRanD database with those of the 
GDW database, we derived the global reservoir distribution as:

N 18,029A (3)0 796= − .

Fig. 5  Scatter plots between reported and estimated reservoir storage volumes. Results of bias-corrected power 
law regression models that use (a) surface area and dam height as predictors (as represented by Eq. 1); and (b) 
only surface area as predictor (Eq. 2). Red lines represent the 1:1 lines.

https://doi.org/10.1038/s41597-024-03752-9


1 2Scientific Data |         (2024) 11:1069  | https://doi.org/10.1038/s41597-024-03752-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

where N is the number of reservoirs worldwide that have an individual surface area which exceeds A in km2.  
A graphical visualization of this relationship is displayed in Fig. 6.

Equation 3 is the bias corrected form of the Pareto distribution which was derived considering only reservoirs 
in the size range of 10–1000 km2 (n = 2,810). Reservoirs smaller than 10 km2 were assumed to be increasingly 
incomplete in the records of GDW v1.0, while reservoirs larger than 1000 km2 were considered unreliable for the 
statistical analysis due to their increasingly random (case-specific) size. For details and equations regarding the 
bias correction see Lehner et al.27. Note that while the close fit of a straight line (R2 = 0.997) corroborates the gen-
eral applicability of the approach and the underlying assumption of (near) completeness of reservoir records in 
the size range of 10–1000 km2, even a small number of missing reservoirs can affect the slope of the Pareto line 
and thus cause large uncertainties in the extrapolation towards smaller reservoirs. Figure 6 also reveals the onset 
and increasing proportion of incompleteness in the GDW v1.0 database for reservoirs smaller than 10 km2 and 
confirms the virtual absence of reservoirs below a size threshold of 0.1 km2. The results of this extrapolation were 
used to estimate average and total surface areas and storage volumes for smaller reservoir size categories (Table 3).

Estimating the filling year for reservoirs built after 1984.  For all records in the final GDW database 
that did not have a reported year of construction but could be associated with a reservoir polygon (n = 6,931), 
an estimate of the filling year was made in a two-step approach. First, a ‘candidate’ year was estimated from the 
JRC-GSW time series data through a heuristic statistical analysis to detect abrupt changes within the reservoir 
polygon from a non-water to a water surface. Second, each of these candidate years was verified (and corrected if 
needed) through manual inspection using timelapse remote sensing imagery built from the Landsat archive on 
Google Earth Engine (see https://earthengine.google.com/timelapse/). Reservoirs that were already filled before 
the first Landsat imagery was available in 1984 were flagged as ‘before 1985’.

While distinct changes in the timelapse sequences were observed for many records, some cases were ambigu-
ous, either due to unclear imagery (e.g., blurred or cloud-covered scenes) or if the filling occurred close to the year 
1984 (as a first visible detection of a full reservoir, say, in 1986 could also represent a reservoir that was built much 
longer ago, yet was empty in 1984 and 1985 due to climate fluctuations or management decisions). In all ambiguous 
cases (n = 839) filling years were therefore recorded as ‘before YEAR’ where YEAR refers to the first clear image of 
the reservoir. In a test against 111 reservoirs in the US for which years were provided in the US NID dataset, the 
independently made timelapse estimates were within ±5 years from the reported year for 102 records (92% of cases, 
including those that were correctly predicted as ‘before 1985’), within ±3 years for 98 records (88% of cases), and 
within ±1 year for 91 records (82% of cases). This demonstrates a good overall reliability of this estimation method.

Data Records
The GDW v1.0 database, as presented in this manuscript, is available under a CC-BY 4.0 license at https://www.
globaldamwatch.org and a copy has been deposited at the figshare data repository at https://doi.org/10.6084/
m9.figshare.2598829344.

The GDW v1.0 database consists of two separate GIS layers: a point layer containing all representative barrier 
locations and their attribute information; and a polygon layer containing all corresponding reservoir outlines and 
their attribute information. Each barrier point lies within its corresponding reservoir polygon, thus the features and 
attributes of both layers can be spatially joined based on their location. Additionally, both attribute tables carry the 
same unique identification number for each paired barrier-and-reservoir object. Version 1.0 of the GDW database 
contains 41,145 barrier points and 35,295 associated reservoir polygons. That is, 5,850 barrier locations have no 
polygon, including navigation locks, diversion barrages, check dams that create storage only during flood events, 
weirs and other instream control barriers, or dams under construction that do not yet have a filled reservoir.

Fig. 6  Pareto distribution model to estimate the number of reservoirs exceeding a given surface area threshold. 
Only reservoirs of the GDW 1.0 database in the size range between 10 and 1000 km2 were used to fit the Pareto 
model, assuming (near) completeness of these records.
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Column title Description (for more information and detail, see Technical Documentation)
Number of 
occurrences

GDW_ID Unique ID for each barrier and associated reservoir 41,145

Res_name Name of reservoir or lake (i.e., impounded waterbody) 2,098

Dam_name Name of dam/barrier structure 10,071

Alt_name Alternative name of reservoir or dam/barrier (including different spelling, different language) 1,806

Dam_type Type of dam/barrier (e.g., dam, lock, lake control structure) 41,145

Lake_ctrl Indicates reservoirs that represent a natural lake regulated by a control structure 209

River Name of impounded river 9,501

Alt_river Alternative name of impounded river (including different spelling, different language) 714

Main_basin Name of main basin 2,738

Sub_basin Name of sub-basin 721

Country Name of country 41,145

Sec_cntry Secondary country (indicating international dams or reservoirs associated with multiple countries) 202

Admin_unit Name of administrative unit 41,145

Sec_admin Secondary administrative unit (indicating dams or reservoirs associated with multiple administrative 
units) 4,866

Near_city Name of nearest city 6,370

Alt_city Alternative name of nearest city (including different spelling, different language) 302

Year_dam Year in which the dam/barrier was built (may also refer to year of commissioning or refurbishment) 15,230

Pre_year Estimated year before which the dam/barrier was built, as derived from remote sensing imagery 2,518

Year_src Source of information for column ‘Year_dam’ 17,749

Alt_year Alternative year of construction (e.g., multi-year construction phase, update, secondary dam 
construction) 805

Rem_year Year in which the dam/barrier was removed, replaced, subsumed, or destroyed 10

Timeline Indicates status or change of a barrier/reservoir over time (e.g., removed, subsumed, under 
construction) 70

Year_txt Summary of year information in text format 41,145

Dam_hgt_m Height of dam/barrier in meters 9,311

Alt_hgt_m Alternative height of dam/barrier (may indicate update or secondary dam construction) 366

Dam_len_m Length of dam/barrier in meters 8,276

Alt_len_m Alternative length of dam/barrier (may indicate update or secondary dam construction) 208

Area_skm Surface area of reservoir in square kilometers; consolidated from other ‘Area’ columns 35,321

Area_poly Surface area of associated reservoir polygon in square kilometers 35,295

Area_rep Most reliable reported surface area of reservoir in square kilometers 7,444

Area_max Maximum value of other reported surface areas in square kilometers 158

Area_min Minimum value of other reported surface areas in square kilometers 289

Cap_mcm Storage capacity of reservoir in million cubic meters; consolidated from other ‘Cap’ columns, or 
estimated 35,334

Cap_max Reported ‘maximum storage capacity’ in million cubic meters 4,403

Cap_rep Reported ‘storage capacity’ in million cubic meters; value may refer to different types of storage capacity 9,044

Cap_min Minimum value of other reported storage capacities in million cubic meters 1,176

Depth_m Average depth of reservoir in meters; calculated as ratio between capacity (‘Cap_mcm’) and area 
(‘Area_skm’) 35,321

Dis_avg_ls Long-term (1971–2000) average discharge at dam location in liters per second; value provided by 
RiverATLAS 41,134

Dor_pc Degree of Regulation (DOR) in percent; calculated as ratio between capacity (‘Cap_mcm’) and total 
annual discharge 35,168

Elev_masl Elevation of reservoir surface in meters above sea level 41,134

Catch_skm Area of upstream catchment draining into the reservoir in square kilometers; value provided by 
RiverATLAS 41,134

Catch_rep Reported area of upstream catchment draining into reservoir in square kilometers 4,007

Power_mw Hydropower capacity in MW 242

Data_info Supporting information on certain data issues (such as source of estimated storage capacity) 27,977

Use_irri Used for irrigation (‘Main’; ‘Major’; ‘Sec’ = Secondary use; or ‘Multi’ if multiple uses exist without a 
ranking) 2,669

Use_elec Used for hydroelectricity production (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’) 3,065

Use_supp Used for water supply (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’) 2,286

Use_fcon Used for flood control (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’) 2,030

Use_recr Used for recreation (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’) 2,105

Use_navi Used for navigation (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’) 322

Continued
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Both the point and polygon layer of the GDW database are offered in ESRI Geodatabase and Shapefile formats. 
The data are unprojected using a Geographic Coordinate System with the horizontal datum of the World Geodetic 
System 1984 (GCS_WGS_1984). For users without GIS software, we also included the attribute table of the barrier 
layer as a stand-alone text file in comma delimited UTF-8 format as part of the Shapefile package. This text file con-
tains all GDW attribute information, and the barrier locations can be plotted using the provided x/y-coordinates.

Table 5 provides an overview of all available attribute columns available in the GDW v1.0 database, including 
the number of filled records. More details for each column are provided in the Technical Documentation that 
accompanies the data files.

Technical Validation
As a composite product that has been built by harmonizing multiple existing datasets, the quality of the resulting 
GDW database reflects in large part the quality of its sources. Each of these source datasets has undergone its 
own validation (see original references as provided in Table 4). To improve data quality during the harmoni-
zation process of the GDW database, attribute information for each barrier and reservoir was cross-referenced 
using multiple sources to verify veracity and identify conflicts. Links to source materials were included in the 
respective record for reference where available. Verification efforts were performed using a combination of pub-
lished information and web-based satellite and reference maps. As a result, some data errors were detected and 
corrected, or data gaps were filled during the consolidation and curation procedures, e.g., by consulting and add-
ing independent sources of information, by validating whether the ratio of reservoir volume and area (i.e., the 
estimated average depth) is within realistic bounds, or by applying statistical approaches such as testing multiple 
conflicting reservoir volumes against results from estimation Eqs. 1 or 2 to identify the most plausible one. To 
indicate an overall estimate of reliability, a generic quality indicator (Verified, Good, Fair, Poor, Unreliable; see 
Table 5) was assigned to each record by the data editors. Although subjective, this indicator allows identification 
of records where obvious inconsistencies, uncertainties, or data gaps remain.

As part of the automated data combination steps, 13,201 dam points from the GOODD database were 
included in the GDW database based on their unique association to a lake polygon of the HydroLAKES dataset 
(i.e., they were located within the polygon or within a distance of 1 km). To verify the quality of this automated 
inclusion, 100 dam points were randomly selected in South America and another 100 dam points globally. These 
dam points were checked against Google Earth and other publicly available satellite imagery to verify whether 
or not a dam structure could be identified in the imagery. On visual inspection, 98 of the 100 points in South 
America, and 96 of the global 100 points were confirmed as dams. Of the remaining 6 points, 5 were deemed 
indiscernible and only one was found to be erroneous (and corrected in the GDW database after testing).

Column title Description (for more information and detail, see Technical Documentation)
Number of 
occurrences

Use_fish Used for fisheries (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’) 359

Use_pcon Used for pollution control (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’) 106

Use_live Used for livestock water supply (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’) 49

Use_othr Used for other purposes (‘Main’; ‘Major’; ‘Sec’; or ‘Multi’); includes purposes other than those above, or 
mixed usage 800

Main_use Main purpose of reservoir (incl. ‘multipurpose’ if multiple uses exist without a ranking) 8,435

Multi_dams Indicates whether there is more than one dam associated with this reservoir (e.g., main and saddle dam) 225

Comments Comments 964

Url URL of related website 1,229

Quality Quality index (verified, good, fair, poor, unreliable; for definitions see Technical Documentation) 41,145

Editor Final data editor of entered information 41,145

Long_riv Longitude of the point location of the dam/barrier in decimal degrees after co-registration to the 
HydroSHEDS drainage network 41,145

Lat_riv Latitude of the point location of the dam/barrier in decimal degrees after co-registration to the 
HydroSHEDS drainage network 41,145

Long_dam Longitude of the actual point location of the dam/barrier in decimal degrees 6,113

Lat_dam Latitude of the actual point location of the dam/barrier in decimal degrees 6,113

Orig_src Original dataset from which the dam/barrier or reservoir was derived 41,145

Poly_src Original source of reservoir polygon (incl. ‘no polygon’) 41,145

GRanD_ID Unique ID for each original record in the GRanD database (version 1.4) 7,424

Hyriv_ID Unique ID of the associated river reach in RiverATLAS dataset (version 1.0); ID = 0 for off-stream 
barriers 41,106

Instream Indicator stating whether dam/barrier is located on a river reach of RiverATLAS, or off-stream 41,145

Hylak_ID Unique ID of the associated polygon in HydroLAKES dataset (version 1.1) and corresponding 
LakeATLAS dataset 31,264

Hybas_L12 Unique ID for each corresponding sub-basin at level 12 in the BasinATLAS dataset (version 1.0) 41,134

Table 5.  Attributes provided in the point (barrier) and polygon (reservoir) layer of the GDW v1.0 database. 
Note that the ‘number of occurrences’ refers to the point layer (41,145 barriers) and will be lower for the 
polygon layer (35,295 reservoirs). More details on specifics of attributes are provided in the Technical 
Documentation accompanying the data files.
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Furthermore, to ensure that the largest of the HydroLAKES polygons identified through this automated 
process truly corresponded to a reservoir in the landscape, the largest 1,134 polygons (by area) were each vis-
ually inspected using Google Earth and publicly available satellite imagery. This included 202 reservoirs with an 
estimated storage volume exceeding 100 million m3. Of all visually inspected polygons, 31 (2.7%) were rejected 
as they corresponded to a natural lake rather than a discernable reservoir with dam infrastructure.

In a second major data combination step, 13,151 dam points from the GOODD database were automatically 
paired with an open water polygon that was derived from the Maximum Water Extent map of the JRC-GSW 
dataset at the point location or within a distance of 1 km. Each of these cases was visually inspected using 
high-resolution satellite imagery from Google Earth, ESRI Basemaps, and other publicly available sources to 
verify whether it indeed corresponded to a river barrier and associated reservoir. Of the 13,151 inspected point/
polygon pairings, 11,773 (89.5%) were approved, 866 (6.6%) were cases that required a revision of the point or 
polygon (e.g., points associated with the wrong waterbody, or polygons requiring modification), and 512 (3.9%) 
were rejected as no river barrier could be identified.

Despite these curation efforts, each barrier, dam, or reservoir included in the GDW database is affected by 
uncertainties in its respective source dataset(s). These uncertainties can relate to the location of the barrier or 
reservoir, or to its associated attribute information. For example, potential inconsistencies in the GRanD database 
include typos and order-of-magnitude errors, such as mistyped volumes by a factor of 1000; or unit mismatches 
(e.g., feet vs. meters). Also, in many instances the dam name is different from the reservoir name, such as Lake 
Mead, the largest reservoir of the US, being impounded by the Hoover Dam, making attribute associations more 
difficult. Another uncertainty is caused by the lack of one-to-one relationships between barriers and reservoirs: 
some dams, such as barrages, diversions, or run-of-river hydropower stations, may not form reservoirs; some res-
ervoirs may have multiple dams (e.g., main and saddle dams); and some reservoirs have no dam at all, such as water 
stored in natural or artificial depressions. These ambiguities compound the importance of knowing from which 
source dataset the record was derived; this information is available as part of the GDW attributes (see Table 5).

Particular caution regarding uncertainties, missing data, and false entries is warranted when utilizing the 
distinction of reservoir purposes. While this information has been transferred from a variety of original datasets, 
including GRanD and NID, and their respective underpinning sources (e.g., FAO AQUASTAT for GRanD), or 
compiled from auxiliary documents including literature and online descriptions, the provided information in 
the GDW v1.0 database remains sketchy, error-prone, and incomplete. Major ambiguities exist for multipurpose 
reservoirs, and the classification into main vs. secondary purposes may be subjective. Nonetheless, given the 
importance of this attribute for studies requiring a coarse understanding of potential reservoir operation, which 
is often driven by their purpose, we chose to retain the available information in the database, even for rare types 
which may exhibit particularly strong regional biases (such as livestock use). To elucidate completeness of these 
attributes (or lack thereof), the current numbers of existing entries per reservoir type (and some additional 
explanations) are provided in the Technical Documentation of the GDW database. We intend to improve the 
quality and comprehensiveness of these attributes in future iterations, including verification through citizen 
scientists or through cross-referencing with alternative sources.

For additional validation and improvement purposes, attribute information listed by the International 
Commission on Large Dams (ICOLD) in their World Register of Dams (WRD)45 was consulted for some dams. 
Similarly, the recent publication of the GeoDAR dataset (Georeferenced global Dams And Reservoirs)46 offered 
the opportunity to detect and re-inspect some erroneous entries (~90 errors of original GRanD records were 
flagged through comparison with GeoDAR and subsequently corrected in the GDW database).

Finally, statistics derived from the ICOLD-WRD, GeoDAR, GWW, and GDAT datasets (see Table 2) were 
used to validate the relative completeness of the GDW database. ICOLD-WRD offers higher dam numbers yet 
a similar estimate of total global reservoir storage volume (7,334 km3 after removal of duplicates46), confirming 
an overall comparable coverage to the GDW database (7,420 km3). The recently published GeoDAR and GDAT 
datasets show somewhat lower total records, and no reservoir polygons in the case of GDAT. Visual comparisons 
of their global summary maps (not shown here) reveal very similar global patterns of spatial dam distributions 
as those of the GDW database (Fig. 1). Beyond the number of records and variations in regional focus, main dif-
ferences between the datasets include their unique couplings with different global river networks to derive aux-
iliary information related to their catchments, the more extensive attribution of major dam purposes (>20,000 
records) in GDAT than in the GDW database or in GeoDAR (although detailed attributes for most dams in 
GeoDAR can be retrieved from the proprietary ICOLD-WRD dataset through an established one-to-one rela-
tionship between GeoDAR and ICOLD-WRD), and the inclusion of smaller barrier types (locks, weirs, barrages) 
in the GDW database that are not available in GeoDAR or GDAT. Overall, we consider these different global 
datasets to be complementary to each other, each based on individual efforts and at least partially independ-
ent sources. Lastly, we overlaid the GWW reservoir polygons with those of the GDW database and found that 
~25,000 records represented one-to-one matches (yet with different polygon outlines), GDW v1.0 contained 
~10,000 reservoirs not included in GWW, and GWW contained ~45,000 polygons not included in GDW v1.0. 
Inspection of ~5,000 of the additional GWW candidate reservoirs revealed that some included multiple polygon 
parts belonging to the same reservoir object (thus inflating total numbers), and not every reservoir could be veri-
fied, possibly indicating uncertainties inherent in the automated derivation of GWW polygons. This finding cor-
roborates the requirement for additional curation before including new GWW polygons into the GDW database.

Usage Notes
The GDW database is intended for large-scale studies where globally consistent information is required. Thus, 
when downscaling scientific analyses on river barriers and reservoirs for regional or national assessments, data 
from the GDW database may serve as a starting point but should be updated and complemented by available data 
that suit the scale and respective purposes of such studies. More comprehensive databases may be available and 
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should be used at the national and basin scale, including those referenced in the GDW directory (https://www.
globaldamwatch.org/directory) or available via the GDW intelligence platform (https://www.globaldamwatch.org/
intelligence) which brings together publicly available data at varying smaller scales for harmonization. Similarly, 
users should exercise caution when deriving specific global barrier or reservoir statistics. For example, given the 
described bias in the GDW v1.0 database towards preferentially including larger barriers, statistical interpretations 
of average reservoir characteristics may not be representative for reservoirs of all size categories worldwide. The 
focus of our database development was to create a georeferenced, curated cartographic product that can be applied 
in spatially explicit studies, rather than, at this stage, provide a complete record of all barriers and reservoirs globally.

While every effort has been made to quality control the entries in the GDW database as outlined above, 
including the provision of a simplified quality indicator (ranging from ‘verified’ to ‘unreliable’, see Table 5), it 
remains the user’s responsibility to judge the appropriateness of incorporating the GDW database in their respec-
tive applications. Users may need to preselect records which in turn may introduce potential biases; for example, 
temporal selections are more uncertain pre-1985 as remote sensing imagery only supported the estimation of 
filling years after 1984. Users should consider that some attributes are prone to exhibit more uncertainties than 
others, such as a high level of ambiguity and incompleteness for reservoir purposes (see Technical Validation) 
vs. relatively robust derivatives of certain physical parameters, such as elevation or catchment size. Additional 
choices can be made for certain attributes, including cases in which different values or minimum-maximum 
ranges are recorded for a reservoir (e.g., surface area, storage capacity, year of construction; see Table 5). Of par-
ticular importance may be the choice of whether to include or exclude reservoirs that are flagged in the GDW 
database as ‘regulated lakes’ because this information can have profound implications on certain applications. 
For example, regulated lakes should typically be excluded from assessments that account for new surface water 
areas stemming from reservoir construction, an issue that has often been overlooked in past analyses.

The reservoir polygons of the GDW database have been fully integrated into the HydroLAKES dataset (ver-
sion 1.1), i.e., there are no overlaps or inconsistencies between the respective lake and reservoir polygon datasets. 
Also, all barrier points of the GDW database have been co-registered to the global digital river network of the 
HydroSHEDS and RiverATLAS databases via their x/y coordinates (which permits spatial joins) and by providing 
the corresponding ID of the associated river reach in RiverATLAS (see Table 5). These complementary data prod-
ucts support the derivation of additional information for the barriers and reservoirs of the GDW database (such as 
by transferring hydro-environmental catchment properties from RiverATLAS) and allow for versatile applications 
of the GDW database within the existing data frameworks of HydroSHEDS, RiverATLAS, and HydroLAKES. 
Barriers that are not directly located on a reach of the river network, but are located in the associated reach catch-
ment, are distinguished and can thus be treated accordingly as ‘off-stream’ in river network analyses.

Code availability
All data assembly and quality-control steps were performed using sequential procedures within standard 
Geographic Information System (GIS) and statistical software, and no custom code was generated to automize 
these procedures.
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