

Characterization of litter decomposition in urban green spaces

Tom Künnemann, Guillaume Humbert, Gonzague Alavoine, Elodie Barré, Patrice Cannavo, Hugues Clivot, Olivier Delfosse, René Guénon, Gwenaëlle Lashermes

▶ To cite this version:

Tom Künnemann, Guillaume Humbert, Gonzague Alavoine, Elodie Barré, Patrice Cannavo, et al.. Characterization of litter decomposition in urban green spaces. Les défis de la ville en transition – Bilan et perspectives de recherche, Sep 2024, Aubervilliers, France. 2024. hal-04750149

HAL Id: hal-04750149 https://hal.inrae.fr/hal-04750149v1

Submitted on 23 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

T. Künnemann¹, G. Humbert², G. Alavoine², E. Barré², P. Cannavo¹, H. Clivot², O. Delfosse², R. Guénon¹, G. Lashermes² (1) L'Institut Agro Rennes-Angers, UP EPHor; (2) INRAE, URCA, UMR FARE

Context & objectives

In urban lawns, above-ground litters (i.e., broadleaves, herb cuttings) are generally exported to maintain lawn ecosystems. It is likely that recycling litters on lawns (i.e., nature-based solution) contribute to improving ecosystem services provided by urban green spaces by carbon (C) sequestration and soil fertility (Ferlauto et al., 2024). Nevertheless, emission of nitrous oxide (N₂O), a strong greenhouse gas, during litter decomposition in the soil can offset the benefits of litter recycling (IPCC, 2019).

Objective 1 : Understand how **litter degradability** (i.e., CO₂ emissions) is influenced by **urban litter characteristics** (i.e., biochemistry) and **soil management intensity** during their decomposition ;

Objective 2 : Understand how **potential** N_2O emissions are influenced by these factors.

Materials & methods

Results & discussion

Net cumulative CO₂ fluxes (kg C ha⁻¹)

Net cumulative N₂O fluxes (kg N ha⁻¹)

The 9 litters and 2 soils showed contrasted CO_2 and N_2O emissions.

CO₂ emissions were higher for **labile litters** with high N and low lignin contents (Fig. 1).

The decomposition of N-poor litters (*Tilia* and Meadow mix) emitted more CO_2 in HI lawn, likely due to its **higher soil NO₃⁻ content** (Fig. 2).

In the LI lawn, N_2O emissions were probably limited by the **low WHC and soil NO_3^**content (Fig. 3).

In the HI lawn, *Lolium* (C:N = 8) induced **15 times higher** N_2O

N₂O emission factors (EF-N₂O)

Average EF-N₂O of litters was 0.1% on LI lawn and 2.1% on HI lawn (Fig. 5). EF-N₂O considered for crop residues in wet climates by the **IPCC method (0.6%) underestimated EF-N₂O of**

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 Days Days

emissions than *Tilia* (C:N = 48; Fig. 4).

litters in the HI lawn.

Conclusion

- CO₂ and N₂O emissions were mainly influenced by **biochemical quality of litters and lawn management** respectively (Lashermes et al. 2022).
- Potential N₂O emissions induced by senescent litters (from trees and herbs) when recycled in soils appeared to be low. Particular attention needs to be paid to the recycling of nonsenescent herbs (i.e. green) on rich soils, which can lead to high N₂O emissions (Li et al. 2013).
- Considering the high variability of urban soil properties appears crucial when assessing their CO₂ and N₂O emission potentials.

