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Abstract 

The mapping and introduction of sustainable plant immunity to pests and diseases in fruit tree is still 

a major challenge in modern breeding. This study aims at deciphering the genetic architecture 

underlying resistance or tolerance across environments for major pests and diseases in peach (P. 

persica) and apricot (P. armeniaca). We set up a multi-environment trial (MET) approach by studying 

two core collections of 206 peach and 150 apricot accessions deployed under low phytosanitary 

conditions in respectively three and two environmentally contrasted locations in South-East of France. 

To capture the complex dynamics of pest and disease spread in naturally infected orchards, visual 

scoring of symptoms was repeated within and between 3 years, for five and two pests and diseases 

respectively for peach and apricot, resulting in the maximum of damage score and the AUDPC. These 

traits were used as phenotypic inputs in our genome-wide association studies (GWAS) strategy, and 

leading to the identification of: i) non-additive genotype–phenotype associations, ii) environment-

shared QTLs iii) environment-specific QTLs, and iv) interactive QTLs which changes in direction 

(‘antagonist’) or intensity (‘differential’) according to the environment. By conducting GWAS with 

multiple methods, we successfully identified a total of 60 high confidence QTLs, leading to the 

identification of 87 candidate genes, the majority belonging to the Leucine-rich repeat containing 

receptors (LRR-CRs) family gene. Finally, we provided a comparative analysis of our results on peach 

and apricot, two closely related species. The present results contribute to the development of 

genomics-assisted breeding to improve biotic resilience in Prunus varieties.  
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Introduction 

Biotic stresses represent a major threat to agricultural production with a massive diversity of organisms 

being able to affect plants, including a large range of viruses, bacteria, fungi, phytoplasma, nematodes 

and pests [1,2]. Reducing the impact of these biotic stresses in a sustainable and environment-friendly 

way is urgent and, as such, reducing plant susceptibility through genetic progress appears as an 

effective and promising strategy [3]. It has been long recognized that host defence against parasites 

and pathogens can be divided into two conceptually different mechanisms: the ability to reduce and 

control pathogen (resistance) and the ability to limit the damage caused by a given within-host 

pathogen load without necessarily reducing this pathogen load (tolerance) [4,5]. Developing cultivars 

that present durable low susceptibility to biotic stresses is therefore an important breeding goal, in 

particular for perennial woody crops, given their long generation times and lifespans in orchards [6]. 

After multiple episodes of resistance breakdown due to the introgression into crop cultivars of 

monogenic resistances [7,8], research is now focusing on polygenic defence traits which are likely more 

durable but also more complex to understand and to introduce in elite lines [9]. The combination of 

major resistance genes with quantitative resistance/tolerance factors have already shown promising 

results as an alternative to ensure greater durability of crop protection [10,11]. In addition to specific 

host resistances genes, broad-spectrum defence factors against multiple diseases represent another 

promising solution for sustainable plant defence [12]. Some degree of tolerance has already been 

observed in different landraces cultivar and wild relatives, as P. davidiana, a relative of peach (P. 

persica) carrying resistance genes against green peach aphids, powdery mildew and Plum pox virus 

(PPV) [13–15]. In this context, the natural genetic diversity of crops is a valuable source of  untapped 

favourable allelic combinations which deserves to be explored [16]. 

Genome Wide Association Studies (GWAS) have been extensively used to understand the genetic basis 

of complex traits such as quantitative disease resistance or tolerance [17]. This whole-genome 

approach exploits ancestral linkage disequilibrium among diverse germplasm to detect associations 

between phenotypic traits and polymorphisms, also called quantitative trait loci (QTL) [18,19]. QTLs 

identified by GWAS can be used in breeding programs through the development of marker-assisted 

selection (MAS) in relevant germplasm [20,21]. Yet, detecting QTLs related to disease resistance or 

tolerance can be challenging since phenotypic variation is often modulated by environmental effects 

and interactions between genotype and environment (G×E) [22–24]. The consequences of G×E can be 

illustrated by a change in the phenotypic ranking of individuals across environments which could be 

explained by a modulation of the size and/or sign of the QTL effect by the environment. In this context, 

Multi-Environment Trials (MET), consisting in phenotyping the same panel of genotypes in different 

locations and/or over different years, have been widely adopted to describe QTL responses to different 
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environmental factors [25,26]. To detect QTLs of interest from METs, a first approach is to perform 

single-environment GWAS to identify and further compare QTLs between specific environments 

[27,28]. A complementary approach is based on multi-environment GWAS in order to detect QTLs with 

both main effects and QTL × Environments effects (i.e. QTLs with differential effects depending on 

environmental conditions) [27]. Models have been developed to handle QTL × Environments 

interactions, such as the multi-trait mixed model MTMM [29] which has been successfully used, firstly 

in Arabidopsis thaliana for the study of flowering time QTLs under different temperatures, and later 

for plant architecture in barley and in production traits in common bean under contrasted abiotic 

stress conditions [30–32]. In addition, single-environment GWAS can be exploited via meta-analysis 

GWAS to identify QTLs with minor effects which might go undetected in separate analyses, as well as 

to harness markers with stable effects across environments [33,34]. Meta-GWAS are now emerging in 

plant studies as a practical alternative for combining multiple independent studies to identify 

additional marker-trait associations and to verify the association previously identified [33,35,36]. A 

useful aspect of Meta-GWAS for plant is that it can be applied on unbalanced phenotypic datasets (i.e. 

asymmetrical proportions between class of observation) and it does not require replication of the 

same individuals across all environments [37].  

Taking advantage of the recent publication of reference genomes [38–41] and of the availability of 

molecular technology such as SNP array [42], GWAS has gradually become more widespread in Prunus 

species for determining the genetic basis of variation in complex agronomic or fruit quality traits [43–

47]. Despite these methodological advances, to date G×E interaction effects and the genetic 

determinants of partial resistance to different biotic stresses from the wide diversity in Prunus fruit 

trees has been little investigated [48–53]. One GWAS experiment has explored non-additive effect in 

almond and allow the identification of 13 QTLs for several agronomical traits, with only one having 

additive effects [54]. These results underline that in heterozygous tree crops a significant share of non-

additive variance can be exploited in GWAS. Statistical estimates of non-additive effects can therefore 

allow for a more accurate prediction of total genetic variance  which results in a more complete 

characterization of the genetic architecture of disease resistance traits and help to find complementary 

QTLs of interest [55,56]. 

In this context, our objective is to dissect the genetic architecture of pests and diseases resistance or 

tolerance in peach (Prunus persica L.) and apricot (Prunus armeniaca L.) in multiple environments by 

using GWAS. GWAS analysis are particularly well suited for studying peach  and apricot genomes by i) 

being diploid with small size genomes (with respectively 230  and 295 Mbp) [57], ii) harbouring a large 

untapped phenotypic diversity available in germplasm collection [58,59], and iii) being highly syntenic, 

thus allowing comparison between them [60]. We built a comprehensive database gathering the 
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phenotypic response to biotic stresses of peach and apricot using core collections of respectively 206 

and 150 accessions monitored under low phytosanitary protection in three and two different orchards 

in the South-East of France. The pests and diseases observed included leaf curl, leafhopper, powdery 

mildew, rust and shot hole for peach as well as blossom blight and rust for apricot. We conducted a 

series of complementary GWAS to i) firstly investigate the main additive and non-additive genetic 

effects across environments, secondly ii) compare environment specific effects with single-

environment GWAS, and finally iii) harness G×E interactions effects using multi-environment GWAS 

and meta-analysis GWAS. 

Results 

Phenotypic response of peach and apricot accessions to natural infection in multiple orchards 

The first step of our analyses aimed at evaluating the biotic performance of the two core collections 

and to assess the effects of environment, genotype and genotype by environment interactions on 

biotic stress responses. 

A large variability in the phenotypic response to biotic stress in the two core collections 

We scored trees at different time points for each biotic stress throughout the season to fully capture 

the dynamic expression of the phenotypic diversity under low phytosanitary protection. This allowed 

us to produce two types of variables for each tree and each biotic stress, namely the i) maximum of 

susceptibility (Max) and ii) the Area under the Disease Progress Curve (AUDPC).  

After spatial correction, we cleaned our dataset in order to retain only environments with sufficient 

expression of phenotypic variability for each trait, leading to the removal 19.6% of the data 

(Supplementary Method 2 and Supplementary Fig 1). In the remaining dataset the average standard 

deviation was of 31.1 and 295.4 respectively for Max and AUDPC (Figure 1 and Supplementary Fig 2). 

We found the highest diversity of response for apricot rust leaf fall for both Max and AUDPC (with 

standard deviation of 34.1 and 321.9 respectively). For an equivalent value of Max, trees presented 

markedly different temporal trajectories for this disease, as illustrated by diverging onset dates and 

spread of symptoms, with marked environment-specific effects (Figure 1 and Supplementary Fig 3). 

While correlations between Max and AUDPC remained high for all biotic stresses (from 0.676 to 0.997) 

(Figure 1 and Supplementary Fig 2), AUDPC thus provided complementary information on the response 

of accessions to biotic stresses.  

To characterize the stability of symptom expression across environment, we calculated the 

correlations between environment-specific BLUPs for each pest or disease. The genetic correlations 

between environments ranged from moderate to strong, with average Pearson’s correlation 
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coefficients of 0.68 and 0.73 for Max and AUDPC respectively (Supplementary Table 1 and 

Supplementary Fig 4). We found the lowest genetic correlation between environments for blossom 

blight (r = 0.41 in average for Max) and the highest correlations for leaf curl (r = 0.87 and r= 0.91 in 

average for Max and AUDPC respectively) (Supplementary Table 1). Overall, symptoms were more 

correlated within a given location than within a given year for both Max and AUDPC (Supplementary 

Table 1).  

Biotic stress responses are modulated by G and G×E effects  

We computed a linear mixed model for each pest and disease to quantify the variance associated to 

genotype, genotype by location, genotype by year and genotype by year by location interactions 

(Figure 2.A and Supplementary Method 3). The variance attributed to the genotype amounted 

between 5.1 and 66.7 % of the total variance. For powdery mildew and shot hole, the genotypic 

variance was lower than the variance attributed to the G×L interactions (for both Max and AUDPC 

variables), and for blossom blight lower than the variance attributed to the G×Y interactions (39.7% of 

total variance). The contribution on the G×L effect on the trait variance was moderate to high (6.3–

26.5%) and was higher than the variance explained by G×Y for all biotic stresses, as already expected 

from previous correlation analysis (Figure 2.A). Finally, G×Y×L variance could not be assessed for all 

traits and remained moderate (2.7–16.4%). Generally speaking, all responses to biotic stresses were 

found to be influenced by G×E interactions, with the response to leaf curl being the most stable across 

environments. 

Overall, broad-sense heritability estimates across environments on spatially corrected Max and AUDPC 

variables ranged from 0.07 to 0.78 for the eight pests and diseases studied (Figure 2.B). Heritability 

was generally higher when considering AUDPC rather than Max. 

When dissecting between additive and non-additive variance, we found that the dominance variance 

represented up to 16.4% of the total variance, depending on the trait, the highest proportions being 

found for apricot rust (Supplementary Fig 5). Except for powdery mildew, the dominance variance was 

higher when considering Max as compared to AUDPC. A comparison of models for these across-

environment variance decompositions using the BIC criterion suggested that the Additive-Dominant 

model was the best model choices for five traits (leafhopper Max and AUDPC, powdery mildew Max 

and AUDPC, and apricot rust Max). 

Genome-wide association analyses for biotic stress responses in the two core collections 

We exploited genetic and G×E variance by applying a series of complementary GWAS models whereby 

phenotypes were considered i) across environments (G-BLUPs), ii) within environment (environment-

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.15.618428doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618428
http://creativecommons.org/licenses/by/4.0/


specific BLUPs) and iii) in multiple environments. For each analysis significant, SNPs were grouped in 

QTLs by considering linkage blocks using the chromosome-specific LD decay values (ranging between 

508 and 1620 Kbp and between 131 and 473 bp respectively in the peach and the apricot core 

collection, depending on the chromosome) (Supplementary Fig 6). 

Complementarity between additive and non-additive QTLs identified across environments  

To exploit both additive and non-additive main genetic effects, four different models were tested on 

G-BLUPs, representing the different modes of action of genes: additive, dominance, recessive and 

overdominance (the last three have been grouped as ‘non-additive’; see material and methods 

section). 

When considering the union of QTLs obtained for Max and AUDPC (i.e. detected for one, the other, or 

both variables), we identified between 10 and 131 QTLs per trait (Figure 3.A). Within the total of 341 

QTLs detected, 188 were additive, 153 were non-additive, and 30 were detected with both additive 

and non-additive models (Figure 3.A). Except for apricot rust and rust leaf fall, more QTLs were 

identified with non-additive as with additive models (between 1.2 to 3.7 times more QTLs depending 

on the trait). Among the non-additive models, the recessive model identified the most QTLs across all 

traits (between 1 to 28 with an average of 8.8) (Figure 3.C and Supplementary Fig 7), while the over-

dominance model identified the least (between 0 to 19 across traits, with an average of 4.9) (Figure 

3.D and Supplementary Fig 7). However, it should be reminded that dominant and recessive models 

are only differentiated regarding the effects of the reference allele. Therefore, QTLs detected with 

both types of models can correspond to a recessive or dominant mode of action. 

We found respectively 271 and 119 QTLs when considering Max and AUDPC variables with a total of 

41 overlapping QTLs. Apricot rust was the disease for which Max and AUDPC QTLs overlapped the least 

(with less than 1% of overlapping QTLs) whereas leaf curl was the disease with the most overlap (with 

26% of overlapping QTLs) (Figure 3.A).  

Overall, the non-additive GWAS analysis allowed identifying complementary QTLs that were not 

detected by the additive-GWAS analysis, with 96 and 45 QTLs being exclusive to non-additive models 

respectively for Max and AUDPC.  

Identification of environment specific QTLs with single-environment GWAS  

In order to study environment-specific effects, we implemented single-environment GWAS using 

single-Locus Mixed-Models on environment-specific BLUPs. We identified between 33 and 568 

significant SNPs depending on the trait, corresponding to a total of 801 QTLs (union of results on Max 

and AUDPC variables) (Figure 4).  
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The identity and number of associations were greatly dependent on the target environment (62.5% to 

100% environment-specific QTLs depending on trait) (Figure 4). Leaf curl was the only trait for which a 

QTL was identified in all investigated environments and for both AUDPC and Max variables. Apart from 

this QTL, located on chromosome 4, the other 25 QTLs associated to leaf curl were detected in only 

one environment. For apricot rust and rust leaf fall, some QTLs have also been identified in all the 

environments studied when considering AUDPC (representing respectively 5 and 3% of all the QTLs 

identified). With a total of 6 QTLs detected in 2 different environments and 3 QTLs detected in 3 

different environments (total of 5 environments considered), peach rust was the trait with the highest 

proportion of stable QTLs. On the opposite, blossom blight was the disease with less stable QTLs as all 

of them were found to be environment-specific. For all traits, QTLs associated to Max appeared to be 

more stable than those found with AUDPC (22% and 0.09% of QTLs detected in more than one 

environment, respectively). Finally, among the QTLs identified, between 2 and 46 QTLs overlapped 

between Max and AUDPC depending on the biotic stress. 

Modelling QTLs with G×E interaction effects using MTMM and Meta-GWAS 

To statistically distinguish between stable QTLs across environments and those underlying G×E 

interactions, we performed i) a multi-environment analysis on environment-specific BLUPs using the 

fully parameterized multi-trait mixed model (MTMM)[29] comprising three sub-models (‘common 

model’, ‘gei model’ and ‘full model’) (Supplementary Method 6), and ii) a Meta-GWAS with the MetaGE 

model [34](Supplementary Method 7). MTMM disentangle common effect markers from interactive 

markers and MetaGE jointly analyses single-environment GWAS results to identify QTLs with minor 

effects which might go undetected in single environment analyses, as well as markers with significant 

effects across multiple environments. 

MTMM GWAS and Meta-GWAS analyses led to the identification of respectively 209 and 226 QTLs 

significantly associated when considering all traits (union of Max. and AUDPC), with 1 to 61 QTLs per 

trait identified with MTMM and 1 to 54 QTLs per trait identified with Meta-GWAS (Figure 5). From 

those, 107 QTLs overlapped between MTMM and MetaGE approaches. 

MTMM analysis could not be performed on 4 variables (AUDPC of peach rust and leafhopper, and on 

both Max and AUDPC for powdery mildew). For the remaining, we identified 75 and 67 QTLs 

respectively for ‘common’ and ‘gei’ models (union of Max. and AUDPC, Figure 5). For most traits, more 

QTLs have been identified with the ‘common’ model than with the two other MTMM models (between 

50 to 100% of QTLs detected). However, for blossom blight (Max), apricot rust (AUDPC and Max) and 

apricot rust leaf fall (Max) 53 to 65% of QTLs were identified with the ‘gei’ model. For these ‘gei’, 
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interactive QTLs, allelic effects of the top SNP ranged from negative to highly positive depending on 

environment. 

When performing Meta-GWAS, we found a large amplitude of z-scores - a summary statistics of the 

marker’s P-value of the sign of the marker’s effects - for most SNPs. We observed only rare sign 

inversions, indicative of SNPs with the same qualitative effects (i.e. same direction), but quantitatively 

different effects across environments (Supplementary Fig 8). A remarkable exception was found for 

blossom blight, with 61% of the significant SNPs presenting a z-score sign inversion between the 4 

environments considered (Supplementary Fig 8.F). Interestingly, we detected 29 QTLs with Meta-

GWAS that had not been detected with single environment GWAS (Figure 4 and Figure 5). 

Identification of high confidence QTLs and quantification of their contribution to G and G×E 

interactions 

When considering all traits and models tested, 101 QTLs were detected for peach and 606 for apricot. 

To retain the most relevant QTLs, high confidence QTLs were defined as those detected in at least 50% 

of the additive GWAS models tested. We retained up to 32 high confidence QTLs depending on the 

trait (Supplementary Table 2). Blossom blight was the only disease for which no confidence QTLs could 

be identified. High confidence QTLs overlapping between AUDPC and Max have been found for leaf 

curl (1 QTL located on chromosome 4), apricot rust (1 QTL located on chromosome 4) and apricot rust 

leaf fall (18 QTLs located on chromosome 2, 4 and 6) (Supplementary Table 2). 

For each trait, we calculated the proportions of G, G×L and G×Y variance captured by the high 

confidence QTLs (considered jointly when several confident QTLs were identified for a given pest or 

disease). The high confidence QTLs captured between 9.6 and 64.6% of the additive genetic variance 

depending on the biotic stress (Supplementary Fig 9). These QTLs also explained variable portions of 

G×L interactions (up to 54.4%) and to a lesser extent, of G×Y interactions (up to 29.3%) (Supplementary 

Fig 9). Interestingly, in apricot rust high confidence QTLs explained a higher proportion of the G×L 

variance than of the genetic variance (Max variable) (Supplementary Fig 9). 

Local LD and annotation analyses within high confidence QTLs towards identifying candidate 

genes 

Based on the association results, we searched within high confidence QTLs for candidate genes with 

predicted functions linked to host defence or response mechanisms. As a preliminary step, we 

readjusted peach QTL intervals to account for the strong LD observed in peach by considering the local 

LD between the top SNP of each high confidence QTL and all SNPs belonging to this QTL. We considered 

that a SNP was independent from the top SNP when is r2 to top SNP was below 0.2 (Figure 6.A and B 
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for Leaf_curl_4 and Supplementary Fig 10 for the other peach QTLs). This enabled us to narrow down 

the list of candidate genes for peach, with an average of 34.6% of genes with a relevant function 

located in the readjusted QTL intervals (Table 1 and Supplementary Table 3). 

A total of 87 candidate genes have been identified across the 60 high confidence QTLs, with up to 9 

candidate genes for the peach rust QTL on chromosome 2 (Table 1). Among the candidate genes, seven 

were linked to TMV resistance protein, seven to Leucine-rich receptor-like protein kinase family 

protein, four to cysteine-rich receptor-like protein kinase, four to TIR-NBS-LRR disease resistance 

protein and two to MLO-like protein (Table 1). For some QTLs associated to apricot leaf rust, 

leafhopper and shot hole no candidate genes could be clearly identified. 

Interestingly, three apricot candidate genes, ‘PruarM.6G017900’, ‘PruarM.4G204800’ and 

‘PruarM.4G206100’, were identified as covering several QTLs (Table 1). We calculated the local LD in 

these three zones (Figure 6.C. and D, Supplementary Fig 11)  and observed two different patterns: for 

‘PruarM.6G017900’ (Figure 6.C) and ‘PruarM.4G204800’ (Supplementary Fig 11.A) a relatively high LD 

block overlapped precisely with the underlying candidate gene. These results suggested that the QTLs 

identified in these different genes were not independent. In contrast, ‘PruarM.4G206100’ appeared to 

be located in a moderate LD region with no clear LD blocks (Supplementary Fig 11.B). Max G-BLUPs 

distributions according to the haplotype constituted by the top SNPs identified in these three genes 

were plotted (Figure 6.D, for top SNPs belonging to ‘PruarM.6G017900’ and Supplementary Fig 11.C 

and D for ‘PruarM.4G204800’ and ‘‘PruarM.4G206100’). For both genes ‘PruarM.6G017900’ and 

‘PruarM.4G204800’, the two most frequent haplotypes, had significantly different G-BLUPs values 

(Wilcoxon test P-value < 0.05) (Figure 6.D and Supplementary Fig 11.B).  
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Table 1. List of candidate genes for the high confidence QTLs 

Biotic stress Trait QTL Name Candidate genes Function 

Leaf curl 
AUDPC and 

Max 
Leaf_curl_4 

Prupe.4G026800 
LEA hydroxyproline-rich 

glycoprotein family 
Prupe.4G026900 

Prupe.4G027000 

Prupe.4G027300 Cysteine-rich receptor-like 

protein kinase Prupe.4G027400 

Leafhopper AUDPC Leafhopper_7_1 

Prupe.7G065300 TMV resistance protein N 

Prupe.7G065400 Disease resistance protein 

(TIR-NBS-LRR class) Prupe.7G065500 

Powdery 

mildew 
Max Powdery_mildew_6 Prupe.6G132100 

Disease resistance protein 

(TIR-NBS-LRR class) 

Peach Rust 

AUDPC Peach_Rust_2 

Prupe.2G057600 
TMV resistance protein N 

Prupe.2G057800 

Prupe.2G058400 Ethylene-activated signalling 

pathway Prupe.2G058400 

Prupe.2G059000 

TMV resistance protein N Prupe.2G059200 

Prupe.2G059400 

Prupe.2G060200 
Ethylene-responsive 

transcription factor 

Prupe.2G060400 
Disease resistance protein 

(TIR-NBS-LRR class) 

AUDPC Peach_Rust_4 

Prupe.4G051500 
Plant-type hypersensitive 

response 

Prupe.4G053700 MLO-like protein 

Prupe.4G054500 Transcription factor VOZ1 

Shot hole AUDPC Shot_hole_8 
Prupe.8G257400 MLO-like protein 

Prupe.8G259700 Co-chaperone protein 

Apricot Rust 

AUDPC Apricot_Rust_2 PruarM.2G180700 
Leucine-rich receptor-like 

protein 

AUDPC Apricot_Rust_3.2 PruarM.3G108000 F-box family protein 

AUDPC Apricot_Rust_4.2 PruarM.4G199900 

Leucine-rich receptor-like 

protein 

Max Apricot_Rust_4.4 

PruarM.4G204800 
AUDPC Apricot_Rust_4.5 

AUDPC Apricot_Rust_4.6 

AUDPC Apricot_Rust_4.7 

Max Apricot_Rust_6.1 

PruarM.6G017900 

Receptor-like 

serine/threonine-protein 

kinase RLK1  
Max Apricot_Rust_6.2 

Apricot Rust 

Leaf fall 

AUDPC and 

Max 
Apricot_Rust_leaf_fall_2.1 PruarM.2G251100 

Disease resistance protein 

RGA2 

Max Apricot_Rust_leaf_fall_2.2 PruarM.2G283800 TMV resistance protein N 

Max Apricot_Rust_leaf_fall_2.3 PruarM.2G352900 WD-40 repeat family protein 

Max Apricot_Rust_leaf_fall_2.4 PruarM.2G359800 Cysteine-rich receptor-like 

kinase Max Apricot_Rust_leaf_fall_2.5 PruarM.2G359900 

AUDPC Apricot_Rust_leaf_fall_4.1 PruarM.4G156300 
Lectin protein kinase family 

protein 

Max and 

AUDPC 
Apricot_Rust_leaf_fall_4.6 PruarM.4G199400 

Leucine-rich receptor-like 

protein Max and 

AUDPC 
Apricot_Rust_leaf_fall_4.7 PruarM.4G199700 
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Max and 

AUDPC 
Apricot_Rust_leaf_fall_4.8 PruarM.4G199900 

Max and 

AUDPC 
Apricot_Rust_leaf_fall_4.10 PruarM.4G201600 

BURP domain-containing 

protein 

Max and 

AUDPC 
Apricot_Rust_leaf_fall_4.16 

PruarM.4G204800 

Leucine-rich receptor-like 

protein  

Max and 

AUDPC 
Apricot_Rust_leaf_fall_4.17 

Max and 

AUDPC 
Apricot_Rust_leaf_fall_4.18 

Max 
Apricot_Rust_leaf_fall_4.21 

Apricot_Rust_leaf_fall_4.22 
PruarM.4G206100 Max and 

AUDPC 

Max 
Apricot_Rust_leaf_fall_6.1 

Apricot_Rust_leaf_fall_6.2 

Apricot_Rust_leaf_fall_6.3 

PruarM.6G017900 

Receptor-like 

serine/threonine-protein 

kinase RLK1  

Max and 

AUDPC 

Max 

 
Max and 

AUDPC 
Apricot_Rust_leaf_fall_6.5 PruarM.6G018400 

Receptor-like 

serine/threonine-protein 

kinase RLK1 

 

Discussion 

The main objective of this study was to dissect the genetic architecture of a series of traits reflecting 

the response to natural infections in multiple environments in peach and apricot. We specifically aimed 

at deciphering G×E interactions, identifying candidate genomic regions, and comparing the results 

obtained in these two species. 

Biotic stress response is highly influenced by G×E interactions 

Our results revealed that the expression of pest and disease susceptibility was under a strong influence 

of the environment per se but also of G×E interactions (Figure 1, Figure 2, Supplementary Fig 1, 

Supplementary Fig 2 and Supplementary Fig 3). Variance decompositions (Figure 2.A) and the pairwise 

genetic correlations (Supplementary Table 1) indicated the prevalence of the G×E interactions over G 

effects for several traits. Similar patterns have been found in stone fruit diseases, such as in peach 

brown rot, where skin tolerance to the fungal infection appears to be under high seasonal influence 

[50,52]. In a study on apricot bacterial canker, Omrani et al. (2019) pointed to the relevance of 

controlling G×E interactions for accurately estimating genetic effects in the face of environmental 

variations in multi-year data [49]. In our study, G×E interactions were generally driven more by location 

than by year effects, which was supported by phenotypic and GWAS analyses. With single-

environment GWAS, we identified a total of 567 environment-specific QTLs and 135 environment-

shared QTLs with a higher overlap between QTLs identified from each location than from QTLs 

identified from a given year. Interestingly, the QTLs identified with the multi-environment models 
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(MTMM and Meta-GWAS) were mostly interactive which changes in direction (‘antagonist’) or 

intensity (‘differential’) according to the environment. Our results thus indicate that data on specific 

climatic conditions have the potential to reveal additional regions linked to biotic stress response. We 

thus recommend evaluating the same panel - or highly overlapping panels including several common 

genotypes - in multiple geographic areas with contrasted environmental conditions. 

It should be reminded that the functional validations of G×E interaction QTLs are still rare and requires 

challenging tests such as gene cloning [61]. Finally, a better characterization of the environments 

through envirotyping could allow to identify which environmental variables modulate the QTLs effects 

and to group locations accordingly for common adapted varieties [27]. 

A focus on peach leaf curl and apricot blossom blight 

Among the seven biotic stresses studied, leaf curl in peach and blossom blight in apricot stood out 

from the others by presenting two distinct typologies: the former being little influenced by 

environments and G×E interactions and the latter, by contrast, being strongly influenced by 

environmental effects. Our study provides the first GWAS analysis on these two major stone fruit 

diseases. 

Apricot blossom blight variation was found to be controlled by a high number of environment-

dependent QTLs, indicating a complex genetic determinism. Variance decompositions and GWAS 

analyses pointed towards predominant G×Y effects on this disease. In fact, all QTLs identified with 

single-environment models were year-specific and respectively 65% and 61% of the QTLs identified 

with MTMM and meta-GWAS presented allelic effects modulated by year (i.e. interactive QTLs). Due 

to these important fluctuations between years, no high-confidence QTLs could be identified with our 

method. It has been shown that the development of Monilinia on apricot is tightly linked to the 

interaction between phenology and meteorological conditions, where temperature and humidity 

during blossom play a major role [62,63], and knowing that the petals being the entry point for the 

fungus [64,65]. Our dataset was filtered prior to analyses to avoid strong pheno-climatic bias by taking 

out blossom blight incidence scores for trees having insufficient flower density and Monilinia climatic 

index in a given year [66]. Despite decent heritability values obtained for apricot blossom blight (0.51; 

Figure 2.B), we might need to better account for the epidemiological context to further study the 

genetic basis of that disease. 

In contrast to apricot blossom blight, leaf curl damage was a highly heritable trait underlined by low 

environmental and G×E effects (Figure 2 and Supplementary Table 1). This low environmental impact 

could be partly explained by a homogeneous leaf curl pressure across the targeted geographic areas, 

but also within fields and along the susceptibility period (leaf emergence stage). On the opposite of 
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blossom blight, where the susceptible stage (i.e. flowering) lasts for a few days to a week, the infection 

period for leaf curl lasts over several weeks [67] meaning that phenology-driven avoidance is rare. In 

line with the phenotypic analyses, we found a highly stable QTL located on chromosome 4 (identified 

with all GWAS models tested apart from MTMM). 23 further QTLs have been identified for leaf curl, 

with an intermediate level of confidence, and mostly driven by location-specific effects (19 location-

specific QTLs identified with single-environment models). These results suggest that low susceptibility 

to leaf curl is governed by a major QTL combined with several minor genes having weaker and 

environment-specific effects. 

In terms of experimental design, we would recommend studying blossom blight incidence over several 

years in a location with overall high incidence (e.g. upper Rhone Valley in France), to capture for each 

accession a season during which the tree was actually confronted to the risk. Regarding leaf curl, 

several locations might be necessary only to capture the minor-effect genes that act as a complement 

to the major QTL. In terms of breeding strategies, MAS seems to be particularly well adapted to leaf 

curl, whereas for blossom blight, combining improved epidemiological risk prediction with genomic 

selection would be a promising strategy. 

The rest of the biotic stresses appeared to be more nuanced with no strong typology emerging. We 

highlighted a location effect but the relative classification of accessions is relatively well preserved 

between sites (i.e. rank inversions between accessions are not so common). On average, 23% of the 

QTLs identified with single-environment GWAS were ‘environment-shared’. Finally, the majority of 

‘interactive’ QTLs identified presented a 'differential' profile which suggest that some QTLs have 

effects in some environments and not in others, but true inversions of QTL effects are less common. 

Usefulness of AUDPC and Max variables to study biotic stress response: identification of 

complementary regions 

We decided to compare Max and AUDPC, two key metrics to capture the complexity of disease 

dynamics in naturally infected fruit tree orchards. The maximum of damage score provides a clear 

indicator of ‘absolute’ vulnerability to biotic stresses but overlooks disease progression over time in 

different epidemiological contexts. 

Although we found high correlations between Max and AUDPC for all biotic stresses studied, with 

broadly similar heritability (Figure 1, Figure 2.B and Supplementary Fig 2), we identified between 31 to 

97 new QTLs with AUDPC depending on the GWAS models. Importantly, among the high confidence 

QTLs, 32% where only detected using AUDPC. Overall, QTLs detected with Max were more stable while 

those identified with AUDPC were more location- or year-specific. This underlines the complementary 

nature of the two metrics. Although widely used in other crops, mostly under controlled infection 
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conditions, the use of AUDPC has increased in recent years for assessing quantitative disease 

resistance in fruit trees and for evaluating disease management practices [68–70]. Some studies have 

even highlighted the dynamics of genetic effects during pathogen colonization with a distinction 

between early and late response and temporal pattern in effects of QTLs [69]. 

Because AUDPC requires a large effort to provide repeated measures at multiple time points of the 

season, we recommend implementing this metric for diseases for which the onset and duration of 

infection is critical for production, such as apricot rust, or for polycyclic disease [71]. Indeed, early 

summer defoliation caused by rust has a strong impact on flowering capacity next year. We showed 

that among the high confidence QTLs identified for apricot rust and rust leaf fall, 25% were AUPDC 

specific and only 37% overlapped between AUDPC and Max. Therefore, AUDPC enables to better 

distinguish accessions with a high and continuous level of infection at a critical time point of the season, 

which is not possible with Max. 

High confidence QTLs reveal the role of basal and host-specific resistance shaping the response 

to biotic stress in stone fruit trees 

 Among the QTLs detected with single environment models, respectively 79%, 77% and 54% were also 

detected with GWAS model focusing on the main genetic effect, by the multi-environment GWAS 

(MTMM) and with meta-GWAS. In total, these different GWAS models enabled the detection of 

respectively 38, 79 and 29 QTLs that had not been detected with single environment GWAS. The 

findings in our study support combining single- and multi-environment models to improve the 

statistical power, the reliability and robustness of GWAS. Similar results have been obtained in the case 

of QTL detection for drought response in maize where the incorporation of the interaction with the 

environment improved the power of GWAS and enabled to find QTL that are significant in a broad 

range of environments [72]. By conducting GWAS with multiple methods, we narrowed down the list 

of relevant regions to a total of 60 ‘high confidence QTLs’ across traits. These QTLs explaining in 

average 36.8% of the genetic variance, and for apricot rust they also explained 53.6% of the genotype 

by location interaction variance.  

To our knowledge, for most of the pests or diseases studied here, resistance or tolerance mechanisms 

have never been investigated by GWAS analysis neither by QTL mapping, as is the case for leafhopper, 

shot hole, blossom blight, peach and apricot rust. Previous analyses on peach powdery mildew have 

already identified QTLs and candidate genes (Vr2 and Vr3) located on chromosomes 8 and 2 [73–75], 

but none of them overlap with the high confidence QTL identified here. The high confidence QTL we 

identified for leaf curl on LG4 was not reported previously. A unique linkage analysis study on leaf curl 

in an interspecific F1 progeny between a peach cultivar and P. davidiana, a peach related species, 
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reported two consistent QTLs located on linkage groups 3 and 6 [76]. QTLs were also identified in these 

regions by MTMM and Meta-GWAS but they were not categorized as ‘high confidence’. In contrast to 

a QTL-mapping population where the genetic background is homogenous, major alleles might go 

undetected due to low frequency in a core collection. This may explain the low overlap between our 

results and those already reported. The type and number of markers included, the approaches used 

for detecting QTLs or the difference in phenotyping techniques might also contribute to some 

discrepancies between studies. 

Interestingly, the majority of candidate genes identified belong to the Leucine-rich repeat (LRR)-

containing receptors (LRR-CRs) family gene which represents the largest class of plant resistance genes 

(R genes) [77,78]. LRR-CRs can be classified in three main sub-families: LRR receptor-like kinase (LRR-

RLK), LRR receptor-like protein (LRR-RLP) and nucleotide-binding-site LRR (NBS-LRR) [79,80]. In our 

study we identified candidate genes belonging to all the categories with genes related to i) LRR-RLK 

identified for apricot rust and rust leaf fall (PruarM.6G017900 and PruarM.6G018400), ii) LRR-RLP 

identified for apricot rust and rust leaf (PruarM.2G180700, PruarM.4G204800, PruarM.4G199400, 

PruarM.4G199700, PruarM.4G199900, PruarM.4G204800 and PruarM.4G206100) and iii) NBS-LRR 

identified, for leafhopper (Prupe.7G065400 and Prupe.7G065500), powdery mildew 

(Prupe.6G132100), peach rust (Prupe.2G060400). RLKs and RLPs have been identified to function as 

cell surface pattern-recognition receptors (PRRs) which detect pathogens-associated molecular 

patterns (PAMPs) and lead to the activation of the pattern-triggered immunity (PTI), the basal defence 

responses to pathogens [79,81]. We also identified a high number of genes annotated as ‘TMV 

resistance protein N’ (Prupe.7G065300 identified for leafhopper, Prupe.2G057600, Prupe.2G057800, 

Prupe.2G059000, Prupe.2G059200 and Prupe.2G059400 identified for peach rust, and 

PruarM.2G283800 for apricot rust leaf fall). The tobacco N gene, conferring resistance to tobacco 

mosaic virus (TMV) has been identified as TIR-NBS-LRR protein type [82]. It has been shown that NBS-

LRR proteins conferred resistance to diverse pathogens, including fungi, oomycetes, bacteria, viruses 

and insects. By recognizing pathogen effector molecules, NBS-LRR proteins lead to the activation of 

defence responses and play a fundamental role in the effector-triggered immunity (ETI), the second 

pathogen-sensing mechanism in plants [81]. ETI usually induces programmed cell death at the infection 

site, known as the hypersensitive response (HR), and thus locally limits pathogen spread. NBS-LRR 

proteins are highly variable and subject to balancing selection, which could contribute to the high 

specificity of these effectors [79]. Thus, our results point towards a prevalent role of host specific 

(narrow spectrum) and non-specific (large spectrum) resistance mechanisms among the diseases 

studied here.  
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Similar, yet divergent: difference in the architecture of biotic stress response between peach 

and apricot in the light of their biological features 

Peach and apricot are closely related species belonging to the Rosaceae family and the genus Prunus. 

They present different reproductive characteristics and demographic history [83]. Endowed with a self-

incompatibly system, apricot is a cross-pollinating species [84], whereas peach is a preferentially self-

pollinating species [85]. This results for apricot in a high number of effective recombination events and 

a rapid expected LD decay over the genome, whereas the opposite pattern is expected for peach [86].  

In our study, global mean LD blocs over all chromosomes are about 3300 times longer for the peach 

core collection compared to the apricot core collection. In fact, previous association studies have 

already highlighted a LD decay over very short distances (100 to 200 bp) in apricot (based on a 

population comprising an important part of the material used in presented work) [48,49]. In a similar 

way for peach, other studies have found a significant LD decay at 5 Kbp to 1.8 Mbp (depending on the 

population), confirming high levels of LD over long distance for that crop [44,87]. QTL intervals were 

therefore particularly small for apricot (max 946 Bp), with most of them being defined by the top SNP. 

Minding a sufficient number of markers, a higher mapping resolution makes association analyses more 

powerful to target causal polymorphisms in apricot, facilitating the identification of promising 

candidate genes [88]. For rust tolerance, we identified three genes covering several confidence QTLs 

in apricot, along with favourable haplotypes (Figure 6.D and Supplementary Fig 11). Results on apricot 

strongly contrast with those obtained in peach, where QTLs were up to max 3240 Kbp in size, and 

contained 52 to 528 genes. Using local LD values allowed to refine QTL sizes and to narrow down the 

list to 23 candidate genes. 

In our study, rust was the only disease able to affect both peach and apricot. Rust diseases have a 

fungal origin and affect many crops, and typically present a high specificity to their host [89]. 

Tranzchelia discolor (Fuckel) has been shown to attack peach, almond, plum, apricot, and cherry 

[90,91]. For both species, a high confidence QTL was identified on chromosome 2. 

Finally, we identified a total of 123 new QTLs using non-additive models, indicating that non-additive 

effects play a significant role in biotic stress response for both species. In proportion, more non-

additive QTLs were found in peach (56%) than in apricot (39%). Although peach is a self-compatible 

species with a low level of heterozygosity, this result indicates that both additive and non-additive 

genetic effects are important in the genetic architecture of the traits under study, as already been 

shown for leaf curl susceptibility inheritance [92]. In almond, another cross-pollinating Prunus species, 

non-additive GWAS conducted on agronomic traits led to the identification of 13 QTLs with only one 
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having additive effect [83]. Harnessing non-additive variance might thus be valuable to better exploit 

genetic variance, which is particularly relevant in clonally propagated crops.  

Conclusion and prospect 

This study provides a thorough characterization of the genetic variation underlying resistance and 

tolerance to several pests or diseases in peach and apricot via observations over multiple 

environments under natural conditions. By quantifying and exploiting G×E interactions, we found a 

majority of environment-specific or interactive QTLs. For future experiments, we recommend 

considering the combination of pathogens which are specifically expressed in each target location to 

optimize the choice of experimental sites.  

Our results emphasize that, while accounting for pedo-climatic adaptation and market requirements, 

future breeding should focus on adaptation to the biotic profile of the target production area. 

Developing new peach and apricot cultivars is a time-consuming process because of the long juvenile 

stage, large plant size, and the multi-year recording of phenotypic performance [93]. As a next step, 

the effects of the allelic variants identified in this study need to be validated before incorporating them 

in MAS strategy to efficiently screen breeding materials and optimize the multi-trait and multi-

environment selection schemes. Another promising strategy to overcome the limiting aspects of GWAS 

would be the use of genomic prediction models for a better exploitation of weak effects underlying 

quantitative resistances and tolerances [94,95]. 

Material and methods 

Plant material and trial description 

The plant material and experimental design used in this study were previously described in [96]. To 

sum up, we used two core collections of respectively 206 peach (P. persica and 3 relatives: P. davidiana, 

P. mira, and P. kansuensis) and 150 apricot (P. armeniaca) accessions coming from multiple 

geographical origins with significant number of accessions of historical and regional importance, 

landraces and elite materials. The peach core collection also includes ornamental cultivars, few 

accessions from close-related species and interspecific crosses. 

All orchards are located in South-East France, in three locations for peach: Étoile-sur-Rhône (44.8°N/ 

4.9°E, Drôme), Avignon (43.9°N/4.8°E, Vaucluse) and Torreilles (42.8°N/3.0°E, Pyrénées-Orientales), 

respectively called ET, AV and TO; and in two different locations for apricot: Saint-Marcel-lès-Valence 

(45.0°N/4.9°E, Drôme) and Bellegarde (43.7°N/4.5°E, Gard), respectively called SM and BE. Climate 

ranges from Mediterranean to semi-continental. Peach and apricot orchards are composed of two and 

five randomized complete blocks respectively, each block containing one replicate per genotype. All 
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accessions have been grafted on ‘Montclar® Chanturgue’ peach rootstocks. First leaf emergence was 

in 2019 for peach and in 2018 for apricot. 

The orchards were managed under integrated plant protection during the first two years after the 

plantation with a progressive reduction of phytosanitary protection thereafter. Overall, only punctual 

treatments were applied if the survival of the orchard was at stake for peach orchards since 2023, and 

except for the protection against the psyllid vector of the Apricot Chlorotic Leaf Roll (ACLR) in 

Bellegarde, no protection was applied for apricot orchards since 2020. 

Phenotypic data collection  

We monitored the damages caused by four diseases and one pest on peach in 2021, 2022 and 2023 

and by two diseases on apricot in 2020, 2021, 2022 and 2023 (Table 2). For the rest of the analysis, the 

term of environment refers to the combination of a location and a year. All field data were collected 

using the ‘Field Book’ Android application [97]. 

The assessment of the damages caused by all these pests and diseases was based on the visual 

estimation of symptom incidence (percentage of damaged leaves). Different rating scales were used 

to best capture the phenotypic expression of each pest or disease (Supplementary Method 1). 

Except for blossom blight which was assessed around 30 days after blooming date and for which the 

shoots infected by Monilinia spp. were removed, repeated scoring was undertaken for the different 

pests and diseases to monitor the evolution of contamination throughout the seasons in the different 

orchards.  

Genotyping and resequencing 

Genotyping of the peach core collection was performed on 192 individuals using the higher density 

IRSC 16K SNP array (https://www.rosaceae.org/Analysis/431). The genotyping dataset was filtered to 

retain SNPs with call rate per marker > 90%, missingness per individual < 50%, heterozygosity ≤ 98% 

and MAF >5% which resulted in a final set 13,680 markers.  

The apricot core collection was sequenced with the Illumina HiSeq 2000 NGS technique. The sequence 

alignment was performed on the third version of the ‘Marouch’ genome [41]. The dataset was first 

filtered with a missingness per individual < 50% and only biallelic SNPs with more than 10 reads 

deep/SNP have been conserved. Finally, the dataset was filtered to retain SNPs with call rate per 

marker > 95%, heterozygosity ≤ 98%, MAF >5% and a removal of duplicated SNPs. This dataset 

consisted in 207,000 markers.  

For both datasets, the imputation of missing data was done using the most frequent allele.  
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For the datasets used in non-additive GWAS, we included two more filtering steps to retain SNPs with 

three genotypic classes and with a minimum genotypic class frequency higher than 5%. These datasets 

consisted in respectively 10,082 markers for peach and 25,508 markers for apricot.  

Table 2. Summary of pests and diseases monitored in this study 

 

Statistical analysis of phenotypic data  

All statistical analyses of phenotypic and genotypic data were performed using the R software version 

4.1.2 (R-Core-Team, 2020) 

At each date of observation, phenotypic data were adjusted within each environment to correct for 

spatial environmental effects using information on row and column (Supplementary Method 2). After 

removing environments with insufficient phenotypic expression, we extracted Max and AUDPC 

(Supplementary Method 2). These variables were transformed using Box-Cox to correct for 

heteroscedasticity and non-normality of error terms (Supplementary Method 2). Variance analysis was 

performed using mixed linear models to quantify the variance associated to genetic, G×E, and non-

additive effects (Supplementary Method 3 and Supplementary Method 4). 

Linkage disequilibrium 

Intrachromosomic linkage disequilibrium (LD) was measured with the r2 value estimated by using 

VCFTools v0.1.16 [98]. The r2 was calculated for every combination of SNPs within a sliding window of 

 
Pest and 

Disease 
Organism Pathogen Organ 

Number of 

environments 

observed 

Number of 

environments 

considered  

Peach  

Leaf curl Fungi 
Taphrina 

deformans 
Leaves 

3 (3 locations 

and 1 year 

3 (3 locations 

and 1 year 

Leafhopper Insect 
Asymmetrasca 

decedens 
Leaves 

6 (3 locations 

and 3 years) 

6 (3 locations 

and 3 years) 

Powdery 

mildew 
Fungi 

Podosphaera 

pannosa 
Leaves 

8 (3 locations 

and 3 years) 

5 (2 locations 

and 3 years) 

Rust Fungi Tranzchelia spp. Leaves 
6 (2 locations 

and 3 years) 

5 (2 locations 

and 3 years) 

Shot hole Fungi 
Wilsonomyces 

carpophilus 
Leaves 

9 (3 locations 

and 3 years) 

4 (3 locations 

and 2 years) 

Apricot 

Blossom 

and twig 

blight 

Fungi 

Monilinia spp. 

(mostly Monilia 

laxa) 

Flowers 

and twigs 

4 (1 location 

and 4 years) 

4 (1 location 

and 4 years) 

Rust Fungi 
Tranzschelia 

spp. 
Leaves 

6 (2 locations 

and 4 years) 

6 (2 locations 

and 4 years) 
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10 Mbp for peach and of 30 Kbp for apricot for every chromosome individually. We used a threshold 

of 0.2 to set the LD decay which was then represented graphically using Hill and Weir equation [99].  

Genome‑wide association studies (GWAS)  

Table 3. Summary of the different GWAS model used in this study 

GWAS name R Package Rationale 

Main genetic effect 

additive GWAS 
MM4LMM Decipher the main additive genetic effects across environments 

Main genetic effect 

non-additive GWAS 
MM4LMM 

Decipher the main non-additive genetic effect across 

environments 

Single environment GWAS MM4LMM Study genetic effects environment by environment 

Multi-environment GWAS MTMM 

Assess the effect of G × E interactions on QTL detection and 

identify genetic factors with common effects, i.e. stable marker 

effects across environments, or interaction effects, i.e. differential 

marker effects across environments 

Meta-analysis GWAS MetaGE 
Assess the effect of G × E interactions on QTL detection by a joint 

analysis of single-environment GWAS results 

 

Across-environment GWAS based on main additive and non-additive genetic as well as single-

environment GWAS (Table 3) were performed using the single locus linear mixed model of [100] 

implemented in the R package MM4LMM [101] : 

 

𝑌 =  𝑋𝛽 + 𝑄𝜐 + 𝑍𝑢 +  𝜀 (1) 

 

where 𝑌 is respectively the vector of G-BLUPs for across-environment GWAS or of environment-

specific BLUPs for single-environment GWAS, 𝑋 is the molecular marker score matrix, 𝛽 is the vector 

of marker effects, 𝑄 is the structure matrix estimated by the SNMF R package [102] (Supplementary 

Method 5 and Supplementary Result 1), 𝜐 is the fixed effect of the structure, 𝑍 is an incidence matrix, 

𝑢 is the vector of random background polygenic effects with variance σ2
u = K σ2

G (where K is the 

variance-covariance matrix of G, and σ2
G is the genetic variance), and ε is the vector of residuals.  

The estimation of the variance-covariance matrix of G was determined by a genetic relatedness (or 

kinship) matrix, derived from all SNPs except those on the chromosome containing the SNP being 

tested as in [103]. According to the model, additive or non-additive kinships were used. They were 

calculated using the method developed by [104] and the source code published by [105]. For every 

pest or disease, we tested two different corrections including the kinship (model ‘K’) or both kinship 

and population structure (model ‘Q + K’). The best model was chosen on a trait-by-trait basis by 

comparing the likelihood of each null model (i.e. with only kinship of kinship + structure effects) using 
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the AIC. We used a ‘modified’ 5% Bonferroni correction described by [106] to define significant 

associations between phenotypic data and genotypic markers. This threshold is based on the effective 

number of independent SNPs calculated thanks to the Meff equation implemented in the R package 

poolR [107]. The number of effective markers was 1326 for peach and 1778 for apricot. 

To explore non-additive genotype–phenotype associations, we transformed the genotypic datasets 

following [108] and [54], as illustrated in Supplementary Table 4. 

Subsequently, we performed single locus multi-environment GWAS by using the multi-trait mixed 

model (MTMM) as described by [29] in order to distinguish common and environment-specific 

marker–phenotype association (Table 3 and Supplementary Method 6). We finally performed a meta-

analysis  relying on the results of the single-environment GWAS model by using MetaGE R package [34] 

(Table 3 and Supplementary Method 7).  

Identification of high confidence QTLs and variance analysis of G×E and QTL×E 

For all GWAS analyses, every QTL region was defined using the position of the top SNP (i.e. with the 

lowest P-value) and the estimated LD decay for every chromosome. In other words, QTLs were centred 

on the top SNP position with an extent of 2 time-specific chromosomal LD decay. Candidate SNPs 

distant less than the LD decays size were considered as belonging to this QTL. Each QTL name was 

defined as the associated trait name, followed by the chromosome number and the QTL’s order among 

all QTLs for this trait along the chromosome. 

For every trait, we selected ‘high confidence’ QTLs which correspond to QTLs significant in at least 50% 

of the different additive GWAS model tested for the maximum of damage score or for AUDPC. We 

considered that each environment of the single-environment GWAS as separate models as well as the 

model ‘full’, ‘common’ and ‘gei’ of MTMM.  

To assess the biological relevance of the high confident QTLs, we followed the approach previously 

described by [27,109] which aim at comparing the variance of a multi-locus multi-environment mixed 

model with and without the fixed effects of the QTLs and of the QTLs by environment interaction 

(Supplementary Method 8). Last, we calculated the indicator 𝛾𝑞,𝑟 to assess the proportion of genetic, 

G×L interaction and G×Y interaction variance explained jointly by all detected QTLs for each trait 

(Supplementary Method 8). 

Candidate gene analysis 

Each high confidence QTLs region was queried in the Prunus persica Whole Genome v2.0 Assembly 

and Annotation v2.1 [39] or in the Prunus armeniaca Marouch whole genome v1.0  [41] from the 
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Genome Database for Rosaceae (www.rosaceae.org). SNP gene localization and function were 

determined using the JBrowse tool (www.rosaceae.org/tools/jbrowse). Their function was then 

investigated in the literature, and genes involved in traits linked to host defence mechanisms were 

therefore proposed as putative candidate genes. 

For peach, the local LD was calculated between the top SNP of the different ‘high confidence’ QTLs 

and all the SNPs belonging in this QTLs by using LDcorSV R package which takes into account population 

stratification and the relatedness between genotypes [110]. We used r2 > 0.2 to filter the putative 

candidate genes.  

For genes which overlapped among several confidence QTLs for apricot, pairwise LD from all physically 

close SNPs in the region was computed using r2 calculated with LDcorSV R package [110]. The 

haplotypes were constructed by considering all top SNPs of the confidence QTLs involved for each G-

BLUPs phenotype. Mean phenotypic distributions of the different haplotypes were compared using 

paired samples Wilcoxon tests for the associated G-BLUPs phenotypes.  
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Figure 1. Phenotypic distribution and correlation between Max and AUDPC for A) peach rust and B) apricot rust. 

Distributions of Max are shown at the top of each graph, while the distributions of AUDPC are shown on the 

right.  

AV: Avignon, ET: Étoile-sur-Rhône, TO: Torreilles, SM: Saint-Marcel-lès-Valence and BE: Bellegarde. 
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Figure 2. A) Stacked bar plots with the variance of the random effects of genotype, genotype by location, 

genotype by year and genotype by year by location interactions, and residuals; calculated from the model 

presenting in Eq. (2) of Supplementary Method 3 and B) broad sense heritability calculated from Eq. (3) 

Supplementary Method 3. 

*Biotic stress observed only one year 

**Biotic stress observed only in one location 
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Figure 3. GWAS results on main additive and non-additive genetic effect with A) QTL summary showing the 
physical position of GWAS significant SNPs. Each horizontal line contains QTLs of one biotic stress, organized by 
additive or non-additive analysis and either for the maximum of damage score (called Max) or the AUDPC. The 
dot colours are proportional to the -log10(P-value) of the QTL top SNP. The x-axis indicates the physical positions 
on the peach or apricot genome. Boxplots illustrating the effect of a (B) dominant, (C) recessive and (D) 
overdominant SNP with a significant association for respectively shot hole (Max), blossom blight (Max) and 
apricot rust (AUDPC). 
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Figure 4. QTL summary showing the physical positions of GWAS significant SNPs for environment-specific models. 

Each horizontal line contains QTLs of one biotic stress, organized by environment and either for the maximum of 

damage score (called Max) or the AUDPC (except for blossom blight, where AUDPC was not available). The 

coloured dots are proportional to the -log10(P-value) of the QTL top SNP. The x-axis indicates the physical 

positions on the genome (peach or apricot depending on trait). 
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Figure 5. QTL summary showing the physical position of GWAS significant SNPs for the two models dissecting the 

G×E interactions (MTMM and Meta-GWAS). Each horizontal line contains QTLs of one biotic stress, organized by 

GWAS model (Meta-GWAS and the 3 sub-model of MTMM: full, common and gei). The dot colours are 

proportional to the -log10(P-value) of the QTL top SNP and the dot shape represent the considered variable (Max 

or AUDPC). The x-axis indicates the physical positions on the peach or apricot genome. 
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Figure 6. Fine characterization of two high confidence QTLs. A) Representation of the local LD between the top 

SNP of QTL ‘Leaf_curl_4’ and all other SNPs of the QTL. The X-axis represents the physical distance from the top 

SNP, while the Y-axis represents the r2, corrected by the relatedness and structure, between SNPs and the top 

SNP. Each dot represents a SNP which is coloured according the p-value of Meta-GWAS. The vertical orange dot 

lines represent the QTL interval readjusted using the local LD. B) genes with relevant functions located in the 

QTL, with candidate genes in green and genes located in the QTL but not in local LD with the top SNP in red. B) 

Relevant genes located in the QTL, with candidate genes in green and relevant genes located in the QTL but not 

in local LD with the top SNP in red. C) Heatmaps of pairwise LD estimates within the genomic window around 

candidate gene ‘PruarM.6G017900’. Top SNPs of the different high confidence QTLs are shown with red dot line 

and D) G-BLUPs distributions of apricot rust Max according to the haplotype constituted by the SNPs 

‘S6_974955’,’S6_975427’,’S6_975502’ and ‘S6_976066’. Statistical differences between groups were computed 

by pairwise Wilcoxon tests.  
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