

A social-ecological approach to collective action for water quality management in agriculture. The case of drinking water source protection in France

Laurence Amblard

► To cite this version:

Laurence Amblard. A social-ecological approach to collective action for water quality management in agriculture. The case of drinking water source protection in France. TED4LAT workshop and doctoral school, Oct 2024, Paris, France. hal-04767451

HAL Id: hal-04767451 https://hal.inrae.fr/hal-04767451v1

Submitted on 5 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A social-ecological approach to collective action for water quality management in agriculture. The case of drinking water source protection in France.

Laurence Amblard (INRAE, UMR Territoires)

TED4LAT workshop and doctoral school October 23rd, 2024

Introduction

- Diffuse pollution from agriculture (nitrates, pesticides)
 - A significant pressure on surface and ground waters in the European Union and French contexts
 - Multiple environmental, economic and social impacts

Impact on ecosystems and biodiversity

• Eutrophication

Human health risk

• Regulatory standards for nitrate and pesticide rates (EU Drinking Water Directive)

Extra-costs of drinking water production

• Water treatments, resource blending/substitution

Introduction

- EU Water Framework Directive (WFD) (2000)
 - Objective of good status for all water bodies in Europe
 - Protection of water bodies used for drinking water production "in order to reduce the level of purification treatment required"

- "Grenelle" policy in France (2009)
 - Identification of 1000 priority water catchments
 - Definition and implementation of action programs targeting diffuse pollution
 - Cooperation between water suppliers and agricultural stakeholders (farm organizations, farmers)

Introduction

- "Grenelle" policy in France (2009)
 - Mixed outcomes
 - Only half priority catchments covered by an action program in 2019 (MTE, 2020)
 - No significant improvement in water quality

• Research objective :

Identifying the factors affecting the success/failure of collective action

Outline

1. Conceptual framework

• A combination of the Social-Ecological Systems (SES) framework and transaction cost economics

2. Methodology

• A comparative multi-case study approach

3. Results

• The factors favoring/constraining collective action

4. Conclusion

- Transaction cost economics
 - The development of cooperation depends on the benefits and costs linked to participation to collective action
 - Transaction costs = resources used to define, establish, maintain and transfer property rights (Allen, 2000)

- In the field of natural resource management and environmental policy (McCann et al., 2005)
 - *Ex-ante* transaction costs : information collection and processing costs, decisionmaking costs and/or negotiation costs for reaching agreements
 - *Ex-post* transaction costs : monitoring and enforcement costs of agreements

Benefits and costs of collective action

Benefits

Costs

Transaction costs

Costs for defining actions (ex ante)

Costs for implementing actions (ex post)

Drinking water suppliers

Water quality improvement/maintenance

Opportunity costs of alternative options

Economic resources

Information costs Consultation/negotiation costs

Control/enforcement costs

Farmers

Savings from input reduction Subsidies/compensation Profit losses Labor/investment costs

Information costs Consultation/negotiation costs Control costs Sanctions (non-compliance)

- Social-Ecological Systems (SES) framework
 - Identification of the factors affecting the benefits and costs of collective action

Ostrom, 2007; McGinnis and Ostrom, 2014

- SES framework : focal action situations
 - Actors make choices among available options in light of information about the likely actions of other participants and the benefits and costs of options
- Interactions : harvesting, information sharing, selforganizing activities, conflicts...
- Outcomes :
 - Social performance measures (efficiency, equity...)
 - Ecological performance measures (biodiversity, resilience,...)

- SES framework : governance systems
 - Multi-level sets of rules

First-tier variable	Second-tier variables
ocial, economic, and political settings (S)	 S1 - Economic development S2 - Demographic trends S3 - Political stability S4 - Other governance systems S5 - Markets S6 - Media organizations S7 - Technology
Resource systems (RS)	RS1 – Sector (e.g., water, forests, pasture, fish) RS2 – Clarity of system boundaries RS3 – Size of resource system RS4 – Human-constructed facilities RS5 – Productivity of system RS6 – Equilibrium properties RS7 – Predictability of system dynamics RS8 – Storage characteristics RS9 – Location
Governance systems (GS)	GS1 – Government organizations GS2 – Nongovernment organizations GS3 – Network structure GS4 – Property-rights systems GS5 – Operational-choice rules GS6 – Collective-choice rules GS7 – Constitutional-choice rules GS8 – Monitoring and sanctioning rules
Resource units (RU)	RU1 – Resource unit mobility RU2 – Growth or replacement rate RU3 – Interaction among resource units RU4 – Economic value RU5 – Number of units RU6 – Distinctive characteristics RU7 – Spatial and temporal distribution
Actors (A)	 A1 - Number of relevant actors A2 - Socioeconomic attributes A3 - History or past experiences A4 - Location A5 - Leadership/entrepreneurship A6 - Norms (trust-reciprocity)/social capital A7 - Knowledge of SES/mental models A8 - Importance of resource (dependence) A9 - Technologies available
Related ecosystems (ECO)	ECO1 – Climate patterns ECO2 – Pollution patterns ECO3 – Flows into and out of focal SES

McGinnis and Ostrom, 2014

 A sub-set of factors likely to be critical for the success of selforganized collective action involving users of a common-pool resource (Ostrom, 2009)

First-tier variable	Second-tier variables
Posource system (DS)	DC2 Size of recourse system
Resource system (RS)	RSS – Size of resource system RS5 – Productivity of system
	RS7 – Predictability of system dynamics
Resource unit (RU)	RU1 – Resource mobility
Governance system (GS)	GS6 – Collective-choice rules
Actors (A)	A1 – Number of relevant actors A5 – Leadership A6 – Norms (trust-reciprocity)/social capital A7 – Knowledge of SES A8 – Importance of resource (dependence)

Set of assumptions regarding factors affecting collective action for diffuse pollution control

First-tier variable	Second-tier variable	Impact on benefits/costs and Transaction Costs (TCs)	Impact on collective action
Resource system (RS)	RS3 – Size of resource system	🗡 TCs Small size 🔪 benefits	-/+
	RS5 – Productivity of system	Moderate scarcity 🖊 benefits	+
	RS7 – Predictability of system dynamics	TCs	+
Governance system (GS)	GS6 – Collective-choice rules	Autonomy of users 🔪 TCs	+
Resource units (RU)	RU1 – Resource unit mobility	Mobile units 🖊 TCs	-
Actors (A)	A1 – Number of relevant actors	TCs Small number resources	-/+
	A5 – Leadership-entrepreneuship	Presence of leaders 🔪 TCs	+
	A6 – Norms/social capital	Shared norms/trust 🔪 TCs	+
	A7 – Knowledge of SES	TCs	+
	A8 – Importance of the resource	/ benefits	+

Adapted from Ostrom, 2009

Methodology

- 1. A review of cases of cooperation in the French context
 - Literature review
 - Interviews with stakeholders at the water basin and national levels (12)
 - Ministries, water agencies, farm organizations, private water operators

- 2. Case studies of collective action in six drinking water catchments
 - Review of documents
 - Interviews with local stakeholders involved in cooperation (36)
 - Water suppliers, farm organizations, state administrations, farmers

Methodology

Methodology

	Allier	Virieu	Oursbellile	Arcier	Ammertzviller	Val de Reuil
Regulatory frame	Grenelle	Grenelle	Grenelle	Grenelle	SDAGE Rhin-Meuse	-
Start date	2009	2009	2009	2004	2008	2008
Type of pollution	Nitrates	Pesticides	Nitrates	Pesticides	Nitrates/ pesticides	-
Level of contamination	Moderate	High	High	Moderate	High	Good water quality
Catchment area	8300 ha	115 ha	396 ha	10 200 ha	363 ha	127 ha
Number of farms	118	10	19	72	30	7
Farming systems	Mixed farming	Livestock	Field crops	Mixed farming	Field crops	Field crops
Outcomes						
Farm participation	3/118	5/10	7/19	20/72	16/30	4/7
Area covered	0,9 %	40 %	18 %	19,5 %	22 %	87 %
Water quality trend	No improvement	Improving trend	No improvement	Improving trend	Improvement	Maintenance of good quality

Factors

Impact on collective

action Level of water contamination The factors affecting the Cost of alternative approaches to water benefits of catchment protection water suppliers Financial and human +resources External support from +public agencies

 The factors affecting the benefits of farmers Type of farming systems

Factors

Markets/food supply chains

Economic incentives provided by contracts

Environmental preferences

Conclusion

- The factors favoring/constraining cooperation between water suppliers and farmers
 - Interactions between the characteristics of the resource system, the actors involved, the governance system and the broader context
 - The sub-set of 2nd tier variables identified as crucial for the success of collective action by users of a common-pool resource >
 - Resource mobility (groundwater versus surface waters)

Conclusion

- The factors favoring/constraining cooperation between water suppliers and farmers
 - Other SES variables as conditions for the success of collective action
 - Socio-economic attributes of water suppliers and farmers ≥
 - The economic and policy context ≥

First-tier variable	Second, third and fourth-tier variables
Social, economic and political settings (S)	S4 – Other governance systems
	S4.1 – Larger scale governance systems
	S4.1.1 – External support from public agencies
	S5 – Markets
	S5.1 – Market conditions for agricultural products
Resource systems (S)	RS3 – Size of resource system *
	RS3.1 – Size of the water catchment
	RS5 – Productivity of system *
	RS5.1 – Level of water contamination
	RS7 – Predictability of system dynamics *
Governance systems (GS)	GS5 – Operational rules
	GS5.1 – Contract incentives
	GS6 – Collective-choice rules*
	GS6.1 – Autonomy at the collective-choice level
	GS8 – Monitoring and sanctioning rules
	GS8.1 – Contract enforcement
Actors (A)	A1 – Number of relevant actors *
	A1.1 – Number of farmers
	A2 – Socio-economic attributes
	A2.1 – Resources available to water suppliers
	A2.2 – Type of farming systems
	A2.3 – Heterogeneity of farming systems
	A5 – Leadership-entrepreneurship *
	A5.1. – Leadership in the farming community
	A6 – Norms (trust-reciprocity)/social capital *
	A7 – Knowledge of SES *
	A8 – Importance of the resource *
	A8.1 – Economic importance for water suppliers
	A8.2 – Environmental preferences of water suppliers/farmers

Conclusion

- Results = adaptation of the SES framework to the case of collective action for drinking water source protection
 - Use of identified factors as assumptions to be tested on a larger sample of cases in France
 - Application of the adapted framework to cases of cooperation in other countries
 - The role of factors linked to the different institutional context at the national/EU levels

Thanks for your attention

laurence.amblard@inrae.fr