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Abstract. The calibration of hydrological models through
the use of automatic algorithms aims at identifying parameter
sets that minimize the deviation of simulations from obser-
vations (often streamflows). Further, the choice of objective
function (i.e. the criterion or combination of criteria for op-
timization) can significantly impact the parameter set values
identified as optimal by the algorithm. This article discusses
how mathematical transformations, which are sometimes ap-
plied to the target variable before calculating the objective
function, impact model simulations. Such transformations,
for example square root or logarithmic, aim at increasing the
weight of errors made in specific ranges of a hydrograph. We
show in a catchment set that the impact of these transforma-
tions on the obtained time series can sometimes be differ-
ent from their expected behaviour. Extreme transformations,
such as squared or inverse squared transformations, lead to
models that are specialized for extreme streamflows but show
poor performance outside the range of the targeted stream-
flows and are less robust. Other transformations, such as the
power 0.2 and the Box–Cox and logarithmic transformations,
can be categorized as more generalist and show good per-
formance for the medium range of streamflows, along with
acceptable performance for extreme streamflows.

1 Introduction

Hydrological models are essential tools for hypothesis test-
ing and process understanding (Rosbjerg and Madsen, 2006)
and for very practical applications such as flood or low-
flow forecasting, water resource management, or the assess-
ment of climate change impacts. Despite the long-lasting ef-
forts of hydrologists, there is consensus in the community

that no universal hydrological model structure exists, and it
is doubtful whether this will ever be found. This has mo-
tivated a proliferation of flexible modelling platforms such
as FUSE (Clark et al., 2008), SUPERFLEX (Fenicia et al.,
2011), Noah-MP (Niu et al., 2011), SUMMA (Clark et al.,
2015b, a, 2021b), MARRMoT (Knoben et al., 2019), Raven
(Craig et al., 2020), and airGR (Coron et al., 2017). In or-
der to fit specific applications and, due to the wide catchment
diversity and various targeted streamflow ranges, perform-
ing a calibration of model parameters is generally necessary.
The calibration process usually relies on the use of one or
more criteria, i.e. a numerical metric of the model error that is
used as an objective function. The choice of this optimization
criterion is subjective (Mendoza et al., 2016; Fowler et al.,
2018; Melsen et al., 2019), since it depends on various as-
pects (application objective, model characteristics, etc.), and
two different criteria will impact the calibration process dif-
ferently and will lead to different optimal parameter sets and
performances (Booij and Krol, 2010). In addition, these cri-
teria suffer from flaws leading to their incorrect use by mod-
ellers (Clark et al., 2021a), and each modeller has their own
vision of what constitutes a good model or hydrograph and
how this translates into a numerical criterion (Crochemore
et al., 2015).

While criteria are usually calculated for comparing raw
simulated and observed streamflow time series, a wide range
of transformations have been introduced in the literature
(Bennett et al., 2013), which consist in using a mathematical
function in order to transform both simulated and observed
time series. These transformations rely on the fact that they
distort the observed and simulated time series and their prop-
erties in such a way as to expect that the related errors will
be similarly distorted. This is illustrated in Fig. 1, where, in
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panel (a), larger errors between the observed and simulated
time series mostly occur for high-flow periods (pink-shaded
area), while in panel (b), with log-transformed flows, these
errors are much larger over low-flow periods (green-shaded
areas).

Since many metrics rely on square errors (e.g. root mean
square error or Nash–Sutcliffe efficiency, Nash and Sutcliffe,
1970) and therefore are known to emphasize the most im-
portant errors (Sorooshian and Dracup, 1980), a large set
of transformations was proposed for better representation of
low flows. A non-exhaustive list of transformations is listed
in Table 1, with the square root, logarithmic, inverse square
root, inverse, or other power law transformations being the
most popular ones. Other studies used the Box–Cox trans-
formation with different λ values or combined several of the
transformations listed above.

While the choice of transformations is wide-ranging and
the theoretical basis is sound (as shown in Fig. 1), there is no
extensive literature discussing the merits of the transforma-
tion approach. Pushpalatha et al. (2012) justified the use of
transformations by several authors through the fact that “the
sum of squared residuals calculated on the logarithms of flow
values” reduces “the biasing towards peak flows”. They in-
vestigated which range of streamflows leads to the largest
parts of errors. Smith et al. (2014) showed that a transforma-
tion called “flow-corrected time”, designed to provide greater
weight to time periods with larger hydrological flux, results
in improved fits, compared to a baseline untransformed case
and the logarithmic transformation, over the time periods
that dominate hydrological flux. Peña-Arancibia et al. (2015)
showed that a square root transformation with Nash–Sutcliffe
efficiency leads to higher performance, on both the calibra-
tion and the evaluation period, and a reduced parameter un-
certainty compared with no transformation or a logarithmic
transformation. Sadegh et al. (2018) investigated the role of
several transformations in three catchments and two models
and deduced that some data transformations might be more
helpful for the evaluation of model performance and the anal-
ysis of model behaviour than for calibration.

To the best of our knowledge, only a few studies have thor-
oughly assessed the use and choice of transformations. For
example, Krause et al. (2005) stated that they used the log-
arithmic transformation on the Nash–Sutcliffe efficiency “to
reduce the problem of the squared differences [. . .]. Through
the logarithmic transformation of the runoff values the peaks
are flattened and the low flows are kept more or less at the
same level. As a result the influence of the low flow values
is increased in comparison to the flood peaks”. Chiew et al.
(1993) used a power 0.2 transformation and justified it by the
fact that “it generally leads to constant variances (values of
SIM0.2

−REC0.2 are similar for all flow volumes) in many of
the temperate catchments where models have been applied
by the authors”. Oudin et al. (2006) reported that “it is com-
mon practice in hydrology to use a transformation on flows
before optimization”. Others only stated that transformations

are used “to remove the bias towards high flows” (Smakhtin
et al., 1998), “to fit low flow periods” (Pechlivanidis et al.,
2014), or to put “more weight on low flow” (Garcia et al.,
2017).

While Fig. 1 illustrates these assertions to some degree,
there is a lack of a general assessment of the impact of trans-
formations on the calculation of criteria under diverse condi-
tions. The objective of this study is to provide new insights
to fill this gap in the literature. That is, we aim to perform a
systematic evaluation of the impact of 11 streamflow trans-
formations on the errors made by hydrological models over
specific parts of the streamflow ranges. In order to help gen-
eralize our results, we set up a methodology which we ap-
plied to a large set of catchments. Here, we will not consider
metrics calculated with specific streamflow selection proce-
dures, such as keeping only streamflow values under or over
a threshold or using relative streamflow.

2 Material and method

2.1 Catchment set and data

We used data from 325 catchments around France (Chauveau
et al., 2011) in order to (i) generalize the conclusions drawn
from this study (Gupta et al., 2014) and (ii) explore possi-
ble links between catchment characteristics and specific be-
haviours of transformations. These catchments were chosen
for the low human impact on the precipitation–streamflow
relationship and for the low rate of missing streamflow data
(< 0.5%) over the period of interest. Moreover, the catch-
ments are spread throughout France (Fig. 2), thus represent-
ing a wide variety of meteorological and hydrological condi-
tions.

Precipitation and temperature data were retrieved from
the Météo-France SAFRAN reanalysis (Vidal et al., 2010).
Streamflow data were retrieved from the French HydroPor-
tail database (Leleu et al., 2014). Daily meteorological and
hydrological data from the period August 1985–July 2005
were used, with August 1985–July 1995 as the calibration
period and August 1995–July 2005 as the independent eval-
uation period. The main characteristics of the 325 catchments
are summarized in Table 2, illustrating the large diversity
of the catchment characteristics encountered, with small to
large catchments, various precipitation and temperature con-
ditions, rain-fed and snow-fed catchments, and catchments
with low- to high-baseflow components. Moreover, the large
range of land cover, slope, and hydraulic length strengthens
the diversity of possible catchment responses. This table also
shows that the climatic and hydrological conditions are simi-
lar between the two periods, with the evaluation period being
only slightly warmer and wetter than the calibration period
and the other indicators showing only slight variations.
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Figure 1. (a) Observed and simulated streamflow (with the GR4J model calibrated with NSE) time series (left axis) for the Fecht River at
Wintzenheim and the related difference (i.e. error, right axis) between 1 January 1990 and 29 November 1990. (b) The same observed and
simulated streamflow time series plotted with a logarithmic scale and the difference in log-transformed observed and simulated streamflows.
In the boxes, a low-flow period is highlighted in green, which shows that the error is minimal with no transformation (a) and much higher
with a logarithmic transformation (b). The opposite is valid for high flows (in pink).

2.2 Hydrological model

The GR4J model is a lumped conceptual daily rainfall-runoff
model (Perrin et al., 2003). In this model, the effective pre-
cipitation is derived from the reduction in total precipitation
by vegetation interception and by evapotranspiration from a
soil-moisture-accounting production store. The effective pre-
cipitation is then routed through two unit hydrographs and
one routing store. Groundwater exchange can occur from or
to neighbouring catchments. A complete description of the
model’s equations is provided by Perrin et al. (2003).

This model contains four free parameters to calibrate
against streamflow observations: the maximum capacity of
the production store (X1, mm), the groundwater potential
exchange (X2, mm d−1), the 1 d ahead routing store capac-
ity (X3, mm), and the time characteristics of the unit hydro-
graphs (X4, d).

For the catchments with a proportion of solid precipitation
(considered here to be precipitation occurring with negative
air temperatures) greater than 10 % of the total precipitation,
a snow model (CemaNeige) was used. This model is based

on a degree-day approach and comprises two parameters to
calibrate: the melt rate coefficient (Kf , mm°C−1 d−1) and
a parameter regulating the energy of the snowpack (cT , di-
mensionless). In order to consider intra-catchment variabil-
ity, CemaNeige was applied to five elevation bands of equal
area, which makes it possible to account for temperature and
precipitation gradients (see Valéry et al., 2014, for more de-
tails).

In this work, we also use the GR6J model (Pushpalatha
et al., 2011) to assess the transferability of the conclusions
drawn. GR6J adds two parameters to GR4J: X5 [–], which
enables an inversion of the direction of the groundwater ex-
change throughout the year, and X6 [mm], which is the max-
imum capacity of an additional exponential store, whose pur-
pose is to improve low-flow simulations.

All the calculations are made with the airGR R package
(Coron et al., 2017, 2022). The built-in optimization algo-
rithm, an initial parameter grid screening followed by the
steepest-gradient approach, is chosen due to its known sat-
isfactory performance with GR models (Perrin et al., 2003;
Mathevet, 2005; Coron et al., 2017). All optimization criteria

https://doi.org/10.5194/hess-28-4837-2024 Hydrol. Earth Syst. Sci., 28, 4837–4860, 2024
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Table 1. Non-exhaustive list of references using streamflow transformations.

Transformation

Reference
√
Q log(Q) 1/

√
Q Q−1 Box–Cox Other power law Mix

transformations

Abdulla et al. (1999) X(10 values between −1 and 1)
Beck et al. (2016) X
Box and Cox (1964) X(multiple values between −1 and 1)
Chapman (1964) X
Chiew et al. (1993) X
Dawdy and Lichty (1968) X
de Vos et al. (2010) X
Ding (1966) X
Duan et al. (2007) X(basin-specific)
Farmer and Vogel (2016) X
Garcia et al. (2017) X X X
Hogue et al. (2000) X(0.3)
Houghton-Carr (1999) X
Huang et al. (2023) X(multiple values between −1 and 1)
Ishihara and Takagi (1970) X
Krause et al. (2005) X
Lerat et al. (2020) X(0.2)
Nicolle et al. (2014) X
Oudin et al. (2006) X X
Pechlivanidis et al. (2014) X
Pushpalatha et al. (2012) X X
Quesada-Montano et al. (2018) X
Santos et al. (2018) X
Seeger and Weiler (2014) X
Smakhtin et al. (1998) X
Song et al. (2019) X X
van Werkhoven et al. (2008) X(0.23)
Vázquez et al. (2008) X(0.25)
Vrugt et al. (2006) X(0.3)

and streamflow transformations used in this work are embed-
ded in airGR.

2.3 Objective functions

In order to assess the impact of transformations, the hydro-
logical models are calibrated with several objective functions
over the 1985–1995 period. However, in order to estimate
how transformations impact the simulated time series, the
1995–2005 independent evaluation period is also used. In
both cases, a 1-year spin-up period preceding the aforemen-
tioned periods is used.

Three objective functions are chosen for their wide-
ranging use in calibrating hydrological models: the well-
known Nash–Sutcliffe efficiency (NSE; see Nash and Sut-
cliffe, 1970), the Kling–Gupta efficiency (KGE; see Gupta
et al., 2009), and the modified Kling–Gupta efficiency
(KGE′; see Kling et al., 2012). The NSE concentrates most
of the analyses of this work, and the KGE and KGE′ objec-
tive functions are used to assess the generality of the results.

These three criteria are detailed in Eqs. (1), (2), and (3).

ENSE = 1−
∑N
t=1(Q

s
t −Q

o
t )

2∑N
t=1(Q

o
−Qo

t )
2

(1)

EKGE = 1−

√
(r − 1)2+ (

Qs

Q
o − 1)2+ (

sd(Q
s)

sd(Qo)
− 1)2 (2)

EKGE′ = 1−

√
(r − 1)2+ (

Qs

Q
o − 1)2+ (

CV(Q
s)

CV(Qo)
− 1)2 (3)

N is the total number of days of the test period. Qs
t and

Qo
t are the simulated and observed streamflows, respectively,

at time step t . Q
o

(Q
s
) is the average observed (simulated)

streamflow over the period. r is the correlation coefficient, sd
is the standard deviation, and CV is the coefficient of varia-
tion.
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Figure 2. Map of France with the locations of the 325 catchments used. The Fecht River at Wintzenheim, which is used as an example
throughout this paper, is coloured blue.

2.4 Streamflow transformations

The hydrological models are calibrated by applying differ-
ent transformations to streamflow values in the calculation
of objective functions. Nine to 11 transformations are used
(Table 3), together with three objective functions. In addition
to the transformations mentioned in the Introduction section,
four additional transformations are used. The squared (Q2)
transformation is applied, as this can be used for focusing on
floods (Tan et al., 2005), and its inverse (Q−2) is applied, as
it focuses on low flows. Furthermore, two composite criteria,
f (Q)+f (Q−1)

2 and f (Q)+f (log(Q))
2 (with f standing for NSE,

KGE, or KGE′; Nicolle et al., 2014), are added since they
can be used as a compromise between criteria focusing on
ranges of streamflows that are too specific. The two transfor-
mations containing the use of a logarithm are not applied to
KGE and KGE′, as they cause numerical instabilities and unit
dependence, as shown by Santos et al. (2018). Regarding the
Box–Cox transformation, Eq. (10) in Santos et al. (2018) is
used to avoid the same issues as for the logarithmic transfor-
mation with a λ value equal to 0.25, as suggested by Vázquez
et al. (2008).

2.5 Evaluation methodology

In order to evaluate the impact of the transformations on
model calibration, we use a common analysis framework that
aims at analysing the behaviour of transformations at every
simulation time step. The general methodology, which is ap-
plied for each catchment and objective function, is detailed
here and in Fig. 3 (for illustrative purposes for only two trans-
formations):

1. The hydrological model is calibrated against observed
streamflows for a catchment and with a given objec-
tive function successively with different transformations
(see Fig. 3a for two transformations only).

2. For each time step, the absolute error |Qs
t −Q

o
t | is cal-

culated for the simulations obtained with the 9 (or 11)
transformations (see Fig. 3b for 2 transformations only).

3. These daily absolute errors are ranked from smallest to
largest among the simulations obtained for the 9 (for
KGE or KGE′) or 11 (for NSE) transformations (see
Fig. 3c for 2 transformations only).

4. The time series of daily ranks are sorted according to
the sorted observed streamflow time series (see Fig. 3d
for two transformations only).

https://doi.org/10.5194/hess-28-4837-2024 Hydrol. Earth Syst. Sci., 28, 4837–4860, 2024
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Table 2. Characteristics of the 325 catchments. The minimum, median, and maximum columns represent the lowest, 163rd, and highest
values over the 325 catchments for every characteristic. The baseflow index values range between 0 and 1, with 1 being the highest value
(highest baseflow). The baseflow index was calculated according to Pelletier and Andréassian (2020) using the baseflow R package
(Pelletier et al., 2021). The aridity index and the seasonality of aridity were calculated according to Knoben et al. (2018), the centre of mass
of annual runoff was calculated according to Stewart et al. (2005), and the central slope of the flow duration curve was calculated according
to McMillan et al. (2017). Physiographic data were calculated using the Shuttle Radar Topography Mission (SRTM) DEM (Farr et al., 2007)
and the CORINE Land Cover data (French Ministry of Environment, 2018). The calibration and evaluation periods are 1985–1995 and
1995–2005, respectively. The maps with sample statistics for these catchment features are included in Appendix C.

Characteristic Period Minimum Median Maximum

Surface area [km2] – 5 226 13 484
Minimum altitude [ma.s.l.] – 6.0 209.0 2154.0
Median altitude [ma.s.l.] – 53.0 368.0 2741.0
Maximum altitude [ma.s.l.] – 93.0 784.0 3997.0

Median slope [°] – 1.1 7.4 35.8
Median hydraulic length [km] – 2.1 19.0 200.7
Artificial land cover [%] – 0.0 2.1 18.2
Agricultural land cover [%] – 0.0 54.2 97.7
Forest land cover [%] – 0.0 43.5 100.0

Mean annual precipitation [mmyr−1] Calibration 651 1009 2204
Evaluation 691 1025 2077

Fraction of solid precipitation [%] Calibration 0.3 2.5 59.1
Evaluation 0.0 2.2 50.3

Mean air temperature [°C] Calibration −1.1 10.0 13.9
Evaluation −0.9 10.3 14.2

Mean annual potential evapotranspiration [mmyr−1] Calibration 252 661 858
Evaluation 267 678 871

Mean annual runoff [mmyr−1] Calibration 101 405 2485
Evaluation 123 410 2250

Baseflow index (BFI) [–] Calibration 0.01 0.22 0.68
Evaluation 0.01 0.23 0.76

Aridity index [–] Calibration 0.03 0.33 0.74
Evaluation 0.01 0.33 0.77

Aridity seasonality [–] Calibration 0.69 1.33 1.64
Evaluation 0.62 1.36 1.72

Centre of mass of annual runoff [DOY] Calibration 117 152 248
Evaluation 113 145 244

Central slope of the flow duration curve [–] Calibration 0.39 1.05 5.05
Evaluation 0.40 1.01 5.26

5. The sorted ranks are aggregated over 200 sequential in-
tervals of an equal number of time steps to smoothen
the results and facilitate the visual analysis. Two aggre-
gations were made:

– extraction of the transformation with the most
“number-1” ranks (see Fig. 3e for two transforma-
tions only); and

– calculation of the average rank for each class (see
Fig. 3f for two transformations only).

The use of ranks to classify the proximity between model
simulations and streamflow observations could be criticized,
since it gives the same importance to large and small errors.
This option was preferred to the use of direct (normalized)
errors. Indeed, ranks make it possible to consider together
various flow ranges, where the magnitudes of errors can be
very different. The impact of this methodological choice will
be discussed in Sect. 3.4.

The methodology above is applied catchment by catch-
ment. Then, to aggregate the results over the 325 catchments,

Hydrol. Earth Syst. Sci., 28, 4837–4860, 2024 https://doi.org/10.5194/hess-28-4837-2024
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Figure 3. General methodology applied to assess the impact of transformations on the diverse ranges of streamflows. Here the example
is shown over a short period and only for two transformations and a single catchment. In the study, the methodology is applied for 9 to
11 transformations, 10-year periods, and 200 intervals. (a) Observed and simulated streamflow time series. (b) Absolute values of errors
in transformed streamflow time series. (c) Ranking of error time series. (d) Sorting of ranked time series according to increasing observed
streamflows. For the next sub-plots, results are aggregated over intervals: (e) identification of the transformation with the most number-1
ranks for each interval and (f) calculation of the average rank for each transformation and each interval. See the “Material and method”
section for more details.

we either identify the transformation with the most number-1
ranks or average the ranks over the 325 catchments.

When modellers choose an objective function (or, if rele-
vant, a transformation), the main objective is to have a model
fit for purpose, e.g. to be the best for low flows if the target
is low flows. In the following, we evaluate the link between
the objective function and transformation selected and the
accuracy of the model using the 200 flow intervals described
above. We successively performed this analysis on

– the calibration period over a single catchment with
GR4J calibrated on NSE,

– the calibration and evaluation periods over the 325
catchments with GR4J calibrated on NSE, and

– the evaluation period over the 325 catchments with
GR6J calibrated on NSE and GR4J calibrated on KGE.

We also tried to link the results to the characteristics of
the 325 catchments over the evaluation period with GR4J
calibrated on NSE, using the Spearman correlation. Lastly,
we questioned the methodology used to compare transfor-
mations for the calibration period over the 325 catchments
with GR4J calibrated on NSE.

https://doi.org/10.5194/hess-28-4837-2024 Hydrol. Earth Syst. Sci., 28, 4837–4860, 2024
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Table 3. The 11 transformations used in this study and the criteria
they are applied to. The abbreviations provided here are used in the
figures and the text. The λ value for the Box–Cox transformation is
0.25.

Transformation Abbreviation NSE KGE KGE′

Q2 2 X X X
– 1 X X X
√
Q 0.5 X X X

Q0.2 0.2 X X X
Box–Cox boxcox X X X
f (Q)+f (log(Q))

2 QlogQ X
f (Q)+f (Q−1)

2 QinvQ X X X
log(Q) log X
1/
√
Q −0.5 X X X

Q−1
−1 X X X

Q−2
−2 X X X

3 Results and discussion

3.1 Analysis of the impact of transformations for a
specific catchment

Figure 4 illustrates an example application of the method-
ology for a single catchment, the Fecht River at Wintzen-
heim, for the GR4J model calibrated with the NSE objective
function and for 11 different transformations. Here we show
which transformation leads to the most number-1 ranks for
each of the 200 intervals, for low flows (on the left) to high
flows (on the right). It appears that some transformations are
often ranked first (such as the −2, −1, 1, and 2 transforma-
tions). Conversely, some transformations are rarely or never
ranked first (such as QlogQ or 0.2). In this figure, the trans-
formations are represented in an order from a pre-supposed
good representation of high flows (top row) to a pre-supposed
representation of low flows (bottom row), because, except for
composite transformations, the aforementioned transforma-
tions are presented in order of decreasing power. We can see
that the logic is respected quite well, with transformations 2
and 1 being very well represented regarding intervals corre-
sponding to high flows and transformations −2 and −1 be-
ing very well represented regarding intervals corresponding
to low flows. This does not preclude some transformations
from being identified as the best ones (or equally the best
ones, as ties are represented in Fig. 4) for unexpected inter-
vals, such as transformation 2, which shows good results for
some low-flow categories.

A second representation is given in Fig. 5 with the aver-
age rank of the transformations (i.e. the average of the ranks
of transformations over all the time steps of the interval con-
cerned) for each of the 200 intervals. In this figure, we see
that the transformations remain rather close together for low
flows, with an average rank between 5 and 7. By contrast, the
spread is larger for high streamflows, with average ranks be-

tween 4 and 9. Specifically, several transformations share the
best average rank values for low flows, such as the −1, log,
and −0.5 transformations. Interestingly, the −2 transforma-
tion, which is supposedly the transformation giving the high-
est weight to low flows and identified as the transformation
with the most number-1 ranks for a high number of intervals
in Fig. 4, only shows the best average rank for the very first
interval and then quickly shows a much worse average rank.
This might indicate that the −2 transformation gives a high
weight to errors over a limited number of time steps with the
lowest streamflows (see Fig. B1 in the Appendix for further
analyses).

Regarding the middle range of streamflows, a couple of
transformations show the best average rank, such as the −1,
log, and −0.5 transformations but, also progressively, as
the streamflows get higher, the 0.2, QinvQ, and Box–Cox
transformations. Interestingly, this indicates that, while be-
ing quite average most of the time (analysis not shown here),
these transformations still have better average ranks than
transformations with more occurrences of rank 1. Finally, re-
garding high flows, the 2, 1,QlogQ, and 0.5 transformations
take the lead.

3.2 Analysis of the impact of transformations for the
325 catchments

3.2.1 Analysis of the calibration period

While some trends could be identified in the analysis of a
single catchment in the previous section, the results are im-
pacted by a rather high level of noise for successive inter-
vals. To circumvent this issue and to generalize the results,
we perform a similar analysis over the 325-catchment set
presented in Sect. 2. This analysis is shown in Fig. 6 using
the GR4J model calibrated with the NSE objective function.
Results are presented for the calibration period. In this fig-
ure, the best simulation is identified for each catchment and
for each interval according to the methodology presented in
Fig. 3f. Then, for each interval, the simulation with the most
number-1 ranks among the 325 catchments is labelled as the
best one. A clear pattern appears: the 2 transformation is best
for high flows, and the 1 transformation is best for slightly
lower flows. Regarding low flows, the best transformation for
the most extreme flows is the−2 transformation, followed by
the −1 and −0.5 transformations. This result confirms that
the goal of transformations, which is to distort streamflow
time series, is easily reached when used for calibration. The
only surprise is that only 5 out of the 11 transformations are
identified as being best for at least one interval. However, the
present analysis is binary and could result in a more precise
diagnosis being missed.

In order to better understand the behaviours of the differ-
ent transformations, we show in Fig. 7 the interval-averaged
ranks of all the transformations. The best average rank most
of the time is between 4 and 5, except for high flows, where
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Figure 4. Identification of the simulation with the most number-1 ranks for 200 intervals ordered by increasing observed streamflows.
An example for the Fecht River at Wintzenheim, over the calibration period (1985–1995), for the GR4J model is calibrated with NSE.
The CemaNeige model was not used. Each rectangle identifies one interval whose transformation(s) provide(s) the most number-1 ranks,
including ties. The λ value for the Box–Cox transformation is 0.25.

Figure 5. Average rank for each transformation, with an example for the Fecht River at Wintzenheim, over the calibration period (1985–
1995), for the GR4J model calibrated with NSE. A smoothing window (10-value moving average) is applied to improve legibility. The λ
value for the Box–Cox transformation is 0.25.

it can reach 3.5 (the best one being 1). We see that no trans-
formation is always best, even though some transformations
show a rather high interval-averaged rank throughout most of
the intervals. Regarding the worst transformations, they show
an interval-averaged rank of around 8 to 9 out of 11; how-
ever, the 2 transformation is clearly the worst one for low
flows, and the −2 transformation is the worst one for high
flows. Some general features can be observed. First, several
transformations take the lead for low flows: the −2 transfor-
mation shows the best average rank for the very first intervals
but quickly shows a worse average rank. The other leading
transformations (i.e. with the best average rank), when going
from the lowest flows to increasing flows, are successively
the−1,−0.5, log, boxcox, 0.5, and finally 1 transformations.
It is noteworthy that, despite being identified as an excellent
transformation for high flows in previous figures, the 2 trans-
formation is never the best one on average. This stems from
the fact that, even though it is the best high-flow transforma-
tion for many catchments, when it is not, its rank is rather
low; we could categorize this transformation as an all-or-
nothing transformation. Regarding the shapes of the curves,
we can distinguish four groups. First, the 2, 1, and 0.5 trans-
formations show a decreasing curve. That is, they have the
best rank for high flows rather than low flows. Conversely,
the −2, −1, and −0.5 transformations show an increasing

curve. That is, they have a better rank for low flows than for
high flows. TheQlogQ andQinvQ transformations show the
best ranks for both high and low flows, with the worst ranks
for the medium range of streamflows (arch-shaped curve).
The 0.2 and log transformations show the best ranks for the
medium range of the streamflows and the lowest ranks for
high and low flows (U-shaped curves). Finally, the boxcox
transformation shows the best rank for medium to high flows,
but not for the highest flows.

Averaging the interval-averaged ranks over the 200 in-
tervals provides an overview of the general ranking of the
transformations (Table 4). This analysis leads to the follow-
ing ranking: the 0.2, log, and boxcox transformations have
the lowest (i.e. best) average rank, followed by 0.5, QlogQ,
−0.5,QinvQ, 1,−1,−2, and 2. Typically, only one transfor-
mation is used by modellers for their application. If their ap-
plication is very specific, this might make sense, as it is possi-
ble to identify transformations that outperform others. How-
ever, when their application is multi-purpose, it is very likely
that the transformation that is chosen will only fit a limited
range of streamflows. This is even more striking when we
observe that the commonly used 1 transformation is very of-
ten applied for calibration despite being the best transforma-
tion for only a very limited portion of the streamflow range,
i.e. high flows. In addition, the transformations that show the
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Figure 6. Identification of the simulation with the most number-1 ranks for the 325 catchments and for 200 intervals ordered by increasing
observed streamflows. To provide this analysis, the output of Fig. 3f is used, and for each interval the total of the number-1 ranks is cumulated
over the 325 catchments to identify the simulation with the most number-1 ranks. The GR4J model is used and is calibrated with NSE. Results
are shown for the calibration period. The λ value for the Box–Cox transformation is 0.25.

Table 4. Interval-averaged ranks for a calibration of the GR4J
model performed with NSE. Results are shown for the calibration
period. The λ value for the Box–Cox transformation is 0.25.

Transformation Average rank

2 7.49
1 6.24
0.5 5.50
0.2 5.23
boxcox 5.25
QlogQ 5.59
QinvQ 6.12
log 5.30
−0.5 5.80
−1 6.39
−2 7.08

best average rank are not the most widely used in the litera-
ture (0.2, log, and boxcox).

The impact of using 200 instead of 100 or 500 intervals
is illustrated in Appendix A, which shows that applying 200
intervals is a good compromise between overly coarse infor-
mation and overly noisy information. This also shows that
the results are only marginally impacted. We will therefore
keep this number of intervals in the following. In addition,
we will now only use figures similar to Fig. 7 (i.e. the evo-
lution of average ranks through the range of streamflows),
as this constitutes an efficient way of visualizing results and
provides enough information to understand the behaviours of
the transformations.

3.2.2 Are the conclusions transferable to an
independent period?

In the previous section, the results were presented for the cal-
ibration period, i.e. under optimal conditions, to understand
how transformations impact model simulations when used
for model calibration. However, the purpose of using mod-
els is to apply them to periods different from those used for
calibration. Here we show the average range for the GR4J
model calibrated with NSE over the evaluation period. The
objective is to discuss whether the conclusions drawn for the
calibration period are transferable to this independent period.
The results are shown in Fig. 8.

Interestingly, the results are very similar to those of Fig. 7.
The main discrepancy is that the average rank of the best
transformation shows a higher value for the evaluation pe-
riod than that for the calibration period, and correspondingly
the average rank of the worst transformation shows a lower
value for the evaluation period. In other words, over the eval-
uation period, the transformations lead to simulations that are
less specific, i.e. closer to each other. For the lowest flows,
the log and 0.2 transformations show the best average ranks,
while for higher flows the boxcox, 0.5, and 1 transformations
successively lead the pack. The 2 and−2 transformations are
never at the top of the average ranks, indicating that, in addi-
tion to being all-or-nothing options for calibration, they are
also poorly transferable to an independent period, even for
their respective ranges of expertise. The averaging of the av-
erage ranks over the 200 intervals is shown in Table 5. This
leads to the following ranking: the 0.2, boxcox, and log trans-
formations have the lowest average rank, followed by 0.5,
QlogQ, −0.5, QinvQ, −1, 1, −2, and 2. Compared to the
calibration period, this ordering is only marginally modified,
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Figure 7. Interval-averaged rank over the 325 catchments and for 200 intervals ordered by increasing observed streamflows. To provide this
analysis, the output of Fig. 3f is used, and for each interval the mean rank is averaged over the 325 catchments. The GR4J model is used and
is calibrated with NSE. Results are shown for the calibration period. A smoothing window (10-value moving average) is applied to improve
legibility. The λ value for the Box–Cox transformation is 0.25.

Table 5. Interval-averaged ranks for a calibration of the GR4J
model performed with NSE. Results are shown for the independent
evaluation period. The λ value for the Box–Cox transformation is
0.25.

Transformation Average rank

2 7.44
1 6.19
0.5 5.40
0.2 5.16
boxcox 5.16
QlogQ 5.59
QinvQ 6.26
log 5.29
−0.5 5.88
−1 6.45
−2 7.16

and the average ranks over the 200 intervals are only slightly
different. This indicates that, while not significantly modify-
ing the conclusions of the previous analysis, over an inde-
pendent period the transformations lose specificity for their
pre-supposed range of expertise so as to gain performance
for the rest of the streamflow range.

3.2.3 What is the impact of the choice of objective
functions and hydrological models?

All the previous analyses were led by the GR4J model cali-
brated with NSE. In the following, we assess the impact of
using another hydrological model, GR6J, as well as two ad-
ditional objective functions, KGE and KGE′. Although this
model and these objective functions can be considered to be
not drastically different from GR4J and NSE, we believe that
they provide useful transferability information for the results.

Indeed, these two new objective functions are increasingly
being reported in the literature, which justifies their use. The
following analyses are performed for the independent evalu-
ation period only.

Figure 9 provides the interval-averaged ranks of the 11
transformations for the GR6J model calibrated with NSE,
assessed over the independent evaluation period. The gen-
eral shape of this plot is rather similar to that of Fig. 8. The
main differences concern the 2 transformation, which ap-
pears to show much worse ranks than the other transforma-
tions for GR6J than for GR4J, especially for low flows. This
might stem from the fact that, compared to GR4J, GR6J was
mainly developed to improve low flows and therefore con-
tains two more parameters to optimize, which focus on low-
flow-generating processes and consequently could be less
identifiable with the 2 transformation. We can also see that,
for most of the intervals (i.e. for the main part of the stream-
flow range), the best transformation is better identified for
GR6J than for GR4J, as the latter shows very close curves
most of the time. Table 6 presents the values for the interval-
averaged ranks. This table shows that the interval-averaged
ranks are very similar for the two models, except for the 2
transformation. We can therefore conclude that, for the mod-
els used here, the relative performance of the transformations
is very similar across the streamflow range.

Figure 10 shows how the interval-averaged ranks of the
transformations evolve when we use different objective func-
tions. Interestingly, these two panels are similar to each other
and to Fig. 8 (although the reader should note the absence of
the two log-dependent transformations for KGE and KGE′).
This means that the use of transformations seems to lead to
similar ranges of streamflows that are targeted by calibra-
tion regardless of the objective function used, in particular
for the very common NSE, KGE, and KGE′. Here we do not
show the interval-averaged ranks over the 200 intervals, as
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Figure 8. Average rank over the 325 catchments and for 200 intervals ordered by increasing observed streamflows. To provide this analysis,
the output of Fig. 3f is used, and for each interval the mean rank is averaged over the 325 catchments. The GR4J model is used and is
calibrated with NSE. Results are shown for the independent evaluation period. A smoothing effect (10-value moving average) is applied to
improve legibility. The λ value for the Box–Cox transformation is 0.25.

Figure 9. Same as Fig. 8 for the GR6J model calibrated with NSE. The λ value for the Box–Cox transformation is 0.25.

Table 6. Interval-averaged ranks for a calibration of the two hy-
drological models performed with NSE. Results are shown for the
independent evaluation period. The λ value for the Box–Cox trans-
formation is 0.25.

Transformation GR4J GR6J

2 7.44 8.15
1 6.19 6.28
0.5 5.40 5.54
0.2 5.16 5.25
boxcox 5.16 5.29
QlogQ 5.59 5.44
QinvQ 6.26 5.79
log 5.29 5.29
−0.5 5.88 5.71
−1 6.45 6.23
−2 7.16 7.04

the number of transformations differs between NSE on the
one hand and KGE and KGE′ on the other hand.

3.3 Links between catchment characteristics and
transformations

We tried to identify links between catchment characteristics
and the performance of transformations to better understand
the behaviour of the different transformations and to poten-
tially help prescribe transformations, knowing the catchment
characteristics. To do so, we used the Spearman correlation
to analyse how the interval-averaged ranks of transforma-
tions for each catchment could relate to the catchment char-
acteristics listed in Table 2. The GR4J model calibrated with
NSE was used here. In order to maximize the possibility of
identifying strong links, only the catchment characteristics
and interval-averaged ranks over the calibration period were
used.

The most important correlations were found between the
BFI values and the QlogQ (correlation equal to 0.56), box-
cox (0.51), 0.2 (0.50), and log (0.38) transformations. Neg-
ative correlations were found between the BFI and the −1
(−0.32) and −0.5 (−0.30) transformations. This means that,
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Figure 10. Same as Fig. 8 for the GR4J model and the independent evaluation period calibrated with KGE and KGE′. Note that the two
transformations using a log transformation were not used with the KGE and KGE′ objective functions. The λ value for the Box–Cox
transformation is 0.25.

the lower the BFI, the better the use of transformations giv-
ing intermediate weights between high and low flows. Con-
versely, the higher the BFI, the better the use of transforma-
tions that give a large weight to low flows. We observed that
the central slope of the flow duration curve shows correla-
tions of the same order of magnitude but opposite to the one
shown by the BFI, with exactly the same transformations.
This suggests a strong correlation between these indicators.
All the other catchment characteristics show no correlation
over 0.30 or under −0.30, signifying a weak explanation of
the performance of transformations with these characteris-
tics. Using the stats::cor.test() function in R, we found that
the correlations lower than −0.11 and higher than 0.11 were
all significant (i.e. p values< 0.05), whereas none of the oth-
ers was significant. Regarding the BFI and the central slope
of the flow duration curve, although the above-mentioned
correlation values are interesting, they are not sufficient to
permit any prescription to be made regarding the choice of
transformation for a specific kind of catchment. To deepen
this analysis, a co-inertia analysis (Dolédec and Chessel,
1994; Dray et al., 2003) was undertaken of two principal
component analyses made for the table of catchment char-
acteristics and the table of transformations; however, it could
not show any further informative interdependence between
catchment characteristics and transformations.

3.4 Impact of the method used to compare
transformations

In this work, the transformations have been compared us-
ing ranks. The reasons behind choosing to work with ranks
instead of direct (normalized) errors were (i) being less
impacted by different orders of error magnitudes between
catchments or ranges of streamflows and (ii) answering the
question of which transformations are the best ones, rather
than how good the transformations are. Assigning ranks can,
however, have the effect that a rank difference of 1 can sig-
nify a small error or a larger one. Nevertheless, ranks are
accounted for time step by time step, meaning that, if differ-
ences between two simulations are very low, there can quite
easily be changes in the order, which then result in similar
average ranks over the intervals.

The impact of using absolute differences rather than ranks
to compare transformations was assessed in Thirel et al.
(2023). The general shapes of curves obtained with this al-
ternative method were found to be similar, although some
discrepancies were observed. The large errors of some out-
lier transformations made it difficult to identify differences
between the other transformations. While this could lead to
the conclusion that these transformations can be used inter-
changeably because they seem to lead to very similar errors,
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it is important to note that the very high normalized mean
squared error (MSE) of one or two transformations leads to
smaller differences for other transformations. In other words,
the results using the MSE are impacted by the large error of
some transformations and lead to less informative results. We
therefore believe that the methodology based on ranks used
in this study provides more readable results.

3.5 Discussion

The results of this study confirmed some common hypothe-
ses in the literature about efficiency criteria but also provided
specific insights that should be helpful for modellers. That is,
we confirmed that, as mentioned by various authors, transfor-
mations can be used “to remove the bias towards high flows”
(Smakhtin et al., 1998), “to fit low flow periods” (Pechlivani-
dis et al., 2014), or “to put more weight on low flow” (Garcia
et al., 2017). In addition, we showed that the log or 0.2 trans-
formations could lead to a better representation of low flows,
as stated by Krause et al. (2005) and Chiew et al. (1993).

However, we also added some knowledge to the exist-
ing literature. First, we showed that using no transforma-
tion of streamflows leads to a performance that is among
the worst for a large range of streamflows (from low to
medium ranges). As using no transformation is still the most
widespread way of calculating criteria, this could impact how
modellers calibrate models or evaluate them. In addition, we
showed that using the most extreme transformations for cali-
bration, for both high (2) and low (−2, −1) flows, leads to a
narrow range of streamflows for which the simulations seem
satisfactory. This reinforces the idea of trying to define well
the purpose of the modelling chains developed and choos-
ing the adapted transformation for model calibration. In ad-
dition, the fact that it is difficult to identify a transformation
leading to the best simulations overall or simply sufficiently
high performance for the whole range of streamflows indi-
cates that developing generic models fitting all purposes is
still a challenging task for modellers.

4 Conclusions

This study explored the impact of mathematical transforma-
tions applied to streamflow time series prior to the compu-
tation of objective functions for the calibration of hydrologi-
cal models. Such transformations are often used to focus on
different ranges of streamflows, but their actual impact has
rarely been assessed. Using the GR4J rainfall-runoff model
and 11 transformations for the Nash–Sutcliffe efficiency cri-
terion, we analysed the impact of transformations on stream-
flow simulations in terms of the difference from observa-
tions. We ranked the 11 transformations for each time step
and then aggregated the results at different scales. This first
analysis of the Fecht River at Wintzenheim showed that, in
general, the transformations indeed have the best ranks for

the range of streamflows they are pre-supposed to focus on
(e.g. the squared transformation focuses on high flows and
shows good ranks for high flows). However, it was shown
that some extreme transformations (squared and its inverse)
were rather binary, i.e. were either very highly ranked or very
poorly ranked, resulting in average ranks not being among
the best for most of the streamflow range. In addition, the re-
sults also showed that some transformations can have a satis-
factory performance for a range of streamflows they are not
aimed at and with no clear reason, justifying further analyses
with a larger set of 325 catchments.

This larger set of catchments allowed us to generalize the
results and to smoothen the transformation-ranking relation-
ship. The analysis showed that only a few transformations
were identified as being most frequently the best over the
325 catchments, with transformation −2 being the best for
low flows, followed by transformations −1 and −0.5, while
transformations 1 and 0.5 were most often the best ones for
high flows. Complementary to this binary analysis, the calcu-
lation of the averaged ranks over the 325 catchments showed
that the −2 transformation is only best for very low stream-
flows, meaning that, for many catchments, it is often a poorly
performing transformation even for rather low flows. Corre-
spondingly, the 2 transformation was found to only be effi-
cient for very high flows. Some more intermediate transfor-
mations, such as the 0.2, log, and boxcox transformations,
seem to be less specific but well-performing transformations,
quite often being among the best transformations for high,
medium, and low flows.

Although first tested for the Nash–Sutcliffe criterion ob-
jective function with the GR4J model and over the calibra-
tion period, this analysis was performed for two additional
objective functions, for one additional hydrological model,
and for the independent evaluation period. The results were
only slightly modified, strengthening the analysis; however,
models with different process complexities or other objective
functions should be investigated.

The results of this study may have important implications
for hydrological modellers. They show that, although some
common beliefs about the impact of transformations are con-
firmed by this study, no a priori assumption about stream-
flow transformations can be taken as warranted. In fact,
some transformations that are focused on extreme ranges of
streamflows are shown to lead to calibrated models that are
indeed better for these ranges over the calibration period but
are poorly robust, i.e. that no longer necessarily perform well
for this range of streamflows for an independent evaluation
period. This might stem from the fact that these transforma-
tions rely on a limited number of time steps (see Fig. B2).
In addition, these transformations are shown to lead to mod-
els that fit only a limited small range of streamflows. Con-
versely, some other transformations show high performance
for a large range of streamflows and still lead to reasonable
performance for extreme streamflows. That is, transforma-
tions 0.2, boxcox, and log show the best average rank for
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both the calibration and evaluation periods and may represent
adequate transformations to use for many applications. These
results should encourage modellers to evaluate the stream-
flow transformations they use when calibrating hydrologi-
cal models. The reader may, however, note that complemen-
tary aspects may be investigated, such as model robustness
when applying hydrological models to climate change appli-
cations, peak flows, timing, or other model time steps while
working on flash flood modelling, for example.

Appendix A: Impact of the number of intervals used

The whole range of streamflows was split into 200 inter-
vals of equal length. The number of intervals could have an
impact on the results. Consequently, we analyse in Fig. A1
how the use of 100 or 500 intervals may impact the conclu-
sions. It appears in this figure that the general shape of all
the curves remains similar when modifying the number of
intervals. However, when 500 intervals are used, the curves
are less smooth. This is understandable, since for smaller in-
tervals the results can be noisier. The main difference stems
from the extremes (high and low flows). Indeed, the−2 trans-
formation does not reach the top position for low flows and
100 intervals, while it does so for 200 intervals. Correspond-
ingly, the 2 transformation is very close to the top position
for 500 intervals and high flows, while it is not so for 100
intervals.
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Figure A1. Same as Fig. 7 for the GR4J model and the calibration period for three different numbers of intervals. The model was calibrated
with NSE. The λ value for the Box–Cox transformation is 0.25.
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Appendix B: Contribution of the largest error days of
the total error

To assess the contribution of the largest error days of the to-
tal error, the concept of fractional contribution to the square
error was used (Newman et al., 2015). The fractional con-
tribution of the square error for the 1, 10, 100, and 1000 d
with the largest error was calculated for the 11 transforma-
tions for GR4J calibrated with NSE over the 325 catchments
(Fig. B2). It is very clear from this figure that extreme trans-
formations rely on a more limited number of time steps than
other transformations. A more complete description of the
methodology used to compute the fractional error and an ex-
ample of a single river are shown in Thirel et al. (2023).

Figure B1. Fractional contribution for the GR4J model calibrated with NSE for the Fecht River at Wintzenheim for different numbers of
time steps with the highest fractional contribution. Results are shown for the calibration period.

Figure B2. Fractional contribution for the GR4J model calibrated with NSE over the 325 stations. N1 to N1000 represent the number of time
steps with the highest fractional contribution. “Cal” means the calibration period, and “Val” means the evaluation period. The λ value for the
Box–Cox transformation is 0.25.
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Appendix C: Maps of catchment characteristics

In this Appendix, the statistics presented in Table 2 are pro-
vided as maps.

Figure C1. Maps of physical characteristics.
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Figure C2. Maps of indicators over the calibration period.
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Figure C3. Maps of indicators over the evaluation period.
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