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A B S T R A C T

Grassland dynamics are modulated by management intensity and impact overall ecosystem functioning. In
mowed grasslands, the first mowing date is a key indicator of management intensification. The aim of this work
was to assess several supervised regression models for mapping grassland first mowing date at national-level
using Sentinel-2 time series. Three deep-learning architectures, two conventional machine learning models
and two threshold-based methods (fixed and relative) were compared. Algorithms were trained/calibrated
and tested from field observations, using a spatial cross-validation approach. Our findings showed that time
aware deep-learning models – Lightweight Temporal Attention Encoder (LTAE) and 1D Convolutional Neural
Network (1D-CNN) – yielded higher performances compared to Multilayer Perceptron, Random Forest and
Ridge Regression models. Threshold-based methods under-performed compared to all other models. Best model
(LTAE) mean absolute error was within six days with a coefficient of determination of 0.52. Additionally,
errors were accentuated at extreme (late/early) mowing dates, which were underrepresented in the data
set. Oversampling techniques did not improve predicting extreme mowing dates. Finally, the best prediction
accuracy was obtained when the number of clear dates surrounding the mowing event was greater than
2. Our outputs evidenced time aware deep-learning models’ potential for large-scale grassland first mowing
event monitoring. A national-level map was produced to support bird-life monitoring or public policies for
biodiversity and agro-ecological transition in France.
1. Introduction

Grasslands cover approximately 40% of the Earth’s land area, en-
compassing nearly 70% of the global agricultural land area (Suttie
et al., 2005; White et al., 2000). Grasslands are subject to man-
agement practices, such as mowing or grazing or a combination of
both, influencing overall ecosystem functioning (Zhao et al., 2020;
Bengtsson et al., 2019), biodiversity (Klein et al., 2020), carbon se-
questration (Yang et al., 2019), water quality (Huang et al., 2013),
and more (Zhao et al., 2020). The choice of a specific practice impacts
biodiversity (Wang et al., 2019; Metera et al., 2010). For instance, in
mowed grasslands, the first mowing event date is a key indicator of
the intensification level of plot’s management, i.e., increase of nitrogen
intake (Broyer et al., 2012). Consequently, this timing information is
critical for assessing above-mentioned topics (Buri et al., 2016; Klein
et al., 2020; Broyer et al., 2012). Usually, this monitoring is supported
by local field observation campaigns which are time-consuming and

∗ Corresponding author.
E-mail address: mathieu.fauvel@inrae.fr (M. Fauvel).

difficult to repeat regularly. As a consequence, they are not spa-
tially/temporally exhaustive and they need to be complemented with
other data acquisition processes.

Remote sensing data enable recurrent and global-scale monitoring,
facilitating tracking of vegetation dynamics at high spatial resolution
and frequent revisit. For instance, Sentinel-2 mission provides cost-free
high resolution data (10 m as spatial resolution and 5 days revisit),
allowing intra-plot level observations. Such satellite data have proven
their interest to monitor vegetation at large scale (Kooistra et al., 2024).

Grassland mowing events and intensity estimation have been in-
vestigated using satellite image time series, mainly through features
sensitive to vegetation status, such as Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI)
and more (Reinermann et al., 2020). These methods usually exploit
the temporal information contained in satellite image time series to
detect mowing events: a significant variation is usually associated to an
https://doi.org/10.1016/j.rse.2024.114476
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Remote Sensing of Environment 315 (2024) 114476 
event. Methods differ in how such drop is computed (Estel et al., 2018;
Kolecka et al., 2018; Griffiths et al., 2020; Stumpf et al., 2020; Watzig
t al., 2023). Such methods exploit only optical modality and can be

limited by clouds cover. A strategy to reduce cloud-related gap in
ptical time series is to combine optical data from different sensors. For

instance, Schwieder et al. (2022) combined Sentinel-2 and Landsat −8
EVI time series for mowing events detection in Germany. To cope with
optical sensors limitation, Vroey et al. (2022) developed an algorithm
or detecting mowing events across Europe using jointly raw Sentinel-
 NDVI and Sentinel-1 VH-coherence time series. Reinermann et al.

(2022) mapped mowing frequency across Germany, from Sentinel-2
VI and Sentinel-1 PolSAR entropy time series separately. Alterna-
ively, Garioud et al. (2019) jointly used Sentinel-1 and Sentinel-2
atellite image time series as well as climatic and topographic data to
econstruct continuous Sentinel-2 NDVI time series for mowing date
stimation, based on NDVI drop analysis.

While threshold-based methods have been widely investigated, they
are limited in their used because of manual tuning of the threshold
parameter, which can be difficult when working on large areas. This
issue is exacerbated when multi-modal time series are used. Super-
vised learning approaches have been investigated in the last decade
to circumvent this issue. Komisarenko et al. (2022) estimated mow-
ing events timing at plot level in Estonia, using a 1-D Convolutional
Neural Networks (CNN) on Sentinel-2- and Sentinel-1-based features
time series. Among the fourteen features used, NDVI and the har-
monic mean of VV and VH coherence were found to be the most
relevant. Lobert et al. (2021) also used a similar deep-learning model
(1-D CNN) on Sentinel-2/Landsat −8 and Sentinel-1-based features time
series for mowing event frequency and timing detection. Among all
tested feature combinations, the highest overall accuracy in terms of
F1-score was reached when combined NDVI, backscatter cross-ratio and
coherence. Following a similar approach, Holtgrave et al. (2023) tested
four machine learning algorithms for mowing event detection in Ger-

any. Sentinel-2/Landsat −8, Sentinel-1 and weather-based features
time series were analyzed. Mowing events were detected by a binary
classification approach (mown or unmown) for each observation in the
time series, using the adjacent observations as predictors. 1D-CNN and
ong Short-Term Memory algorithms provided the best results in terms
f F1-score classification accuracy.

Recent research have clearly showed the superiority of supervised
machine learning-based approaches in mowing detection from remote
sensing data. Such approaches were mainly formulated as a binary
classification problem of temporal sequences1: was there a mowing event
during a given temporal sequence or not? (Lobert et al., 2021; Holtgrave
t al., 2023). Yet, the number of temporal sequences to be processed,

their length and their possible overlap impact significantly the final
accuracy. It thus poses challenges in optimization at large-scale because
they cannot be optimized end-to-end and trials and errors must be
conducted. Furthermore, there is no consensus in the literature on
the optimal satellite data for mowing event detection in grasslands
with deep learning: (Lobert et al., 2021) showed benefit using jointly
optical and radar data with deep learning algorithms while authors
of Holtgrave et al. (2023) recently observed that best mowing detection
ccuracy were obtained using optical data alone. They concluded that
ptical data alone can effectively detect mowing events, provided that
nough cloud-free observations are available.

This paper targets the estimation of the first mowing event date
using optical time series and machine learning algorithm formulated
as a regression problem. The choice to use only optical satellite image
ime series was motivated by the significant additional computing cost
o perform jointly radar and optical data at large-scale in regards to the
imited reported improvement in the literature. Furthermore, regression

1 A temporal sequence is defined a set of continuous temporal acquisitions,
.g., all Sentinel-2 acquisitions between 𝑡 and 𝑡
start end

2 
algorithms were selected in contrast to classification ones in order to
reduce the number of non-learnable parameters (such as those related
to the temporal sequences) and to ease the learning step at large-scale.
A large field survey (more than 2 000 plots) was conducted on agro-
ecological and climatic different and distant landscapes, to construct
ne of the largest data set of mowing events for mainland France. We
nvestigated several algorithms for predicting first mowing date: two
hreshold-based, two conventional machine learning-based and three
eep-learning-based from which two process the temporal information
pecifically. We also compared the accuracy of the prediction when
he problem is cast to a classification problem: each class being a
on overlapping temporal interval. The accuracy of each method was
ssessed using spatial cross-validation for several metrics. We provided
n analysis of the influence of the clouds cover on the prediction accu-
acy for the best regression model. A national-level map was produced
sing the learned model and qualitative and quantitative accuracy were
iscussed.

2. Materials

2.1. Study area

Our study area covers permanent grasslands across the mainland
rance (except Corsica), which represent 68.5% of the total grassland

area – including permanent, temporary and other grasslands –, declared
in the Land Parcel Identification System — LPIS (Cantelaube and
Carles, 2014) in 2022 (Fig. 1). LPIS provides spatialized information
on agricultural plot boundaries and crop types, but does not provide in-
formation about management practices. According to climate normals,
annual rainfall is around 800–1000 (mm), with a contrast between the
western (>1 000 mm) and the southeastern (600–800 mm) regions.
The average annual temperature is about 11–13 ◦C, with 20–25 ◦C
in summer and 5–10 ◦C in winter (https://meteofrance.com/climat/
normales/france).

In LPIS, permanent grasslands are defined as surfaces with uninter-
rupted herbaceous cover for at least 6 years and are identified at the
plot level with class code 18. These permanent grasslands alone account
for approximately 27.5% (76 835 km2) of the entire agricultural area
eported in 2022. Permanent grasslands cover regions that are less

suitable for agricultural activities due to unfavorable climatic or site
onditions (high altitudes, steep slopes, poor or wet soils). In mainland
rance, permanent grasslands are found in mountain chains in the
enter (Massif Central), western (Massif Armoricain), eastern (Jura and
osges), Alps and Pyrenees, as well as in plains and wet regions (Fig. 1).
ccording to the LPIS, at least 75% of permanent grassland plots cover
.80 hectares or less, and the largest plots – exceeding 20.0 hectares –
re concentrated mainly in the center and eastern regions. In mainland
rance, grassland growing season spans from spring to autumn (March
o October) and mowed grasslands are mainly managed extensively,
ith one or two mowing events per year (up to six mowing events in

intensive management).
From bird-life diversity view point, the first mowing event date

ould be more important than mowing events frequency along growing
eason (Broyer et al., 2012). In our study area, intensification of grass-

land management is characterized by the first mowing event occurring
around beginning of June (around 20 of May on lowland and around 20
of June on highland), whereas extensive management is characterized
by the first mowing event occurring 20 to 30 days later (later to 15 of
June on lowland and later to 15 of July on highland).

2.2. Satellite data

All available Sentinel-2 (L2 A) surface reflectance images, captured
throughout the growing season (from the beginning of January to the
end of September 2022) and intercepting mainland France, were used.
Seven tiles intercepting field observation sites were used for training

https://meteofrance.com/climat/normales/france
https://meteofrance.com/climat/normales/france
https://meteofrance.com/climat/normales/france
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Fig. 1. (A) Study area location. The gray color represents the delimitation of mainland France (except Corsica), while the green color represents the permanent grassland plots
declared in the LPIS 2022. (B) Study sites location. The black dots represent the observation sites in 2022. The boxes in dashed gray lines represent the Sentinel-2 tiles that
intercept each observation site. The color palette represents the eco-climatic regions in mainland France, as defined in Joly et al. (2010). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Satellite data used for each model: input is a single pixel time series. 𝑏𝑏(𝑡) indicates the
Sentinel-2 spectral band number 𝑏 at time 𝑡, and 𝑏′𝑏(𝑡) is its derivative w.r.t. time. Raw
for temporal acquisition means the Sentinel data are the original ones and interpolated
means the Sentinel-2 acquisitions are interpolated on a 10-day regular grid. 𝑡1 and 𝑡𝑇
are the first and last dates respectively. For both raw and interpolated 𝑡1 is equal to
2022-01-01 while 𝑡𝑇 is equal to 2022-09-30 and 2022-09-28 for raw and interpolated,
respectively.

Methods Machine Learning Threshold-Based

Spectral Bands 𝑏2 , 𝑏3 , 𝑏4 , 𝑏5 , 𝑏6 , 𝑏7 , 𝑏8 , 𝑏8𝐴 , 𝑏11 , 𝑏12 None
Spectral features None NDVI
Temporal acquisition Interpolated Raw or interpolated.
Temporal features First derivative None

Features vectors 𝐱 𝑏2(𝑡1),… , 𝑏2(𝑡𝑇 ), 𝑏3(𝑡1),… , 𝑏12(𝑡𝑇 ),
𝑏′2(𝑡1),… , 𝑏′2(𝑡𝑇 ), 𝑏′3(𝑡1),… , 𝑏′12(𝑡𝑇 )

ndvi(𝑡1),… ,ndvi(𝑡𝑇 )

Size (nb of feature) 560 199

and testing models (Fig. 1). An average of sixty images were available
for each tile for the considered temporal period. All spectral bands (ex-
cept B1, B9 and B10) were used, after resampling 20 m resolution bands
to 10 m resolution2 to uniform pixel sizes on a common geographical
grid.

These images have been preprocessed using MAJA algorithm (Lonjou
et al., 2016) for atmospheric correction and cloud detection, and were
downloaded from THEIA platform (https://www.theia-land.fr). All im-
ages were provided with a mask layer for clouds and shadows. For
each tile, cloud- and shadow-free time series with a regular 10-day time
interval were generated using a linear interpolator, as done in Inglada
et al. (2017) or Bellet et al. (2023a). In addition to spectral bands, we
also computed their temporal derivative – using finite differences –, as
well as the Normalized Difference Vegetation Index — NDVI (Rouse
et al., 1974) (Table 1).

2 using a bi-cubic interpolation, as implemented in the Orfeo ToolBox and
its SuperImpose application (Team, 2023)
3 
Fig. 2. Distribution of pixel-level first mowing event dates observed in mowed plots
across all sites in 2022. The orange vertical lines indicate the 10th and 90th percentiles
of the data, respectively.

2.3. Reference data

In 2022, the French Biodiversity Agency (https://www.ofb.gouv.fr)
coordinated an intensive campaign of field observations throughout
the mainland French territory, involving local government agencies
participating in the National Observatory of Mowed Grasslands Ecosys-
tem network. A total of eight sites (from north to south: Marais du
Cotentin et du Bessin, Val de Vienne, Sologne Bourbonnaise, Vallée
de l’Arconce, Vallée du Drugeon, Haut Jura, Plateau du Mézenc and
Planèze - Narse de Lascols) were monitored. They come from four
different eco-climatic regions (Fig. 1) and they have a significant al-
titudinal gradient (Table 2). Observations were conducted once a week
from May to August, for a total of 2 227 plots, with 1 605 mowed
plots and a balanced distribution among sites (Table 2). For each
specific site, observed plots were chosen based on accessibility and
the local observer’s prior knowledge of the area. Additionally, Causses
du Quercy site was included (in the south, Fig. 1), where 38 plots
were observed with a lower temporal resolution. Here, observations
were provided by the local observatory of the Parc Naturel Régional des

https://www.theia-land.fr
https://www.ofb.gouv.fr
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Table 2
Statistical description of the observed sites. The values represent the number of mowed
lots (# plots), average plot area (Av. area), and approximate altitude. Tile column
epresents Sentinel-2 tile intercepting an observed site.
Site Tile # mowed plots Av. area Altitude

(Ha) (m)

Marais du Cotentin et du Bessin T30UXV 136 1.39 2–50
Val de Vienne T30TYT 239 1.06 30
Sologne Bourbonnaise T31TEM 119 2.47 230–280
Vallée de l’Arconce T31TEM 174 2.23 280–390
Vallée du Drugeon T31TGM 219 3.87 800–850
Haut Jura T31TGM 213 2.55 800–950
Plateau du Mézenc T31TEK 255 1.66 1100–1300
Planèze - Narse de Lascols T31TDK 217 1.40 1000–1050
Causses du Quercy T31TCK 33 0.50 309–775

Total 1605

Causses du Quercy, independently of the main observation campaign at
he above-mentioned sites.

Plot boundaries were obtained from the 2020 LPIS. For permanent
grasslands, a declared plot can be managed with two practices simulta-
neously (i.e., spatially separated mowing and grazing within the same
plot). Therefore, prior to the field observation campaign, we visually
assessed each chosen plot using a national database of aerial imagery
(BD ORTHO, https://geoservices.ign.fr/bdortho) and Google Earth, to
dentify, as far as possible, sub-plots with the most homogeneous spatial

structure. For each actual plot, a total of eleven observations were
conducted throughout the growing season. At each weekly visit, current
management practice (mowing or grazing) and the corresponding date
were recorded.

Based on these records, each plot was labeled as mowed, grazed or
ixed (mowing + grazing). Then, these labeled plots were grouped into

two management practice categories: mowed – including mowed and
mixed plots (70.5% of plots) – and unmowed – including grazed plots
–. A management practice could be ongoing during the visit or have
occurred between the current visit and the previous visit. Consequently,
in these mowed plots, the observed date for a mowing event may have
an uncertainty of few days. Here, 87% of mowed plots had one mowing
event. The remaining plots had two mowing events and only the first
event was used in the experiments.

A unique site identifier was assigned to plots located within the
same Sentinel-2 tile in order to separate training and testing samples
based on the tile membership. In the following, the term site is used to
denote plots belonging to the same Sentinel-2 tile.

The prediction of first mowing event date is done at pixel-level.
hus, all pixels in observed mowed plots were selected, and their
pectro-temporal profiles were extracted along with their correspond-
ng first mowing event dates, serving as predictor and target values,
espectively. Mowing event dates span from May 10th, day of the year
DOY) 130, to August 2nd, DOY 214, comprising a total of 328 451

pixels derived from the 1 605 observed mowed plots (Fig. 2). 80%
f the mowing dates fell between DOY 150 and 188. The remaining
ccurrences (20%) fell at the extremes of the distribution. The average
bserved date was June 16th (DOY 167), while the median was June
5th (DOY 166). The total number of pixels is 328 451.

3. Methods

3.1. Mowing events prediction

Several pixel-wise supervised regression models were investigated,
rom conventional machine learning to recent deep-learning ones,

and unsupervised threshold-based methods. Prediction performances
against ground observations were then compared. Following Fauvel
t al. (2020), we set up a spatial cross-validation to estimate the
4 
prediction accuracy (Fig. 3). All observations from a site were excluded
from reference data before training/calibrating models. Then, models
were tested and assessed using the excluded site-specific observations.
In other words, all observations from excluded site were used as
esting data, and all observations from non-excluded sites were used
s training data. This split was repeated seven times, so that each site
as excluded once and considered as testing data (i.e., 7-fold spatial

ross-validation). We computed average prediction accuracy using all
ites scores (spatial folds), with each site’s score being estimated as the
verage of individual evaluations on fifty bootstrap test set.

A comprehensive overview of algorithms used to predict the first
mowing event date is given in the following.

3.1.1. Machine learning approach
We implemented five supervised regression models from the litera-

ture: two conventional machine learning models – Random Forest (RF)
and Ridge Regression – and three widely investigated deep-learning
architectures — Multilayer Perceptron (MLP), 1D Convolutional Neural
Network (1D-CNN, Pelletier et al., 2019) and Lightweight Temporal
Attention Encoder (LTAE, Garnot and Landrieu, 2020).

Ridge Regression and MLP were used as a baseline, while RF was
hosen due to its good behavior in large-scale prediction (Inglada

et al., 2017; Fauvel et al., 2020). 1D-CNN and LTAE were selected for
their capacity to model temporal information, leveraging convolutional
techniques and attention mechanisms, respectively. A brief review of
these models is given in Appendix A.

The hyperparameters for each model are presented in Table 3.
Deep-learning models were trained on 200 epochs with a batch size
of 4 096, using the Adam optimization algorithm (Kingma and Ba,
2015). In learning process, 10% of training data were used to form a
validation set, which was used to perform early stopping and to reduce
the learning rate by a factor of 10 when learning stagnated.3 For each
model, features and target variables were standardized (i.e. zero mean
and unit variance).

For all supervised models, oversampling techniques for minority
anges of mowing dates were also investigated. More specifically,

two oversampling techniques for classification problems were tested:
MOTE (Chawla et al., 2002) and ADASYN (He et al., 2008) algorithms,

relying on a convex combination of existing samples. Since these
oversampling techniques were defined for classification problem, we
created 10 fake classes by dividing the interval of mowing date values
into 10 sub-intervals of equal width and assigned each pixel to a class
corresponding to the number of the interval in which its label fell.4 For
each oversampling technique, we used the implementation provided by
he imbalanced-learn library (Lemaître et al., 2017). All classes

were oversampled, except for the majority class, to obtain an equal
umber of samples in each class.

Lastly, in order to quantify the learning capacity of the above ma-
hine learning algorithms, we also reported results for naive regressor,5

that makes prediction using a simple rule: predict the mean value of the
training data. It can be seen as a linear model with only an intercept
parameter. Theoretically, such model should have a R2 equal to zero.
It is called SimpleMean in the following.

3 Reduce on plateau strategy implemented here https://pytorch.org/docs/
stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

4 Other number of bins were investigated, as well as different binning
strategy, providing similar or worst results. For clarity we only reported results
for 10 equal bins.

5 https://scikit-learn.org/stable/modules/generated/sklearn.dummy.
DummyRegressor.html

https://geoservices.ign.fr/bdortho
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html
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Fig. 3. Workflow for predicting first mowing event date. The box in dashed lines represents the spatial cross-validation approach implemented in this study. Here, the different
steps (model training, prediction and assessment) implemented for a given site (spatial fold) are illustrated. The solid lines represent implementation for site 1, while dashed lines
represent implementation for all remaining sites. In this example, all observations from site 1 were used as testing data, while all observations from the remaining sites were used
as training data.
Table 3
Algorithm hyperparameters. The Value column reports the selected value or the search
range for the algorithm, with the following notation start:step:end. For Ridge
Regression and threshold methods, cross-validation was used to select the best value.

Algorithm Hyperparameters Value Package

Random Forest Number of trees 100 Scikit-Learn

Ridge Regression Regularization 1000:500:15500 Scikit-Learn

1D-CNN
Batch size 4096

PytorchOptimizer Adam
Learning rate 1e−3

LTAE
Batch size 4096

PytorchOptimizer Adam
Learning rate 1e−3

MLP
Batch size 4096

PytorchOptimizer Adam
Learning rate 1e−4

Fixed threshold Minimum loss of NDVI 0.10:0.01:0.40

Relative threshold Minimum loss of NDVI 10:5:50%

3.1.2. Threshold-based approach
We implemented a recent specific mowing event detection algo-

rithm introduced by Vroey et al. (2022) as an integral monitoring
tool within Sen4CAP program (http://esa-sen4cap.org). The main idea
developed in Vroey et al. (2022) was to quantify temporal loss of
NDVI, and to consider a mowing event when this loss is higher than a
threshold value. In our study, the threshold value was set automatically
using grid-search on training data (Table 3). Two types of thresholds
methods were used: 1. A fixed threshold corresponding to absolute
loss of NDVI. Threshold value is expressed in NDVI. 2. A relative
threshold corresponding to relative loss of NDVI, taking into account
the pixel amplitude (minimum and maximum value). Threshold value
is expressed as a percentage of the amplitude.

It was adapted to detect only the first mowing event date, since it
was primarily designed to detect mowing event time interval. The main
differences compared to original algorithm are detailed in Appendix B.

Threshold-based algorithms were calibrated and tested using the
same training and testing data used for machine learning-based algo-
rithms, respectively.

3.2. Assessment of mowing events

The deviation between predicted and observed first mowing dates
was assessed using nine metrics (Pontius, Jr., 2022): Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Max error, the coeffi-
cient of determination (R2), the Mean Deviance (MD), the coefficient
5 
of Correlation (Corr), the Slope(S) and the 50-percentile and the 95-
percentile of the Absolute Error (𝑄50 and 𝑄95).6 The last two metrics
are robust (to outliers in the reference) version of MAE and Max Error.
These metrics are estimated as:

MAE = 1
𝑛

𝑛
∑

𝑖=1
(|𝑦𝑖 − �̂�𝑖|),

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2,

Max error = max
𝑖∈{1,…,𝑛}

(|𝑦𝑖 − �̂�𝑖|),

R2 = 1 −

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2

𝑛
∑

𝑖=1
(𝑦𝑖 − �̄�)2

,

MD = �̄� − ̄̂𝑦,

Corr =

𝑛
∑

𝑖=1
(𝑦𝑖 − �̄�)(�̂�𝑖 − ̄̂𝑦)

√

√

√

√

[

𝑛
∑

𝑖=1
(𝑦𝑖 − �̄�)2

][

𝑛
∑

𝑖=1
(�̂�𝑖 − ̄̂𝑦)2

]

,

S =

𝑛
∑

𝑖=1
(𝑦𝑖 − �̄�)(�̂�𝑖 − ̄̂𝑦)

𝑛
∑

𝑖=1
(𝑦𝑖 − �̄�)2

,

𝑄50 = median
{

|𝑦1 − �̂�1|,… , |𝑦𝑛 − �̂�𝑛|
}

,

𝑄95 = percentile95
{

|𝑦1 − �̂�1|,… , |𝑦𝑛 − �̂�𝑛|
}

,

where �̂�𝑖 and 𝑦𝑖 are predicted and observed first mowing dates at pixel 𝑖,
respectively, 𝑛 is the number of pixels in testing data. �̄� and ̄̂𝑦 are respec-
tively the average of observed dates and the average of predicted dates,
in testing data. MAE, RMSE and Max_error. The metrics were computed
on the original mowing dates scale, i.e. after un-standardization of the
model predictions.

The MAE, RMSE, Max error, MD, 𝑄50 and 𝑄95 are represented in
days and should be minimized, except MD which should be canceled.
R2, Corr and S should be maximized, with R2 and Corr ranging between
−1 and 1, and S∈ R.

6 The 𝑄 is also known as the Median Absolute Error
50

http://esa-sen4cap.org
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Fig. 4. (a) Illustration of the construction of classes from mowing event dates. From top to bottom, different temporal sequences of size 15, 10, 7, 5 and 1 days respectively.
Black dots are the mowing dates and the vertical red line are the limit of the temporal sequences. Each samples belongs to one and only one temporal sequence/class. The smaller
the size of the sequence, the higher the number of classes. For interval of size 1 day, many sequences are empty, i.e., no mowing date fall into such sequences. (b) Illustration
f the position in the interval of the earliest first mowing event. From top to bottom: beginning, middle and end of the sequence. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
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3.3. Classification set-up

The problem of estimating the date of first mowing event was
ast into a classification problem. Inspiring by Lobert et al. (2021),

Holtgrave et al. (2023), the mowing data have been sliced into non-
overlapping temporal sequences of constant length. The Fig. 4 illus-
trates this procedures for different interval sizes. Different size for
classes were investigated: 15, 10, 7, 5 and 1 days. The proposed set-
up is somewhat different from Lobert et al. (2021), Holtgrave et al.
(2023) where the pixel time series was sliced into overlapped temporal
sequences which was then classified using a binary classifier discrimi-
nate between mown/unmown sequence. In our classification set-up, the
full time series was used.

The effect on the accuracy of the starting date for the first class
was also considered: the earliest first mowing date of our data set
was either positioning at the beginning, middle or end of the first
temporal sequence/class. To each sequence is assign one class and the
classification problem is to classify the pixel reflectance time series to
ne class/sequence. The same spatial cross-validation strategy, using
xactly the same pixels for training and testing, was used than for
egression.

4. Results

In this section, a comprehensive overview of the quantitative results
derived from all implemented algorithms is presented. We further pro-
vide a more detailed analysis of the results obtained for the best model.
Finally, a qualitative assessment of the prediction map is conducted.

4.1. Evaluation of algorithms for mowing events prediction

Fig. 5 shows best results obtained for each model with and without
versampling. Results for all models and configurations can be found

in Appendix D, Table D.6. Results were averaged over the 7-fold spatial
cross-validation runs, as detailed in 3.1.

From Fig. 5, non-linear machine learning models obtained the best
performances, by a clear margin, with a R2 above 0.4, a correlation
above 0.65 and a 𝑄50 less than 5 days. Linear models reached lower
accuracy, Ridge Regression model being slightly better than Simple-
Mean, as expected. Worst results, for any quality index, were obtained
for threshold-based methods. Among non-linear models, deep-learning
ones (LTAE, 1D-CNN and MLP) yielded higher performances compared
to conventional RF. Furthermore architectures taking into account
the temporal dimension (LTAE and 1D-CNN) were the most accurate
models, with a slight advantage for LTAE. Results in terms of the others
metrics followed the same trend than for R2.
 a

6 
Oversampling techniques improved accuracy only for MLP; other
odels did not show notable accuracy gains. Additionally, there was

no significant difference in accuracy improvement between SMOTE
and ADASYN. Oversampling did not improve predictions for extreme
mowing dates (early/late), as shown in the next section.

In terms of maximum error, among the best algorithms, 1D-CNN
demonstrated the lowest values, followed by MLP and LTAE. Using
robust estimator 𝑄95, the differences are smaller. If LTAE offered the
est predictions on average, it occasionally resulted in higher errors
or certain metrics.

Fig. D.13 in Appendix D presents the prediction accuracy at the site
evel (spatial fold). Within-site variability can be observed, and LTAE
id not offer the highest accuracy for each site. Yet, on average, LTAE
rovided the best results for MAE, RMSE or R2. In the next section, we
rovide a more detailed analysis of LTAE predictions.

4.2. Mowing events prediction across sites for LTAE

Fig. 6 shows the joint density between predicted and observed dates
or each site, along with the marginal density for both predicted and
bserved dates, as well as for the corresponding training data. On
verage, predictions were accurate since the modes of the joint density

were on the identity line. Yet, for smaller R2 (T30UXV, T30TYT and
31TEM), we observed a clear overestimation of early dates (predicted
ates were later than observed ones), as well as an underestimation of

late dates (predicted dates were earlier than observed ones).
Fig. 7 shows MAE and first mowing event distribution as a function

of the number of cloud-free dates in a temporal interval surrounding
the event.7 The worst average MAE was obtained for very low number
of cloud-free dates (0 to 2) and early mowing event (before DOY
150). Once the number of cloud-free dates reached 3, MAE remained
low, with a median value below 7 days. A slight degradation of MAE
was observed when the number of cloud-free dates is greater than 8,
corresponding to late mowing events.

Fig. 8 shows pixel-wise average of LTAE attention score. The at-
ention score reflects which part of the temporal signal was used for
he prediction, and it is computed at pixel-level. Implemented LTAE
sed 4 heads, i.e., 4 ranges of the temporal signal can be selected.
or the first attention head, selected observations – from interpolated
atellite image time series – were located in the month of July, what-
ver the predicted date. We observed more variation for the three

7 0 cloud-free dates means that the 10-day linearly interpolated satel-
ite image time series used for prediction was constructed using Sentinel-2
cquisitions outside the temporal interval.
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Fig. 5. Algorithm-specific statistical summary in terms of (A) R2 and (B) MAE. The values represent weighted means of all sites. A site-specific score was weighted using the
number of pixels used for the evaluation. A site-specific score represents the mean of fifty individual evaluations (from 50 folds by bootstrapping 70% of observations). Here,
values less than zero are not shown.

Fig. 6. Site-specific LTAE pixel-level predictions. For each graph, horizontal axis represents the reference datasets (testing in blue and training in orange), while the vertical
axis represents the prediction. The black continuous line is the identity line and the dashed blue line is the regression line between the reference and prediction. Each graph
corresponds to a site (spatial fold). For instance, in (A), T31TEK testing data included all samples from that specific site, while training data included all samples from all remaining
sites, as discussed in Section 3.1. Predicted and observed dates are expressed in days of year (DOY). Joint and marginal densities were computed using Scipy gaussian_kde
function (Virtanen et al., 2020).
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Fig. 7. MAE distribution as a function of the number of cloud-free dates in a
temporal interval surrounding the event (in blue). The temporal interval was defined
as [𝑦 − 20 days, 𝑦 + 20 days] with 𝑦 the observed mowing date, and MAE is defined in
Section 3.2. The number of cloud-free dates can reach up to 12 within a 40-day period
due to Sentinel-2 orbit overlap. Proportion of each category (number of cloud-free
dates), expressed as a percentage of the total number of samples, is shown in black in
the top figure. The bottom figure shows the median DOY for the first mowing event
for each category.

other heads. For the second attention head, selected observations were
istributed between April and June (included). For the third atten-
ion head, selected observations were located between February and
une, for predicted early dates; while between June and September for
redicted late dates. For the last attention head, selected observations
ere distributed between April and June. Overall, no clear pattern was
bserved linking attention scores and predicted dates.

4.3. Performance comparison with classification algorithm

For this comparison, Random Forest and LTAE algorithms were
used only: LTAE provides the best results for the regression case and

F is known to perform well in large scale classification. Results are
eported in Table 4. It can be seen that the size of the interval, and
t a lesser degree, the origin of the intervals have an influence on the
inal accuracy. The higher the number of intervals/classes, the higher
ccuracy but it also comes with higher incertitude w.r.t. the dates. For
 classes, the intervals have a size of 10 days. For extreme case, when
he size of the intervals is one day, the classification accuracy is low,
ut the estimated MAE is in line with those obtained with regression

method.

4.4. Spatialized prediction analysis for LTAE

In this section, the prediction map was analyzed qualitatively with a
articular focus on the spatial distribution of intra-plot predictions. For

each spatial cross-validation fold (testing data), an individual predic-
ion map was generated for each observed plot. All plot-level prediction
aps are fully available for visualization in the supplementary ma-

erial, which contains prediction for LTAE, 1D-CNN and RF. After
 careful visual analysis of LTAE predictions, four main cases were
dentified and illustrated in Fig. 9.
8 
Table 4
Classification results. ACC and F1 are respectively the accuracy score and F1 score
computed on the test set. The ‘‘w’’ version are the same metrics computed using the
class proportion. Finally, the MAE was computed by considering the middle of the
interval/class as the predicted date (e.g., for a class corresponding to dates between
DOY 150 and 159, the predicted date is 155).

Origin # Class. ACC ACCw F1 F1w MAE

RF
L

5

0.77 0.65 0.77 0.45 20.63
R 0.76 0.58 0.76 0.43 19.77
C 0.65 0.61 0.65 0.41 21.29

LTAE
L 0.75 0.45 0.75 0.42 20.73
R 0.75 0.46 0.75 0.41 19.82
C 0.62 0.43 0.62 0.35 21.31

RF
L

8

0.60 0.44 0.60 0.31 12.42
R 0.59 0.48 0.59 0.33 12.15
C 0.64 0.42 0.64 0.29 11.67

LTAE
L 0.56 0.33 0.56 0.27 12.84
R 0.57 0.35 0.57 0.29 12.56
C 0.62 0.34 0.62 0.26 12.12

RF
L

12

0.53 0.40 0.53 0.22 6.28
R 0.56 0.29 0.56 0.20 6.32
C 0.52 0.34 0.52 0.19 5.60

LTAE
L 0.51 0.23 0.51 0.18 7.26
R 0.53 0.24 0.53 0.17 7.31
C 0.51 0.27 0.51 0.20 6.37

RF
L

16

0.46 0.28 0.46 0.16 5.96
R 0.45 0.28 0.45 0.16 6.73
C 0.44 0.26 0.44 0.13 5.87

LTAE
L 0.44 0.19 0.44 0.13 7.17
R 0.44 0.19 0.44 0.13 7.74
C 0.45 0.21 0.45 0.12 6.82

RF C 84 0.26 0.16 0.26 0.07 5.70
LTAE C 0.30 0.09 0.30 0.04 6.69

1. In most of the plots, intra-plot predictions were homogeneous
showing a coherence in terms of spatial configuration and were
in agreement with the reference, as illustrated in the first row
(A.1 to A.3) of Fig. 9.

2. For some plots, predictions exhibited two distinct spatial pat-
terns within a given plot. Usually, one spatial pattern matched
with the reference and the other one did not. This case is
illustrated in the second row (B.1 to B.3) of Fig. 9.

3. Occasionally, heterogeneous intra-plot predictions were
obtained with a global disagreement with the reference. This
situation is shown in the third row (C.1 to C.3) of Fig. 9.

4. Finally, homogeneous intra-plot predictions with large deviation
from the reference can be found. For most of such plots, it
corresponded to early/late mowing dates, as it is displayed in
the last row (D.1 to D.3) of Fig. 9.

The two last cases occurred most often at site T31TEM, where predic-
ion accuracy was the lowest (R2=0.34 and MAE=7.54 days).

4.5. Mowing events prediction across mainland France

The LTAE model was selected to generate a prediction map across
ainland France, because of its performances compared to others
odels previously evaluated in this study. All referenced samples (328
51 pixels across seven sites) were used to train model. Then the
earned model was used to predict the first grassland mowing date for
ll mowed grassland pixels. Such pixels corresponds to pixels classified
s mowed in a grassland management map, as described in Appendix C.

The prediction map is freely accessible at https://zenodo.org/records/
11034387. An overview of the map is given in Fig. 10.

It is difficult to assess the quality of the map at large-scale. Accuracy
etrics and spatial homogeneity have been reported in the previous

section for the 7 tiles. As a sanity check, mowing dates for 45 plots

https://zenodo.org/records/11034387
https://zenodo.org/records/11034387
https://zenodo.org/records/11034387
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Fig. 8. LTAE attention mechanism across 4 heads. For each observation in the interpolated satellite image time series (𝑥-axis), attention score (𝑦-axis) was computed at pixel-level;
nd the average attention score from all pixels – in testing data – is depicted in blue. Satellite image time series observations with high attention score were the most significant for
he prediction process. Each column (A–D) represents a specific attention head, while each row (1–8) represents a specific range of predicted dates (in orange). (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
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(corresponding to 27 478 pixels) have been extracted from an experi-
mental research platform8 located in the tile T31TDL not seen during
he training process, for the same year. These are two experimental sites
Laqueuille and Marcenat) and are actively monitored by local research
nits. Observed dates were the true mowing date (without uncertainty).

Prediction metrics for these unseen parcels are in agreement with
hose of the previous section: 𝑅2 = 0.67, MAE=5.17, RMSE=7.72,
D=1.29, 𝑟 = 0.83 and slope=0.63. The scatter plot of the prediction

s given in Fig. 11. In particular, the tile T31TDL is spatially closed to
he tile T31TDK and the accuracy metrics were similar.

5. Discussion

5.1. Machine learning algorithms

Deep-learning models shown superior results in terms of prediction
ccuracy. Contrary to RF, they have the ability to automatically learn
ata representations at multiple levels of abstraction through the use
f multiple processing layers (LeCun et al., 2015), which could enable

them to capture patterns within the data more effectively compared
o conventional machine learning models. In mowing event detec-

tion, Holtgrave et al. (2023) have also reported this superior capability
of deep-learning models. In our study, architectures that exploited tem-
poral dimension (LTAE and 1D-CNN) demonstrated higher performance
compared to a baseline deep-learning model (MLP). This temporal
information’s contribution to improving mowing events prediction was
also observed in Komisarenko et al. (2022), Lobert et al. (2021).

8 INRAE-Herbipole experimental farm https://doi.org/10.15454/1.
5572318050509348E12
 s

9 
This could be due to their ability to capture temporal patterns and
dependencies (e.g., biomass variation) within the time series, as already
oted in other applications (Lin et al., 2020; Pelletier et al., 2019;

Liao et al., 2020; Zhong et al., 2019). However in our study, temporal
erivatives of each spectral band were provided as additional feature

to each algorithm, thus LTAE and 1D-CNN may capture other temporal
ependency than first temporal derivative.

Attention scores of LTAE, show in Fig. 8, tend to indicate that
acquisition between April and September (included) are the most im-
portant for the prediction, whatever the mowing date to be predicted.
From the first head, it seems that the month of July contains very
predictive information, since it is used for every range of prediction.
This result indicates that, at the national scale, the most useful spectral
information to predict mowing event is located during July: the state
of the vegetation during that period is enough (for the LTAE algorithm)
to predict the mowing date, being post or past this period. To a lesser
extent, May and June data are also very important for the prediction.
If early dates are considered, one attention head use acquisition from
mid-February to end of March. However, this observation should be
mitigated with the limited accuracy associated to this range of dates.

Threshold-based method exhibited the worst performance in de-
ecting first mowing event date compared to all supervised models.
he lack of cloud-free observations during the event is an inherent

limitation of optical remote sensing data (it can be clearly visualized
in the supplementary material). Although this affects both thresholding
and machine learning methods, the latter have the ability to learn from
he available data (with or without cloud-free observations during the
vent) which could overcome this limitation to some extent. More crit-
cal is that threshold-based method assumption is not always satisfied,
n particular in natural grasslands and late event. In that situation, the
enescence is already effective and dry grass is visible, resulting in no or

https://doi.org/10.15454/1.5572318050509348E12
https://doi.org/10.15454/1.5572318050509348E12
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Fig. 9. Intra-plot LTAE outputs. The columns (1–3) represent prediction, reference and bias (prediction − reference) values, respectively. The predicted and observed dates are
expressed in Days Of Year (DOY), and bias is expressed in days. A negative bias indicates the predicted date was earlier than the observed date, while a positive bias means the
predicted date was later than the observed date. The rows (A–D) represent four selected plots (T31TEK_1344, T31TDK_444, T30TYT_708 and T30TYT_785).
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Fig. 10. Map of grassland first mowing date in mainland France in 2022. This map was generated by combining LTAE model and Sentinel-2 time series.
reduce loss of NDVI value after the mowing. The Fig. 12 below shows
three plots corresponding to such situation.

5.2. Classification or regression?

For some configurations, the classification accuracy matches with
those obtained with regression algorithms. One objective of this work
was to demonstrate that regression set-up is easier to implement than
classification to predict the date of the first mowing event at large scale.
In our opinion, training classification models for predicting the date of
the first mowing event has two major limitations:

1. Some parameters related to the classification problem cannot be
learned from the data: number, size and origin of the intervals.
To choose them, a full exhaustive search involving a training and
testing steps must be run. In comparison, in regression, internal
parameters of RF, LTAE or 1D-CNN can be learned from the
data. One can remark that these algorithms have also pre-fixed
internal parameters, such as the number of trees for RF or the
number of head for LTAE. However, in practice it exists for
them a large range of values for which the results are similar
and therefore they are easier to tune (For instance changing
11 
the number of trees from 100 to 400 does not change the final
regression accuracy).

2. During the learning step, classification error does not take into
account the ‘‘size’’ of the error: roughly speaking, the prediction
is true if the model assigns the pixel to the right class, and it is
wrong if it is not the right class. It is does not take into account
if the predicted class is adjacent or not to the right class. When
using a regression loss, for instance the mean square error, it
gives more importance in the learning process to large errors,
i.e., predicted dates far from the true ones.

5.3. Accuracy of the mowing events prediction

Errors were more important when predicting early and late mowing
dates. A clear trend in overestimating early mowing dates as well
as underestimating late mowing dates was observed for each model.
Owing to the reference data distribution (see Fig. 2) early/late mowing
dates were underrepresented and therefore more difficult to learn for
the supervised models. Yet rare, maximum errors were obtained for
such extreme dates.

Oversampling techniques were investigated in this study to alleviate
such imbalanced issues in the training data (Jafarigol and Trafalis,
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Fig. 11. Comparison between predicted (𝑦-axis) and observed (𝑥-axis) dates from the
two independent sites. Observations from both sites were concatenated and are not
shown separately in this graph. Predicted and observed dates are expressed in Days
Of Year (DOY). The number of pixels used for the evaluation is represented by 𝑛.
The black continuous line is the identity line and the dashed blue line is the regression
line between the reference and prediction. Joint and marginal densities were computed
using Scipy gaussian_kde function (Virtanen et al., 2020). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 12. The continuous, dotted and dashed black lines are NDVI as a function of time
for three permanent grassland pixels with late first mowing event. The horizontal axis
represents the day of the year and the vertical axis represents the NDVI. Black lines are
the 10-day interval interpolated data. The vertical red line corresponds to the mowing
event at DOY 194.

Table 5
Confusion matrix for intensive–medium–extensive post-classification. Intensive: prior to
June 05; medium: between June 05 and 30; extensive: post to June 30. Rows and
columns correspond to the assignment obtained with the field survey and the model
prediction respectively. The matrix is row-normalized.

Predicted
Intensive Medium Extensive

Tr
ue

Intensive 0.79 0.20 0.01
Medium 0.07 0.90 0.03
Extensive 0.04 0.23 0.73

2023). Such approaches have found to be useful in classification prob-
lems (Mohammed et al., 2020; Rahman et al., 2023) and also for remote
sensing data (Hao et al., 2023) to construct well balanced training data.
However, these techniques did not help to reduce this issue in our large-
scale regression scenario. Only MLP model exhibited an improvement
when oversampling data, but its accuracy remained lower than those
obtained with time aware deep-learning models.
12 
For the bird-life diversity management viewpoint, the correct iden-
tification of early or late is determined by event occurring before
beginning or after end of June, respectively (see 2.1). In order to assess
the usability of the predicted mowing event date, we computed the
confusion matrix of assignation to intensive (prior to June 05), medium
or extensive management (post to June 30) w.r.t. the field survey using
the predicted first mowing event.9 The confusion matrix is given in
Table 5. Even if early mowing event are less accurately recovered, the
results are quite consistent and can be used to monitor intensification
of practices.

5.4. Influence of the number of cloud-free dates on prediction accuracy

The number and distribution of cloud-free satellite observations
during the growing season are critical for reliably detecting patterns
of change, mainly during the event of interest. Cloud cover modulates
optical satellite data availability, resulting in dense or sparse time series
according to location. Temporal gap in optical time series affects both
the threshold method and the supervised models performances.

Overall, the highest prediction errors for LTAE were observed when
the number of cloud-free satellite observations was limited around the
true mowing date (i.e., 0-2 cloud-free dates), which occurs mainly for
early mowing event. Then they decreased as the number of cloud-
free dates increased (i.e., 3-8 cloud-free dates), as illustrated in Fig. 7
and in agreement with Schwieder et al. (2022), Kolecka et al. (2018),
Komisarenko et al. (2022). Surprisingly, prediction errors increased
slightly on average when the number of cloud-free dates increased
(i.e., 9-12 cloud-free dates). However, it mainly happens for late mow-
ing event, which are less accurately estimated (see bottom Fig. 7).
This pattern can be explained by the seasonality over the French
metropolitan territory: there are more clouds in April/May than in
July/August: hence early and late mowing dates will have respectively
less and more cloud-free acquisitions. We therefore consider that the
increased error for reduce (less than 3) or higher (more than 8) number
of dates are mainly due to model limitation for early/late mowing
dates. Yet, the higher errors for early event indicates that when no
acquisition is available in the given period, the model is significantly
negatively impacted.

Usually, main strategies implemented to cope with sparse time
series due to clouds are (i) combining optical data from different
sensors and (ii) combining optical and radar data. From an operational
view point, including Sentinel-1 satellite image time series in the
processing comes with a high computational burden, since Sentinel-1
and Sentinel-2 images need to be projected on the same pixels grid and
Sentinel-1 satellite image time series required additional noise filtering.
In mainland France, very cloudy pixels are rare (less than 5% of the
pixels) and it is questionable that the effort is worth it. For a bird-life
monitoring perspective, we believe that works should be done to reduce
errors for early/late event either in improving the learning algorithm
or in collecting specific data set.

5.5. Importance of the field survey

In our study, field observation campaign conducted on 2 265 plots
(Section 2.3) aimed to represent the greatest possible diversity of
mowing dates as well as site conditions (i.e., altitudinal gradient,
flooded and dry grassland, early and late mowing dates, etc.), which
required a great human and time effort. However, despite this effort,
the representativeness of the reference data needs to be improved,
mainly for minority ranges of mowing dates. In this context, efforts to

9 The dates of June 05 and 30 are questionable at the scale of the French
territory, but how to define intensive/extensive management is beyond the
scope of the paper. However, by predicting the DOY it is possible to adapt
these values depending on the landscape.
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build a more diversified reference dataset could be oriented towards
a citizen/collaborative science, involving citizens and established ob-
servation networks, such as the emerging initiatives of the French Bio-
diversity Agency,10 or those already consolidated in similar topics for
henological observations (e.g., French Phenology Network-TEMPO,11

National Phenology Network-USA/NPN,12 UK Phenology Network,13

Pan-European Phenological Network-PEP725,14 etc.).
As shown in Fig. 9-B.(1-3), some grasslands have bimodal mowing

anagement. Such situation was not considered neither in the learning
or in the validation processes. This inaccurate/incomplete reference
ap is mainly due to inaccessibility to the plot or non-visibility of

he intra-plot bimodal mowing management during the observer’s visit.
he LTAE model was able to reliably capture the intra-plot mowing
anagement, despite it was learned with few label noise (i.e. wrong
owing date). Yet rare, this situation was not taken into account in

he validation process.
Regarding accuracy of observed dates, revisit frequency depends

on the observation campaign protocol and the observer’s availability.
ere, observed dates included an average uncertainty of seven days,
ue to weekly revisits. Consequently, this uncertainty in the reference
ata is involved in the learning process, which could partially degrades
he performance of the model. A more reliable approach would be to
se the true mowing date rather than observed mowing date. Such
ield data is inaccessible by field survey unless farmers voluntarily
eclare and share it, which could be raised under public policies such

as the CAP (https://agriculture.ec.europa.eu) in Europe for example.
Hence, in our study, supervised models were trained to predict the
observed date which is not necessarily the actual date of the event, but
a close approximation of it. We believe this a cost to pay for covering
significant heterogeneous grassland practices. It should be note that the
quality of the prediction was good, and of the same magnitude, for the
data set with the true mowing date, see Section 4.5. It indicates that
the field survey uncertainty is not critical.

6. Conclusion

This paper focused on nationwide mapping of grassland first mow-
ng event date, combining machine learning and Sentinel-2 time series.

Among implemented algorithms, time aware architectures (LTAE and
1D-CNN) were the most accurate models. Overall, uncertainties were
accentuated at extreme mowing dates (early/late), which were under-
epresented in the reference data. Oversampling techniques demon-

strated no significant improvement in predicting these extreme mowing
dates, except for MLP. Regarding transferability, LTAE model exhibited
reliable performance across all spatial folds, but accuracy may degrade
or area underrepresented in training process. In our study, LTAE
odel’s best prediction occurred when the number of cloud-free dates
as greater than 2 within a 40-day temporal interval surrounding the

mowing event (which occurred in more than 95% of tested samples). In
comparison to classification based approaches, regression based set-up
show slightly superior results and were easier to implement, with less
hand-tuned parameters.

End-to-end learning such as in Bellet et al. (2023b) has shown
ignificant improvement for classification purpose. Rather than inter-
olating the data before and independently of the learning process,
he reconstruction is learned jointly with the classification task. Such
pproach should be considered in the future, either for a mono-sensor
r multi-sensor, as it has outperformed common ‘‘reconstruct’’ then

‘learn’’ strategy discussed in previous studies. We expect it will lever-
ge the slight performance loss observed when the number of cloud-free

10 https://www.ofb.gouv.fr
11 https://tempo.pheno.fr
12 https://www.usanpn.org
13 https://naturescalendar.woodlandtrust.org.uk
14 http://www.pep725.eu
13 
dates was high. Another strategy that could be considered would be
ased on Transformer, such as in Zhang et al. (2024) were irregular
nd unaligned SITS were properly handled by adapting Transformer
rchitecture to automatically aligned temporal acquisition.

Our findings evidenced time aware deep-learning models’ potential
to nationwide grassland mowing monitoring. Although our approach
should be adapted for predicting all mowing events during growing
season, predicted first mowing event date is a key indicator of plot
management intensification; and could support bird-life monitoring
or public policies for biodiversity and agro-ecological transition in
France. For long-term monitoring, LTAE transferability into an un-
known year needs to be investigated. Self-supervised learning is a
promising research direction for such application (Dumeur et al., 2024).
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Appendix A. Review of models

A.1. Conventional machine learning models

Ridge Regression is a regularized linear model that seeks a linear re-
lationship between the predictors (here the Sentinel-2 spectro-temporal
features) and the output (here the observed mowing date) (Hastie
et al., 2001). A regularized version was used to cope with the high
number of spectro-temporal features (Hastie et al., 2001, Chapter 3).

his method serves as a baseline for supervised model: its learning
capacity is limited w.r.t. other non-parametric regression methods but
has provided accurate results for some case, such as chlorophyll-a con-
centration mapping (Ivanda et al., 2021). The regularization parameter
value was selected using 10-folds cross-validation on the training data,
as implemented in Scikit-learn (Pedregosa et al., 2011).

Random Forest is a non-parametric and non-linear regression model
ntroduced by Breiman (2001). It is an ensemble-based model learn-

ing multiple independent decision trees, using bootstraps of training
samples and features. It has been widely used in remote sensing time
series applications, mainly for land cover/use mapping (Inglada et al.,
2017) and estimation of continuous variables (Belgiu and Drăguţ,

https://agriculture.ec.europa.eu
https://www.ofb.gouv.fr
https://tempo.pheno.fr
https://www.usanpn.org
https://naturescalendar.woodlandtrust.org.uk
http://www.pep725.eu
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2016). Several hyperparameters can be selected for training. The most
mportant one is the number of decision trees in the forest. As shown
n Inglada et al. (2017), Fauvel et al. (2020), setting it to a large value

is enough to provide accurate results. In this experiment we found that
00 trees was a good compromise: increasing the values did not lead
o an improvement of the precision while the processing complexity
time and memory footprint) was much higher. Random Forest was
mplemented in Pedregosa et al. (2011).

A.2. Deep-learning models

One conventional and two advanced DL models were implemented:
 Multilayer Perceptron (MLP), a 1D Convolutional Neural Network
1D-CNN) and the Lightweight Temporal Attention Encoder (LTAE),
espectively. MLP was composed of three ‘‘linear layer + batchnormal-
zation layer + rectified linear activation layer’’ modules and last linear
utput layer (Zhang et al., 2023). Such architecture has been widely

used in remote sensing for land cover/use mapping (Kussul et al., 2017;
Zhang et al., 2018, 2019) or land cover/use changes analysis (Vinayak
et al., 2021).

1D-CNN was defined to perform along the temporal dimension, as
in Kattenborn et al. (2021), Kussul et al. (2017), Guidici and Clark
(2017), Zhong et al. (2019), Liao et al. (2020), Pelletier et al. (2019),
to take into account the temporal dependence between the acquisition
dates. From the MLP configuration, we replace the linear layer by a 1D
convolutional layer and add max-pooling operation, as usually done
with CNN models (Zhang et al., 2023).

LTAE used temporal attention mechanism to make use of the ac-
uisition dates (Garnot and Landrieu, 2020). A temporal attention head

computes a level of importance for each part/date of the satellite image
time series w.r.t. the final task (here a regression task). It corresponds
to the most important part of the signal which should be used for
inference. In practice, it is computed through several linear and one
softmax layers. Attention mechanism has showed to perform really well
for land-cover mapping (Ofori-Ampofo et al., 2021; Garnot and Lan-
drieu, 2020; Li et al., 2019; Bellet et al., 2023a). The same architecture
proposed by Garnot and Landrieu (2020) was used in this work, the
ast layer and loss function was modified to perform regression rather
han classification.

Appendix B. Threshold-based method

We implemented a specific mowing event detection algorithm intro-
duced by Vroey et al. (2022) and integrated into the Sen4CAP toolbox
http://esa-sen4cap.org) to facilitate the monitoring of grassland man-
gement activities across Europe, aligning with the European Common
gricultural Policy. In our study, this method was adapted to detect

irst mowing event date, since it was primarily designed to detect
owing event time interval.

Vroey et al. (2022) proposed two independent change detection
algorithms, whereby raw Sentinel-2 NDVI and Sentinel-1 VH-coherence
time series were evaluated separately. In the final product, Sentinel-1
outputs were considered only when Sentinel-2 omitted events due to
cloud cover. Here, we reproduced and adapted their Sentinel-2-based
algorithm for evaluating pixel-based time series, as opposed to the
original method that used object-based approaches.

To account for a mowing event, the original algorithm performed
the following steps:

1. Each observation NDVI(𝑡) is compared to the last available cloud-
free observation NDVI(𝑡 − 1).

2. If the loss of NDVI, between NDVI(𝑡) and NDVI(𝑡 − 1), is greater
than 0.15 NDVI (NDVI(𝑡) < NDVI(𝑡− 1) − 0.15), a mowing event is
considered. As an additional condition, two consecutive mowing
events must be separated by a minimum temporal distance of
28 days, and if a mowing event is detected within the time
14 
interval [𝑡 − 1, 𝑡], it is assumed that the actual event took place
within 60 days before 𝑡. If [𝑡 − 1, 𝑡] spans more than 60 days,
the detection interval is adjusted to [𝑡− 60, 𝑡]. For each detected
mowing event, the confidence level was estimated through a
normalization function as follows:

𝑓 (𝑥; min,max) = max −(max − min) × exp(−𝑥), (B.1)

where 𝑥 is the difference NDVI(𝑡− 1) − 0.15 −NDVI(𝑡), [min,max]
were set to fit the confidence limits from 0.5 to 1.

The first mowing event among the four most confident detection
was retained, as opposed to the original method that retained all four
most confident detections. In contrast to the original method, where
the time interval [𝑡− 1, 𝑡] was kept for each detected mowing event, we
retained the specific date 𝑡. Therefore, in our study, additional checks
in step 2 were ignored.

Appendix C. Grassland management map

A map of grassland management practices – mowed or unmowed –
was generated to constrain mowing date prediction to areas of mowed
grassland. We performed a pixel-based classification task within a
nationwide grassland mask (Fig. 1), derived from permanent grassland
plots declared in the 2022 LPIS (Section 2.1) from which landscape
elements have been removed as much as possible by geometric opera-
tions (buffering, etc . . . ). This database provides spatialized information
on agricultural plot boundaries and crop types, but does not provide
information about management practices.

Here, we trained a Random Forest classifier using a grassland
management practices dataset, derived from our ground observations
n 2022 described in Section 2.3. In this reference dataset, mowed class

included 1 605 plots and unmowed class 660 plots (Table 2). Reference
data were split at the plot level into a 70% training dataset and a 30%
test dataset, ensuring classes and sites representation through stratified
ampling. The split was done at the plot level, ensuring one plot to

be either in the training or the test set preventing bias. Sentinel-2-
based time series were used as predictor. In this dataset, in addition
to spectral bands, we also computed three spectral indices: Normalized
Difference Vegetation Index — NDVI (Rouse et al., 1974), Normalized
Difference Water Index — NDWI (McFeeters, 1996) and Brightness
ndex — BI (Escadafal, 1989).

The classification was done using IOTA2 software (Inglada et al.,
2016). Grassland management map achieved an overall precision of
90%, with mowed class showing an F-score of 0.93 and unmowed class
exhibiting an F-score of 0.81. Findings showed that mowed class was
slightly overestimated.

It is important to note that all quantitative evaluation results pre-
sented in this paper were not based on the grasslands management
map, as they were computed on the reference data (observed mowed
plots). Hence, possible wrong declarations as well as non-homogeneous
plots existing in the LPIS do not influence the quantitative accuracy
assessment. This map was used for visual evaluation only, with all the
imitations of such evaluation.

Appendix D. Tables and figures

See Tables D.6 and D.7 and Fig. D.13.

Appendix E. Supplementary materials

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.rse.2024.114476.The supplementary ma-

terials are available at the following link https://zenodo.org/records/
11034843. The python scripts implementing the different algorithms
are available at https://src.koda.cnrs.fr/pzzkfwbr/mowing-event-detec
tion. Finally, the prediction raster map, as well as per French county
vector files (plots summary) are provided here: https://zenodo.org/
records/11034387.
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Fig. D.13. Site-specific outputs in terms of (A) R2, (B) RMSE, (C) MAE, (D) Max_error, (E) Mean Deviation, (F) Correlation and (G) Slope. The sites are represented on the 𝑥-axis.
The color palette represents the algorithms. For each site, fifty individual evaluations were conducted (from 50 folds by bootstrapping 70% of observations). Ridge Regression,
SimpleMean and Threshold outputs are not shown in this figure.
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Table D.6
Algorithm-specific statistical summary assessed at pixel-level. Each score value represents weighted mean of all sites. A site-
specific score was weighted using the number of pixels used for the evaluation. A site-specific score represents mean of
fifty individual evaluations (from 50 folds by bootstrapping 70% of observations). The lines are sorted based on R2 values
(descending order).
Algorithm MAE RMSE 𝑅2 MaxError MD Corr Slope 𝑄50 𝑄95

LTAE_SMOTE 5.50 9.11 0.52 58.81 −0.37 0.73 0.60 3.24 20.21
LTAE 5.61 9.13 0.52 58.28 −0.50 0.73 0.59 3.35 19.47
LTAE_ADASYN 5.68 9.24 0.51 59.66 −0.07 0.72 0.58 3.28 20.77
MLP_ADASYN 6.36 9.39 0.49 54.00 0.10 0.72 0.52 4.22 20.38
1D-CNN_SMOTE 6.53 9.40 0.49 48.59 −0.50 0.72 0.41 4.43 20.28
1D-CNN_ADASYN 6.67 9.46 0.48 48.57 −0.42 0.71 0.44 4.62 20.28
MLP_SMOTE 6.50 9.50 0.47 54.23 −0.63 0.71 0.51 4.07 20.78
1D-CNN 6.84 9.60 0.47 49.30 −0.20 0.71 0.42 4.85 20.53
RF_ADASYN 6.71 10.04 0.42 61.30 0.02 0.66 0.52 4.25 21.60
RF 6.80 10.09 0.40 56.69 0.92 0.66 0.51 4.35 22.68
MLP 7.02 10.11 0.40 54.28 −0.77 0.66 0.44 4.83 21.71
RF_SMOTE 6.97 10.64 0.34 61.53 0.61 0.61 0.47 4.31 24.23
Ridge 8.62 11.45 0.23 72.57 1.18 0.58 0.43 6.58 23.36
SimpleMean 10.28 13.81 −0.10 42.06 0.19 0.00 0.00 5.52 26.78
Ridge_SMOTE 13.24 16.71 −0.76 87.89 1.74 0.43 0.51 11.02 32.80
Threshold 14.02 19.66 −1.36 73.24 −1.36 0.17 0.13 7.21 41.85
Ridge_ADASYN 17.11 21.17 −2.03 110.89 1.47 0.33 0.43 14.93 40.66
Table D.7
Algorithm-specific statistical summary assessed at plot-level. Each score value represents weighted mean of all sites. A site-
specific score was weighted using the number of plots used for the evaluation. A site-specific score represents mean of
fifty individual evaluations (from 50 folds by bootstrapping 70% of observations). The lines are sorted based on R2 values
(descending order).
Algorithm MAE RMSE 𝑅2 MaxError MD Corr Slope 𝑄50 𝑄95

LTAE_ADASYN 5.42 8.56 0.61 41.32 0.00 0.80 0.59 3.49 18.38
LTAE_SMOTE 5.28 8.66 0.61 47.93 −0.37 0.79 0.60 3.38 17.99
LTAE 5.52 8.95 0.58 48.48 −0.48 0.76 0.59 3.36 17.76
RF_ADASYN 6.19 9.19 0.56 46.06 0.05 0.76 0.53 4.13 18.85
RF_SMOTE 6.51 9.59 0.51 46.73 0.48 0.72 0.49 4.27 19.75
1D-CNN_ADASYN 6.71 9.62 0.51 42.70 −0.37 0.74 0.44 4.52 20.56
MLP_SMOTE 6.46 9.66 0.51 45.73 −0.54 0.73 0.51 3.90 20.98
1D-CNN_SMOTE 6.60 9.68 0.51 43.09 −0.36 0.75 0.42 4.28 21.01
RF 6.61 9.73 0.50 45.76 0.75 0.72 0.51 4.47 20.24
MLP_ADASYN 6.45 9.75 0.50 48.05 0.25 0.74 0.52 4.17 21.05
1D-CNN 6.95 9.94 0.48 44.05 0.01 0.73 0.42 4.74 21.21
MLP 6.86 10.04 0.47 44.05 −0.45 0.71 0.45 4.57 21.15
Ridge 8.04 11.01 0.36 43.25 0.73 0.65 0.47 5.92 22.54
SimpleMean 10.78 14.47 −0.10 41.14 0.06 0.00 0.00 6.78 28.29
Ridge_SMOTE 11.57 14.63 −0.21 45.53 0.33 0.54 0.58 9.58 28.12
Threshold 12.98 17.24 −0.64 56.38 −3.92 0.33 0.25 9.79 35.04
Ridge_ADASYN 14.42 17.80 −0.93 50.07 0.43 0.46 0.53 12.57 34.47
Data availability

Data will be made available on request.
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