

Association of poultry vaccination with the interspecies transmission and molecular evolution of H5 subtype avian influenza virus

Bingying Li, Jayna Raghwani, Sarah C Hill, Sarah François, Noémie Lefrancq, Yilin Liang, Zengmiao Wang, Lu Dong, Phillipe Lemey, Oliver G Pybus, et al.

▶ To cite this version:

Bingying Li, Jayna Raghwani, Sarah C Hill, Sarah François, Noémie Lefrancq, et al.. Association of poultry vaccination with the interspecies transmission and molecular evolution of H5 subtype avian influenza virus. 2024. hal-04777951

HAL Id: hal-04777951 https://hal.inrae.fr/hal-04777951v1

Preprint submitted on 12 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

1	Association of poultry vaccination with the interspecies transmission and
2	molecular evolution of H5 subtype avian influenza virus
3	
4	Bingying Li ¹ [†] , Jayna Raghwani ² [†] , Sarah C. Hill ² , Sarah François ^{3,4} , Noémie Lefrancq ⁵ , Yilin
5	Liang ¹ , Zengmiao Wang ¹ , Lu Dong ⁶ , Phillipe Lemey ⁷ , Oliver G. Pybus ^{2,3} *, Huaiyu Tian ¹ *
6	
7	¹ State Key Laboratory of Remote Sensing Science, Center for Global Change and
8	Public Health, Beijing Normal University, Beijing, China
9	² Department of Pathobiology and Population Sciences, The Royal Veterinary College,
10	London, United Kingdom
11	³ Department of Biology, University of Oxford, Oxford, United Kingdom
12	⁴ UMR DGIMI, University of Montpellier, INRAE, Montpellier, France
13	⁵ Department of Genetics, University of Cambridge, Cambridge, UK
14	⁶ Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering,
15	College of Life Sciences, Beijing Normal University, Beijing, China
16	⁷ Department of Microbiology, Immunology and Transplantation, Rega Institute,
17	Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium
18	
19	†These authors contributed equally to this work.

20 *Corresponding authors: tianhuaiyu@gmail.com (H.Y.); opybus@rvc.ac.uk (O.G.P.).

21 Abstract

22	The effectiveness of vaccinating poultry in preventing the transmission of highly
23	pathogenic avian influenza viruses (AIVs) has been questioned for years and its
24	impact on wild birds is uncertain ¹⁻³ . Here we reconstruct movements of H5 subtype
25	AIV lineages among vaccinated poultry, unvaccinated poultry, and wild birds,
26	worldwide from 1996 to 2023. We find that lineage transitions among host types are
27	lagged and that movements from wild birds to unvaccinated poultry were more
28	frequent than those from wild birds to vaccinated poultry. However, we also find that
29	the HA gene of the AIV lineage that circulated predominately among Chinese poultry
30	with high vaccination coverage underwent faster evolution and greater
31	nonsynonymous divergence than other lineages. Further, this Chinese poultry lineage
32	contained more codons inferred to be under positive selection, including at known
33	antigenic sites, and its rates of nonsynonymous divergence and adaptative fixation
34	increased after mass poultry vaccination began. Our results indicate that the
35	epidemiological, ecological and evolutionary consequences of widespread AIV
36	vaccination in poultry may be linked in complex ways, and that much work is needed
37	to better understand how such interventions may affect AIV transmission to, within
38	and from wild birds.
39	
40	

40 Key words: interspecies virus transmission, avian influenza, poultry vaccination, wild
41 birds, H5 subtype avian influenza viruses

42 Introduction

43	During the summer of 2022, seabirds in many European, North American, and African
44	countries suffered unprecedented mortality from avian influenza virus (AIV) ⁴ . The
45	causative virus, a highly pathogenic H5 subtype AIV (HPAIV) belonging to clade
46	2.3.4.4b, has been detected at unprecedented incidence in wild birds ⁵ . Wild birds, the
47	natural reservoir of AIVs, can acquire and transmit viruses to poultry or mammals ^{6,7}
48	and play a major role in the maintenance and global dissemination of AIVs 8 . Intra-
49	and inter-species transmission of genetically diverse AIVs can result in virus genomic
50	reassortment ^{9,10} and the emergence of novel HPAIV lineages ¹¹⁻¹⁹ .
51	
52	In order to protect poultry from infection with HPAIV, some countries have
53	implemented vaccination programs in poultry for H5 subtype avian influenza, mostly
54	in Asia and Africa (Fig. 1) ²⁰⁻²³ . Based on national vaccination data from 2010, Egypt
55	had the highest vaccination coverage in poultry (82%), followed by China (73% in
56	2009 and 87% in chickens and $<$ 30% in ducks in 2018 ²⁴), Vietnam (31%), and
57	Indonesia (12%) ²⁵ . In 2013, vaccination coverage for commercial layer flocks in two
58	districts of Bangladesh were reported to be 32% and 54% ²⁶ . France and the
59	Netherlands have also vaccinated poultry; however, their overall vaccination
60	coverages are very low (<0.1%). Since 2005 China has implemented a nationwide
61	vaccination program ²⁷ and notably accounts for >90% of the global consumption of
62	H5 AIV vaccines. Due to the continuing evolution of H5 AIV, vaccine strains are

63	frequently updated to ensure their effectiveness ^{28,29} . Several studies have suggested
64	that the extensive vaccination of Chinese poultry against H5 AIV has suppressed
65	outbreaks effectively and substantially decreased the prevalence of H5 AIV in live
66	bird markets ^{26,29-32} .

67

68	However, there are concern that mass vaccination against H5 AIV could impact the
69	molecular evolution of the virus ³³ . For example, after mass vaccination was initiated
70	against H5N1 AIV in China, a significant increase in the evolutionary rate of H5N1
71	AIV was observed during 2005-2010 ³⁴ . Similarly, in North America, the evolutionary
72	rate of H5N2 AIV in Mexico was inferred to be significantly higher between 1993 and
73	2002, following a period of mass avian influenza vaccination in this region, compared
74	to the rate of evolution of H5 AIV in the United States, where vaccination was not
75	used ³⁵ .

Furthermore, AIV lineages circulating in Egypt and Indonesia, where vaccination against H5N1 is prevalent, are characterized by higher evolutionary rates and a greater number of positively selected sites in the HA gene compared to countries where vaccination is about, such as Nigeria, Turkey and Thailand ^{36,37}. However, these studies have concentrated mainly on viruses from poultry and lacked data from wild birds and at the wild bird-poultry interface. This limitation could potentially create confusion in understanding the evolutionary characteristics of the virus in both wild

84	birds and poultry, contributing to the uncertainty of their conclusions. Given the
85	frequent movement of AIV between wild birds and poultry, it is crucial to understand
86	the impact of mass poultry vaccination on AIV in unvaccinated wild birds.
87	
88	Here we conduct phylogenetic analyses to investigate the inter-species transmission of
89	H5 AIV between wild birds and poultry from 1996 to 2023, and compare the
90	evolutionary dynamics of H5 AIV in different host populations that vary in
91	vaccination status.
92	
93	Result
94	Interspecies transmission of H5 AIV at the interface of poultry and wild birds
95	We collated a total of 22,606 hemagglutinin (HA) gene sequences belonging to H5
96	AIV, sampled from each continent since 1996 (Fig. 1). The viral sequences were
97	unevenly distributed over time and space across host populations. Therefore, for the
98	downstream analyses, we focused on Europe and Asia, where sufficient viral genetic
99	data was available from long-term sampling of poultry and wild birds to quantify the
100	dynamics of virus transmission and evolution within and among host populations. By
101	taking into account the implementation of vaccination programs and the availability of
102	viral genetic sequences (Supplementary Fig. S1), we categorised sequences into eight
103	groups based on the country of sampling, host species, and vaccination status: wild
104	birds (without vaccination), European poultry (without vaccination), Japanese poultry

105	(without vaccination), Korean poultry (without vaccination), Indonesian poultry (with
106	vaccination, low vaccination coverage), Bangladeshi poultry (with vaccination, low
107	vaccination coverage), Vietnamese poultry (with vaccination, low vaccination
108	coverage), and Chinese poultry (with vaccination, high vaccination coverage).
109	
110	To investigate H5 AIV transmission and evolution, we estimated a time-resolved
111	phylogeny and inferred ancestral state (Fig. 2A; Supplementary Table S1). Inter-
112	species movement of H5 AIV lineages from Chinese poultry to wild birds, and from
113	wild birds to European poultry, were frequently observed (Fig. 2B). Bayesian
114	reconstruction of the host status of H5 AIV lineages indicates there were three waves
115	of spillovers from Chinese poultry to wild birds (CPtoWB), and from wild birds to
116	European poultry (WBtoEP) (Fig. 2C). To investigate lineage transitions among these
117	three host types before 2020, we conducted an extended convergent cross mapping
118	(CCM) analysis on the time series of mean annual lineage transitions (Markov jumps)
119	from Chinese poultry to wild birds, and from wild birds to European poultry, between
120	1996 and 2019. We find that CPtoWB transitions preceded WBtoEP transitions, with a
121	time lag of approximately 2-3 years (Fig. 2C; Supplementary Fig. S2). The observed
122	pattern is robust to diverse genomic sampling strategies (Supplementary Figs. S3-S6).
123	
124	Overall, more viral lineage transitions were observed from wild birds to unvaccinated

125 poultry populations than to vaccinated poultry populations (Fig. 3, Supplementary

126	Table S2). Frequent lineage transitions were observed from wild birds to unvaccinated
127	European, Japanese and Korean poultry, especially after 2020 (Fig. 3A). Conversely,
128	there were fewer viral lineage transitions from wild birds to Chinese poultry and other
129	vaccinated poultry populations (Fig. 3B). Inter-species transitions from poultry to
130	wild birds were frequent after 2016 (Fig. 3C and Fig. 3D). Virus lineage movements
131	between poultry populations were not common. The observed pattern is robust to
132	diverse genomic sampling strategies (Supplementary Table S3).
133	
134	Evolutionary dynamics of H5 AIV in different host populations
135	We next investigated the evolutionary dynamics of H5 AIV in wild birds and poultry
136	populations with different vaccination levels. Poultry-dominated viral lineages were
137	identified only for China (vaccinated since 2005), Bangladesh (vaccinated since 2012)
138	and Indonesia (vaccinated since 2004) (Fig. 4A). Our results indicated that the
139	Chinese poultry lineage had a significantly higher substitution rate (mean rate =
140	5.38×10^{-3} sub/site/year; 95% HPD: $5.02-5.76 \times 10^{-3}$; $P < 0.05$) than the early-wild bird
141	lineage (3.39×10 ⁻³ sub/site/year; 95% HPD: 2.97-3.83×10 ⁻³) (Fig. 4B). Notably this
142	result is robust to the time-dependence of virus evolutionary rates ³⁸ because both
143	lineages have similarly high variation in sequence sampling dates (Fig. 4C). Besides,
144	the substitution rate of the Chinese poultry lineage during the vaccination period
145	$(5.12 \times 10^{-3} \text{ sub/site/year}; 95\% \text{ HPD}: 4.71-5.55 \times 10^{-3})$ was faster than before
146	vaccination (4.79×10 ⁻³ sub/site/year; 95% HPD: 4.38-5.18×10 ⁻³ ; P < 0.05;

147	Supplementary Fig. S7). The substitution rates of poultry-dominated viral lineages in
148	Bangladesh and Indonesia were also faster than those of the early-wild bird lineage (P
149	< 0.05). Furthermore, the substitution rate of the late-wild bird lineage was faster than
150	that of the Chinese poultry lineage from which it emerged $(5.91 \times 10^{-3} \text{ sub/site/year};)$
151	95% HPD: $5.03-6.56 \times 10^{-3}$), however this latter result should be interpreted with
152	caution due to the comparatively shorter range of sequence sampling dates in the late-
153	wild bird lineage.
154	
155	If the higher evolutionary rate of HA gene in vaccinated poultry lineages is simply a
156	result of increased viral transmission facilitated by high poultry densities, then we
157	should also observe higher rates for poultry lineages in other AIV segments.
158	Conversely, PB2 gene evolution was faster in the wild bird lineage (3.62×10^{-3})
159	sub/site/year; 95% HPD: $3.23-3.92 \times 10^{-3}$; $P < 0.05$) than in the Chinese poultry
160	lineage (3.44×10 ⁻³ sub/site/year; 95% HPD: 3.08-3.78×10 ⁻³ ; Supplementary Fig. S8-
161	S9). This result suggests that the faster evolution of the HA gene in Chinese poultry
162	may not be attributable to higher transmission rates alone and instead could result
163	from selection on the HA gene.
164	
165	Viral adaptive evolution in host populations with different vaccination status
166	We then investigated whether the higher rate of molecular evolution observed in the
167	Chinese poultry lineage, compared to the early-wild bird lineage, could be explained

168	by greater viral adaptive evolution in poultry. For each lineage, we calculated the
169	nonsynonymous and synonymous divergence of the HA gene through time, from a
170	known reference sequence (NCBI Reference Sequence: AF144305; Figs. 5A, 5B and
171	5C). Our results indicate higher nonsynonymous divergence for the Chinese poultry
172	lineage than for other lineages, such as wild bird lineages and poultry lineages in
173	Bangladesh and Indonesia (Chinese poultry lineage gradient = 0.0027 , $P < 0.05$;
174	early-wild bird lineage = 0.0005 , $P < 0.05$; late-wild bird lineage = 0.0007 , $P < 0.05$;
175	Bangladeshi poultry lineage = 0.0009, $P < 0.05$; Indonesian poultry lineage I =
176	0.0011, $P < 0.05$; Indonesian poultry lineage II = 0.0021, $P < 0.05$). Additionally, the
177	nonsynonymous divergence rate increased in the Chinese poultry lineage following
178	mass vaccination (gradient pre-2005 = 0.0017, 95% CI = 0.0011-0.0023; gradient
179	between 2005 and 2010 = 0.0046, 95% CI = 0.0041-0.0052; Supplementary Table
180	S4). To test for the potential impact of different sampling intensities among countries,
181	the Chinese poultry lineage was resampled and the results remained consistent
182	(Supplementary Fig. S10). This indicates that the Chinese poultry lineage exhibited
183	more nonsynonymous evolution, especially after vaccination, compared to the wild
184	bird lineages and the poultry lineages that experienced lower vaccination coverage.
185	
186	Since nonsynonymous divergence can result from either positive selection or random
187	genetic drift, we also used an independent population genetic method to estimate the

188 rate of accumulation of adaptive substitutions in the HA gene of the Chinese poultry

189	lineage. The estimated rate of adaptative fixation in that lineage was significantly
190	higher after the initiation of vaccination in poultry (gradient pre-2005 = 0.24 adaptive
191	fixations per codon per year; $P < 0.05$; gradient after $2005 = 0.78$ adaptive fixations per
192	codon per year; $P < 0.05$; Fig. 5D). These estimated adaptation fixation rates are
193	rapid, but lower than those previously inferred for the HA gene of human influenza
194	subtype H3N2 (1.52) and subtype H1N1 (1.02) 39 . We next estimated dN/dS values
195	for each host-associated lineage using the renaissance counting method ⁴⁰ . Mean
196	dN/dS is higher in the Chinese poultry lineage (0.24) than in the early wild bird
197	lineage (0.16) , the late-wild bird lineage (0.18) , and the European poultry lineage
198	(0.16) (Supplementary Table S5). The mean dN/dS values of the Bangladeshi (0.17)
199	and Indonesian poultry I and II lineages (0.18 for both) were also lower than that of
200	the Chinese poultry lineage.
201	
202	Furthermore, dN/dS values were calculated for individual codons in the HA gene, for
203	each host-specific H5 AIV lineage. We employed multiple methods to detect sites
204	under positive selection (Table 1). Our results indicate the number of amino acid sites
205	exhibiting evidence of positive selection in the Chinese poultry lineage was greater
206	than in the two wild bird lineages and in the Bangladeshi and Indonesian poultry
207	lineages (Table 1). More positively selected sites were also observed in resampled-
208	Chinese poultry lineage (Supplementary Table S6), indicating the finding is robust to
209	diverse sampling strategies (Supplementary Tables S7, S8).

211	The majority of the positively selected sites were associated with established immune-
212	reactive epitopes. In the Chinese poultry lineage, those were mainly located in the
213	receptor binding subdomain (Supplementary Fig. S11). For example, positive
214	selection was observed at sites 156, 157, and 242, which are recognized as CD8+ T-
215	cell epitopes 41 , and at site 87, which is associated with antibody epitope 65C6 42 .
216	Within the late-wild bird lineage, positively selected site 252 is associated with the
217	H5 ₂₄₆₋₂₆₀ epitope, which induced activation of T cells in chickens immunized against
218	the HA antigen of H5 AIV 43 . The positive selection analysis also revealed mutations
219	(mostly in the receptor binding subdomain) that are associated with changes within
220	the Chinese poultry lineage (D142E, H154Q /L/N, R156V/T/M/K/N/A, S157P/A,
221	S171D/N, Q185R/K/S/G, L285V/M/I) and with the transition of the virus from the
222	Chinese poultry lineage to the late-wild bird lineage (E142, Q154, A/T156, P157,
223	D171, R185, V285). The amino acid states of these sites in the early-wild bird lineage
224	(D142, N154, R156, S157, N171, Q185, L285) are mostly different to those in the
225	late-wild bird lineage, indicating that these changes are not reversion mutations.
226	
227	Discussion
228	Since 2020, H5 subtype avian influenza viruses have caused outbreaks in European
229	and Asian countries, posing a significant real threat to the poultry industry and a
230	potential threat to public health. We reconstructed the inter-species transmission

231	history of H5 subtype avian influenza viruses among wild birds and poultry
232	populations with different vaccination levels. Our analysis reveals a shift from a
233	lineage circulating within Chinese poultry to one circulating among wild birds. The
234	wild bird lineage has frequently transmitted to unvaccinated European poultry, while
235	the spillback of this virus from wild birds to vaccinated poultry appears to be
236	impeded. Further, the virus lineage circulating in highly-vaccinated Chinese poultry
237	exhibits evidence of more non-synonymous and adaptive molecular evolution in the
238	HA gene after the date of introduction of mass poultry vaccination. The Chinese
239	poultry lineage may have experienced more vaccine-driven selection than the other
240	lineages. Further research is needed to determine if this selection has had any impact
241	on the HA gene mutations present in the late-wild bird lineage.
242	
243	Due to high virus prevalence, Chinese poultry, as well as Southeast Asian poultry,
244	have been regarded as the primary reservoirs of H5 HPAIV ⁴⁴ . H5 AIV spread to other
245	regions through bird migration ⁴⁵ and the poultry trade ⁴⁶ , and our results reveal a 2-3-
246	year delay between the peak of lineage dissemination from Chinese poultry and the
247	peak of lineage introduction into European poultry. Although it has been suggested

248 that the intercontinental spread of H5 AIV may occur within a single avian migratory

- 249 cycle ^{8,45,47-50}, the delay we observe may be attributed in part to pre-existing immunity
- 250 in wild birds, which may provide partial protection against infection and disease ⁵¹⁻⁵³,
- 251 leading to reduced circulation and potentially dampening large-scale outbreaks in wild

252	birds. However, the duration of protection conferred by previous AIV infection and its
253	impact on the epidemiology of AIV have yet to be elucidated fully ⁵⁴ . Furthermore,
254	the relatively short generation length of many wild birds (~ 3 years) may result in
255	higher turnover ⁵⁵ of serologically-naïve wild birds in nature. As the reservoir of H5
256	AIV shifted from Chinese poultry to wild birds, frequent migration and large-scale
257	spatial distribution of wild birds likely facilitated inter-species transmission between
258	wild birds and poultry populations ⁴⁵ . It is crucial that countries and regions enhance
259	regular surveillance of avian influenza viruses in wild birds and actively and closely
260	monitor the dynamics of virus transmission.
261	
262	Following the mass poultry vaccination strategy implemented in China since 2005,
263	the spread of H5 AIV there has been relatively well-controlled. Inter-species
264	transmission of these viruses from or to Chinese poultry seems to be limited.
265	However, the Chinese poultry lineage may have experienced more antigenic evolution
266	compared to other lineages. Mutations at amino acid positions 136, 142, 157, 172,
267	201, and 205 in H5 AIV HA gene have been shown to reduce reactivity to specific
268	antibodies ⁵⁶ . Amino acids at positions 142, 172, and 205 also appear to function as
269	immunodominant epitopes in H5 viruses ⁵⁶ . We detected positive selection at positions
270	142, 157, 172, and 205 in the Chinese poultry lineage but not in the wild bird lineages
271	or the other poultry lineages. The H5N6 virus currently circulating in Chinese poultry
272	exhibits antigenic divergence from the strains included in the commercial vaccine in

273	China ^{57,58} , potentially leading to reduced vaccine effectiveness. Our study indicates				
274	that when vaccination is used, regular monitoring and refinement of vaccines to target				
275	emerging escape variants is necessary to respond to the emergence of novel viruses.				
276	Whilst contemporary H5 HPAIVs are considered unlikely to acquire the ability to				
277	infect and stably circulate among the human population ⁵⁹ , there is still an urgent need				
278	to control the spread of the virus among wild birds, not only for the preservation of				
279	wildlife but also for ensuring the safety of poultry ¹ .				
280					
281	Our study has several limitations. First, although we obtained robust results supported				
282	by different datasets, the heterogeneous sampling rates of infected wild birds and				
283	poultry may bias ancestral reconstructions. Secondly, although there is a high				
284	vaccination rate among Chinese poultry ²⁷ , extracting viral lineages circulating				
285	exclusively in vaccinated poultry was not possible due to the unknown vaccination				
286	status of all sampled hosts. Thirdly, the accurate identification of ancestral host states				
287	in AIV lineages is challenging for countries with limited AIV surveillance in wild bird				
288	populations. Finally, the lack of viral genetic and surveillance data from many				
289	vaccinating/non-vaccinating countries may preclude comparative analysis of				
290	evolutionary dynamics among poultry lineages with different vaccination levels.				
291					
292	In conclusion, we find that vaccination in Asian poultry likely reduced the inter-				
293	species transmission of these viruses. H5 AIV in Chinese poultry, which are highly				

294	vaccinated, show evidence of greater HA gene molecular evolution and adaptation			
295	after the introduction of vaccination. Such circumstances may have increased the			
296	probability that birds susceptible to AIV belong to wild species at the interface			
297	between wild birds and poultry, leading to shifts in selection pressure on the virus. As			
298	avian influenza continues to pose significant challenges to wild and domestic animal			
299	health, our research can help inform the development of preventive measures against			
300	AIV, such as global vaccination policies.			
301				
302	Method			
303	Sequence data			
304	We collected publicly-available hemagglutinin (HA) gene sequences of H5 AIV			
305	sampled in Asia and Europe from January 1996 to February 2023 from Global			
306	Initiative on Sharing All Influenza Data (GISAID). Only sequences with available			
307	information on date and sampling location were retained for further analysis. We			
308	aligned the sequences using MAFFT v7.487 60 and recombinant sequences were			
309	detected using RDP4 ⁶¹ . We identified and removed sequences with unexpectedly high			
310	or low levels of genetic divergence given their sampling time from our datasets by			
311	estimating a maximum likelihood tree using FastTree v2.1.11 ⁶² under the			
312	automatically determined best-fit substitution model and performing a root-to-tip			
313	regression analysis in TempEst v1.5.3 ⁶³ .			

315	Based on the sustained sampling efforts and the appropriate viral sample size (> 500
316	sequences; Supplementary Fig. S1), six Asian countries (China, Bangladesh, Japan,
317	Korea, Indonesia, and Vietnam) were selected. All European countries were
318	collectively treated as a single group. To focus on the viral lineages circulating in wild
319	birds and poultry, the sequences were categorized into eight groups based on both
320	geographic information and host type. These groups include wild birds, European
321	poultry (without vaccination against H5 AIV) , Japanese poultry (without vaccination
322	against H5 AIV), Korean poultry (without vaccination against H5 AIV), Bangladeshi
323	poultry (with vaccination against H5 AIV; low vaccination coverage), Indonesian
324	poultry (with vaccination against H5 AIV; low vaccination coverage), Vietnamese
325	poultry (with vaccination against H5 AIV; low vaccination coverage), and Chinese
326	poultry (with vaccination against H5 AIV; high vaccination coverage).
327	
328	We then downsampled these datasets in a stratified manner to create a more equitable
329	distribution of AIV sequences between wild birds and poultry: (1) wild bird dataset:
330	randomly selected at most 2 sequences per month per country outside China and per
331	month per province in China, comprising 1087 gene sequences from January 1999 to
332	January 2023; (2) European poultry dataset: randomly selecting at most 1 sequence
333	per month per country, including 338 gene sequences from January 1997 to January
334	2023; (3) Japanese poultry dataset: randomly selected at most 2 sequences per month,
335	including 72 HA gene sequences from January 2000 to January 2023; (4) Korean

336	poultry dataset: randomly selected at most 2 sequences per month, including 72 gene
337	sequences from October 2008 to October 2022; (5) Bangladeshi poultry dataset:
338	randomly selected at most 1 sequence per month, including 106 HA gene sequences
339	from January 2007 to August 2022; (6) Indonesian poultry dataset: randomly selected
340	at most 1 sequence per month, including 121 HA gene sequences from January 2003
341	to March 2022; (7) Vietnamese poultry dataset: randomly selected at most 1 sequence
342	per month, including 151 HA gene sequences from 2003 to December 2021; (8)
343	Chinese poultry dataset: randomly selecting at most 1 sequence per month per
344	province, including 462 gene sequences from January 1996 to March 2022.
345	
346	Considering that also substantial mutations have accumulated in the PB2 gene ^{64,65} ,
347	we used a similar method to collate PB2 gene sequences of H5 AIV sampled in Asian
348	and Europe for sensitivity analysis (see Supplementary Materials).
349	
350	Phylogenetic inference
351	Evolutionary histories were estimated with the Bayesian phylogenetic package
352	BEAST v1.10.4 ⁶⁶ , using the BEAGLE ⁶⁷ library to improve computational speed.
353	Specifically, we employed a SRD06 substitution model ⁴⁵ , an uncorrelated lognormal
354	relaxed clock ⁴⁵ and Gaussian Markov random field (GMRF) Bayesian Skygrid
355	coalescent model ⁶⁸ . We subsequently used an eight-state discrete trait analysis (DTA)
356	implemented in BEAST 1.10.4 to infer ancestral node hosts on empirical distributions

357	of 500 time-calibrated trees sampled from the posterior tree distributions ⁶⁹ . An			
358	asymmetric model was used for the host discrete trait, which allows different rates of			
359	lineage movement between each pair of host states ⁷⁰ . Three independent Markov			
360	chain Monte Carlo (MCMC) runs were performed for 400 million steps and logged			
361	every 20,000 steps. The first 10% of each chain was discarded as burn-in. We			
362	confirmed the convergence of all chains in Tracer v1.7.1 ⁷¹ , ensuring the ESS			
363	was >200 for all parameters. A maximum clade credibility tree was estimated using			
364	TreeAnnotator v1.10.4 and subsequently visualized using FigTree v1.4.4			
365	(http://tree.bio.ed.ac.uk/software/figtree) along with the R package ggtree v2.4.1 72 .			
366	We used the BaTS 2.0 software ⁷³ to investigate the uncertainty arising from			
367	phylogenetic error (grouped by sampling location and host), which was compared to a			
368	null hypothesis that there was no association between the phylogenetic structure and			
369	traits by performing tip randomization with 1000 replicates (Supplementary Table			
370	S9).			
371				
372	Evolutionary analysis within host-specific populations			
373	To infer virus dissemination within host-specific populations, we removed AIV			
374	phylogenetic clades that were determined to represent transmissions between different			

- 375 species ⁴⁶. We extracted sequences for each host-specific lineage based on the
- aforementioned discrete trait analysis and independently estimated the temporal
- 377 phylogenies using the same substitution, clock and tree models as described above.

378 Strong phylogenetic temporal structure was observed in all host-specific lineages

- 379 (Supplementary Fig. S12).
- 380

381 Divergence analysis

382	To estimate site-specific synonymous and non-synonymous substitutions in the		
383	different host-specific lineages, we applied a renaissance counting ⁴⁰ procedure		
384	implementing a codon-position specific HKY nucleotide substitution model along		
385	with an uncorrelated lognormal relaxed clock ⁴⁵ and the Gaussian Markov random		
386	field (GMRF) Bayesian Skygrid coalescent model ⁶⁸ . Sites under positive selection		
387	were also identified using complementary approaches. Specifically, the Fast		
388	Unconstrained Bayesian AppRoximation (FUBAR) ⁷⁴ , Single Likelihood Ancestor		
389	Counting (SLAC) methods ⁷⁵ and Fixed Effects Likelihood (FEL) methods ⁷⁵ as		
390	implemented in Hyphy v2.5 were used ⁷⁶ .		
391			
392	The synonymous and nonsynonymous divergence for each host-specific lineage were		
393	calculated as the average Hamming distance between each sequenced isolate in that		
394	lineage and a reference sequence (NCBI Reference Sequence: AF144305). The		
395	estimated divergence was calculated by dividing the total number of observed		
396	differences between isolate and reference nucleotide sequence that resulted in a		
397	substitution(nonsynonymous or synonymous) by the number of possible nucleotide		
398	mutations that could result in a substitution, weighted by kappa ⁷⁷ , the		

399	transition/transversion rate ratio, which was inferred from host-specific analysis using
400	BEAST.
401	
402	Time series analysis
403	The extended convergent cross mapping was applied to detect the time lags between
404	time series variables ⁷⁸ . This analysis was performed using the R package rEDM
405	v1.14.0 ⁷⁸ .
406	
407	Estimating rates of adaptive substitution
408	We employed an established population genetic method related to the McDonald-
409	Kreitman test ^{39,79} to estimate the number of adaptive substitutions per codon per year
410	in HA H5 gene from the Chinese poultry lineage. We used a consensus of HA
411	sequences from the earliest time point (sampled in 1996) as an outgroup to estimate
412	ancestral and derived site frequencies at subsequent time points. A bootstrap analysis
413	with 1,000 replicates was conducted to assess statistical uncertainty.
414	
415	ACKNOWLEDGMENTS. We gratefully acknowledge the authors of the originating
416	and submitting laboratories for their crucial contributions to the generation and
417	sharing of genome sequences and associated metadata through GISAID. This study
418	was supported by the National Key Research and Development Program of China
419	(2022YFC2303803); National Natural Science Foundation of China (82073616,

420	82204160): Beijing A	Advanced Innovation	Program for	Land Surface Science

- 421 (110631111); Fundamental Research Funds for the Central Universities
- 422 (2233300001); BNU-FGS Global Environmental Change Program (No.2023-GC-
- 423 ZYTS-11); Research on Key Technologies of Plague Prevention and Control in Inner
- 424 Mongolia Autonomous Region (2021ZD0006). J.R., and O.G.P. were supported by
- 425 the UKRI GCRF One Health Poultry Hub (grant no. B/S011269/1). S.C.H. is
- 426 supported by a Sir Henry Wellcome Postdoctoral Fellowship from the Wellcome Trust
- 427 (220414/Z/20/Z) (https://wellcome.org/). PL acknowledges support from the
- 428 European Union's Horizon 2020 research and innovation programme (grant
- 429 agreement no. 725422-ReservoirDOCS) from the European Union's Horizon 2020
- 430 project MOOD (grant agreement no. 874850) and from the Wellcome Trust through
- 431 project 206298/Z/17/Z. For the purpose of open access, the author has applied a CC
- 432 BY public copyright licence to any Author Accepted Manuscript version arising from
- 433 this submission. The funders had no role in study design, data collection and analysis,

434 the decision to publish, or in preparation of the manuscript.

435

436 **DECLARATION OF INTERESTS.** The authors declare no competing interests.

437

438 **DATA AND CODE AVAILABILITY.** All original code and data have been

439 deposited at Mendeley Data (https://data.mendeley.com/drafts/mmjmhc394f). The

440 gene segment sequences are available in the GenBank

- 441 (www.ncbi.nlm.nih.gov/genome/viruses/variation/flu/) and GISAID
- 442 (platform.gisaid.org/) databases (https://data.mendeley.com/drafts/mmjmhc394f). Any
- 443 additional information required to reanalyze the data reported in this paper is available
- 444 from the lead contact upon request.
- 445

446 Authors' contributions

- 447 H.T. designed the study. H.T., O.G.P., and B.L. designed the analysis. B.L., J.R., and
- 448 P.L. conducted the analyses. B.L. and Y.L. contributed and collected data. B.L. created
- 449 figures. B.L., H.T., and O.G.P. wrote the initial draft. O.G.P., J.R., S.C.H., S.F., N.L.,
- 450 Z.W., and L.D. interpreted the data and edited the manuscript. All authors read and
- 451 approved the manuscript.
- 452

454 References

455	1	Kozlov, M. US will vaccinate birds against avian flu for first time. Nature.
456		618 , 220-221 (2023).
457	2	Kupferschmidt, K. Bird flu spread between mink is a 'warning bell'. Science.
458		379 , 316-317 (2023).
459	3	Cohen, J. Bird shots. Science. 380, 24-27 (2023).
460	4	Kuiken, T. & Cromie, R. Protect wildlife from livestock diseases. Science.
461		378 , 5 (2022).
462	5	Chinese Science BulletinInfection, G. a. E. o. I., European Food Safety, Aznar,
463		I., Baldinelli, F., Stoicescu, A. & Kohnle, L. Annual report on surveillance for
464		avian influenza in poultry and wild birds in Member States of the European
465		Union in 2021. EFSA J. 20, 7554 (2022).
466	6	Lebarbenchon, C., Feare, C. J., Renaud, F., Thomas, F. & Gauthier-Clerc, M.
467		Persistence of Highly Pathogenic Avian Influenza Viruses in Natural
468		Ecosystems. Emerg Infect Dis. 16, 1057-1062 (2010).
469	7	Alexander, D. J. An overview of the epidemiology of avian influenza. Vaccine.
470		25 , 5637-5644 (2007).
471	8	Olsen, B. et al. Global patterns of influenza A virus in wild birds. Science.
472		312 , 384-388 (2006).
473	9	Taubenberger, J. K. & Kash, J. C. Influenza Virus Evolution, Host Adaptation,
474		and Pandemic Formation. Cell Host Microbe. 7, 440-451 (2010).

475	10	Dugan, V. G. et al. The evolutionary genetics and emergence of avian
476		influenza viruses in wild birds. PLoS Pathog. 4, e1000076 (2008).
477	11	Peiris, J. S. M., de Jong, M. D. & Guan, Y. Avian influenza virus (H5N1): a
478		threat to human health. Clin Microbiol Rev. 20, 243-267 (2007).
479	12	Pasick, J. et al. Reassortant Highly Pathogenic Influenza A H5N2 Virus
480		Containing Gene Segments Related to Eurasian H5N8 in British Columbia,
481		Canada, 2014. Sci Rep. 5, 9484 (2015).
482	13	Ip, H. S. et al. Novel Eurasian Highly Pathogenic Avian Influenza A H5
483		Viruses in Wild Birds, Washington, USA, 2014. Emerg Infect Dis. 21, 886-890
484		(2015).
485	14	Bertran, K. et al. Lack of chicken adaptation of newly emergent Eurasian
486		H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the
487		US is consistent with restricted poultry outbreaks in the Pacific flyway during
488		2014-2015. Virology. 494, 190-197 (2016).
489	15	Li, X. Y. et al. Characterization of avian influenza H5N3 reassortants isolated
490		from migratory waterfowl and domestic ducks in China from 2015 to 2018.
491		Transbound Emerg Dis. 66, 2605-2610 (2019).
492	16	Yeo, S. J. et al. Emergence of a Novel Reassortant H5N3 Avian Influenza
493		Virus in Korean Mallard Ducks in 2018. Intervirology. 65, 1-16 (2022).
494	17	Gu, M. et al. Novel Reassortant Highly Pathogenic Avian Influenza (H5N5)
495		Viruses in Domestic Ducks, China. Emerg Infect Dis. 17, 1060-1063 (2011).

496	18	Gu, W. et al. Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of
497		H5N8 virus have been detected in poultry and caused multiple human
498		infections in China. Emerg Microbes Infect. 11, 1174-1185 (2022).
499	19	Lee, YJ. et al. Novel Reassortant Influenza A(H5N8) Viruses, South Korea,
500		2014. Emerg Infect Dis. 20, 1087-1089 (2014).
501	20	Kang, Y. M. et al. Protection of layers and breeders against homologous or
502		heterologous HPAIv by vaccines from Korean national antigen bank. Sci Rep.
503		10 (2020).
504	21	Villanueva-Cabezas, J. P., Coppo, M. J. C., Durr, P. A. & McVernon, J.
505		Vaccine efficacy against Indonesian Highly Pathogenic Avian Influenza H5N1:
506		systematic review and meta-analysis. Vaccine. 35, 4859-4869 (2017).
507	22	Hill, E. M. et al. The impact of surveillance and control on highly pathogenic
508		avian influenza outbreaks in poultry in Dhaka division, Bangladesh. PLoS
509		<i>Comput Biol.</i> 14 (2018).
510	23	Hoang, H. T. T. et al. Immunization with the H5N1 Recombinant Vaccine
511		Candidate Induces High Protection in Chickens against Vietnamese Highly
512		Pathogenic Avian Influenza Virus Strains. Vaccines (Basel). 8 (2020).
513	24	Zeng, X. et al. Vaccination of poultry successfully eliminated human infection
514		with H7N9 virus in China. Sci China Life Sci. 61, 1465-1473 (2018).
515	25	Swayne, D. E. Impact of Vaccines and Vaccination on Global Control of Avian
516		Influenza. Avian Dis. 56, 818-828 (2012).

517	26	Parvin, R. et al. Controlling avian influenza virus in Bangladesh: Challenges
518		and recommendations. Viruses. 12, 751 (2020).
519	27	Liu, S. et al. Control of avian influenza in China: Strategies and lessons.
520		Transbound Emerg Dis. 67, 1463-1471 (2020).
521	28	Sun, Z., Wang, J. & Huang, Z. Assessment of China's H5N1 routine
522		vaccination strategy. Sci Rep. 7, 46441 (2017).
523	29	Wu, J. et al. Influenza H5/H7 Virus Vaccination in Poultry and Reduction of
524		Zoonotic Infections, Guangdong Province, China, 2017-18. Emerg Infect Dis.
525		25 , 116-118 (2019).
526	30	Liu, L. L. et al. Characterization of Clade 7.2 H5 Avian Influenza Viruses That
527		Continue To Circulate in Chickens in China. J Virol. 90, 9797-9805 (2016).
528	31	Song, W. et al. Changes of avian influenza virus subtypes before and after
529		vaccination in live poultry in Nanchang, China from 2016 to 2019. Microbes
530		Infect. 23, 104848 (2021).
531	32	Guo, J. et al. Pathogen change of avian influenza virus in the live poultry
532		market before and after vaccination of poultry in southern China. Virol J. 18,
533		213 (2021).
534	33	Iwami, S., Suzuki, T. & Takeuchi, Y. Paradox of Vaccination: Is Vaccination
535		Really Effective against Avian Flu Epidemics? PLoS One. 4 (2009).
536	34	Wang, Z. et al. Increased substitution rate in H5N1 avian influenza viruses
537		during mass vaccination of poultry. Chin Sci Bull. 57, 2419-2424 (2012).

538	35	Lee, C. W., Senne, D. A. & Suarez, D. L. Effect of vaccine use in the evolution
539		of Mexican lineage H5N2 avian influenza virus. J Virol. 78, 8372-8381
540		(2004).
541	36	Cattoli, G. et al. Evidence for differing evolutionary dynamics of A/H5N1
542		viruses among countries applying or not applying avian influenza vaccination
543		in poultry. Vaccine. 29, 9368-9375 (2011).
544	37	Kwon, J. H. et al. Genetic evolution and transmission dynamics of clade
545		2.3.2.1a highly pathogenic avian influenza A/H5N1 viruses in Bangladesh.
546		Virus Evol. 6, veaa046 (2020).
547	38	Ghafari, M. et al. Purifying selection determines the short-term time
548		dependency of evolutionary rates in SARS-CoV-2 and pH1N1 influenza. Mol
549		<i>Biol Evol.</i> 39 , msac009 (2022).
550	39	Bhatt, S., Holmes, E. C. & Pybus, O. G. The genomic rate of molecular
551		adaptation of the human influenza A virus. Mol Biol Evol. 28, 2443-2451
552		(2011).
553	40	Lemey, P., Minin, V. N., Bielejec, F., Kosakovsky Pond, S. L. & Suchard, M.
554		A. A counting renaissance: combining stochastic mapping and empirical Bayes
555		to quickly detect amino acid sites under positive selection. <i>Bioinformatics</i> . 28,
556		3248-3256 (2012).
557	41	Qiu, X. et al. Lineage-specific epitope profiles for HPAI H5 pre-pandemic
558		vaccine selection and evaluation. Influenza Other Respir Viruses. 11, 445-456

559	(2017).

560	42	Qian, M. et al. Unraveling of a neutralization mechanism by two human
561		antibodies against conserved epitopes in the globular head of H5
562		hemagglutinin. J Virol. 87, 3571-3577 (2013).
563	43	Haghighi, H. R., Read, L. R., Haeryfar, S. M., Behboudi, S. & Sharif, S.
564		Identification of a dual-specific T cell epitope of the hemagglutinin antigen of
565		an h5 avian influenza virus in chickens. PLoS One. 4, e7772 (2009).
566	44	King, J., Harder, T., Conraths, F. J., Beer, M. & Pohlmann, A. The genetics of
567		highly pathogenic avian influenza viruses of subtype H5 in Germany, 2006-
568		2020. Transbound Emerg Dis. 68, 1136-1150 (2021).
569	45	Lycett, S. J. et al. Role for migratory wild birds in the global spread of avian
570		influenza H5N8. Science. 354, 213-217 (2016).
571	46	Yang, Q. Q. et al. Assessing the role of live poultry trade in community-
572		structured transmission of avian influenza in China. Proc Natl Acad Sci USA.
573		117, 5949-5954 (2020).
574	47	Harder, T. et al. Influenza A(H5N8) Virus Similar to Strain in Korea Causing
575		Highly Pathogenic Avian Influenza in Germany. Emerg Infect Dis. 21, 860-863
576		(2015).
577	48	Kwon, J. H. et al. New Reassortant Clade 2.3.4.4b Avian Influenza A(H5N6)
578		Virus in Wild Birds, South Korea, 2017-18. Emerg Infect Dis. 24, 1953-1955
579		(2018).

580	49	Beerens, N. et al. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in
581		the Netherlands, December 2017. Emerg Infect Dis. 24, 770-773 (2018).
582	50	Wu, H. B. et al. Novel Reassortant Influenza A(H5N8) Viruses in Domestic
583		Ducks, Eastern China. Emerg Infect Dis. 20, 1315-1318 (2014).
584	51	Caliendo, V. et al. Long-Term Protective Effect of Serial Infections with H5N8
585		Highly Pathogenic Avian Influenza Virus in Wild Ducks. J Virol. 96, p.
586		e01233-01222 (2022).
587	52	Koethe, S. et al. Modulation of lethal HPAIV H5N8 clade 2.3.4.4B infection
588		in AIV pre-exposed mallards. Emerg Microbes Infect. 9, 180-193 (2020).
589	53	Hill, S. C. et al. Antibody responses to avian influenza viruses in wild birds
590		broaden with age. Proc R Soc Lond B Biol Sci. 283 (2016).
591	54	Verhagen, J. H. et al. Long-Term Effect of Serial Infections with H13 and H16
592		Low-Pathogenic Avian Influenza Viruses in Black-Headed Gulls. J Virol. 89,
593		11507-11522 (2015).
594	55	Bird, J. P. et al. Generation lengths of the world's birds and their implications
595		for extinction risk. Conserv Biol. 34, 1252-1261 (2020).
596	56	Zhang, Y. et al. Key Amino Acid Residues That Determine the Antigenic
597		Properties of Highly Pathogenic H5 Influenza Viruses Bearing the Clade 2.3.
598		4.4 Hemagglutinin Gene. Viruses. 15, 2249 (2023).
599	57	Jiang, W. M. et al. Emerging Novel Reassortant Influenza A(H5N6) Viruses in
600		Poultry and Humans, China, 2021. Emerg Infect Dis. 28, 1064-1066 (2022).

601	58	Zhang, J., Ye, H., Liu, Y., Liao, M. & Qi, W. Resurgence of H5N6 avian
602		influenza virus in 2021 poses new threat to public health. Lancet Microbe. 3,
603		e558-e558 (2022).
604	59	Ciminski, K., Chase, G., Schwemmle, M. & Beer, M. Advocating a watch-
605		and-prepare approach with avian influenza. Nat Microbiol. 8, 1603-1605
606		(2023).
607	60	Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software
608		Version 7: Improvements in Performance and Usability. Mol Biol Evol. 30,
609		772-780 (2013).
610	61	Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4:
611		Detection and analysis of recombination patterns in virus genomes. Virus Evol.
612		1 , vev003 (2015).
613	62	Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-Approximately Maximum-
614		Likelihood Trees for Large Alignments. PLoS One. 5 (2010).
615	63	Rambaut, A., Lam, T. T., Carvalho, L. M. & Pybus, O. G. Exploring the
616		temporal structure of heterochronous sequences using TempEst (formerly
617		Path-O-Gen). Virus Evol. 2, vew007 (2016).
618	64	Escalera-Zamudio, M. et al. Parallel evolution in the emergence of highly
619		pathogenic avian influenza A viruses. Nat Commun. 11, 5511 (2020).
620	65	He, WT. et al. Adaption and parallel evolution of human-isolated H5 avian
621		influenza viruses. J Infect. 80, 630-638 (2020).

622	66	Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data
623		integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
624	67	Ayres, D. L. et al. BEAGLE: an application programming interface and high-
625		performance computing library for statistical phylogenetics. Syst Biol. 61, 170-
626		173 (2012).
627	68	Hill, S. C. et al. Wild waterfowl migration and domestic duck density shape
628		the epidemiology of highly pathogenic H5N8 influenza in the Republic of
629		Korea. Infect Genet Evol. 34, 267-277 (2015).
630	69	Lemey, P. et al. Unifying Viral Genetics and Human Transportation Data to
631		Predict the Global Transmission Dynamics of Human Influenza H3N2. PLoS
632		Pathog. 10, e1003932 (2014).
633	70	Avian DiseasesEdwards, C. J. et al. Ancient Hybridization and an Irish Origin
634		for the Modern Polar Bear Matriline. Curr Biol. 21, 1251-1258 (2011).
635	71	Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior
636		Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol. 67,
637		901-904 (2018).
638	72	Yu, G. C., Smith, D. K., Zhu, H. C., Guan, Y. & Lam, T. T. Y. GGTREE: an R
639		package for visualization and annotation of phylogenetic trees with their
640		covariates and other associated data. Methods Ecol Evol. 8, 28-36 (2017).
641	73	Parker, J., Rambaut, A. & Pybus, O. G. Correlating viral phenotypes with
642		phylogeny: accounting for phylogenetic uncertainty. Infect Genet Evol. 8, 239-

643	246 (2008).

644	74	Murrell, B. et al. FUBAR: a fast, unconstrained bayesian approximation for
645		inferring selection. <i>Mol Biol Evol.</i> 30 , 1196-1205 (2013).
646	75	Kosakovsky Pond, S. L. & Frost, S. D. Not so different after all: a comparison
647		of methods for detecting amino acid sites under selection. Mol Biol Evol. 22,
648		1208-1222 (2005).
649	76	Pond, S. L. K. et al. HyPhy 2.5-A Customizable Platform for Evolutionary
650		Hypothesis Testing Using Phylogenies. Mol Biol Evol. 37, 295-299 (2020).
651	77	Kistler, K. E. & Bedford, T. Evidence for adaptive evolution in the receptor-
652		binding domain of seasonal coronaviruses OC43 and 229e. Elife. 10, e64509
653		(2021).
654	78	Ye, H., Deyle, E. R., Gilarranz, L. J. & Sugihara, G. Distinguishing time-
655		delayed causal interactions using convergent cross mapping. Sci Rep. 5, 14750
656		(2015).
657	79	Raghwani, J., Bhatt, S. & Pybus, O. G. Faster adaptation in smaller
658		populations: counterintuitive evolution of HIV during childhood infection.
659		PLoS Comput Biol. 12, e1004694 (2016).
660	80	Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep,
661		goats, pigs, chickens and ducks in 2010. PLoS Comput Biol. 5, 1-11 (2018).
662		

663 Figures

664

666 Fig 1. Vaccination coverage and number of H5 AIV HA gene sequences across

667 different continents and countries. Countries are shaded according to the

vaccination coverage in poultry in 2010. The pie charts show the total number of H5

- 669 AIV HA gene sequences sampled from poultry, wild birds, and environment since
- 670 1996. Viral sequences are categorized according to their host: wild birds (purple),
- 671 poultry (yellow), and other avian/environment (white). Inset: number of H5 AIV HA
- 672 gene sequences sampled in poultry and wild birds, per year, per continent.
- 673
- 674

676 Fig 2. Temporal dynamics of H5 AIV lineage transitions between wild birds and

675

poultry. (A) The maximum clade credibility tree of H5 AIV sequences sampled from
1996 to 2023. Tree tips are coloured according to the host from which the sequence
was sampled, while internal branches represent ancestral host states inferred using the
asymmetric discrete phylogenetic model (dark blue: wild birds; orange: Chinese
poultry; light green: European poultry; purple: Indonesian poultry; pink: Japanese
poultry; light blue: Korean poultry; dark green: Vietnamese poultry; yellow:

<00	D 1 1 1 1	1	T ,		•	<u> </u>	11	• .
692	Ronalodoch ₁	noultery)	Incot: 0	root to tim	roorogion	st aanati	a divarance	to according t
00.)	Daligiaucsiii	DOUILIVI.	IIISCL. a	1001-10-110	1 5915551011 (ווסט ער או		c againsi.
000	Donighterestin			1000 00 000				
	<u> </u>			1	0	<u> </u>	0	<u> </u>

- dates of sample collection. (B) Cumulative number of host population changes
- 685 (Markov jumps) on lineages in the HA gene phylogeny. The lineage transitions
- between hosts were summarized from a posterior sample of trees from the asymmetric
- 687 discrete phylogenetic model. (C) Time series of the annual mean number of HA gene
- 688 lineage transitions between wild birds, Chinese poultry and European poultry.
- 689
- 690

692 Fig 3. Inter-species lineage transmission between wild birds and poultry

691

693 populations with different vaccination statues. (A) Accumulation of lineage

694 transitions from wild birds to unvaccinated poultry populations. (B) Accumulation of

695 lineage transitions from wild birds to vaccinated poultry populations. (C)

696 Accumulation of lineage transitions from unvaccinated poultry populations to wild

697 birds. (D) Accumulation of lineage transitions from vaccinated poultry populations to

698 wild birds. Chord diagrams show the mean cumulative lineage transitions between

- 699 different groups of sequences (dark blue: wild birds; orange: Chinese poultry; light
- 700 green: European poultry, purple: Indonesian poultry; pink: Japanese poultry; light
- 701 blue: Korean poultry; dark green: Vietnamese poultry; yellow: Bangladeshi poultry).

- Animal silhouettes are from PhyloPic.org. The plots were summarized from a
- 703 posterior sample of trees from the asymmetric discrete phylogenetic model.

- the Chinese poultry lineage data point) was conducted to show the negative
- relationship between expected due to the time-dependency of inferred evolutionary
- rates (r = -0.92; P < 0.05), and highlight that the Chinese poultry data point is an
- 721 outlier.

724 Fig 5. Temporal dynamics in divergence and adaptive fixation of the H5 AIV HA

725 gene, in different host-specific lineages. (A-C) Nonsynonymous (solid lines) and

synonymous (dashed lines) divergence of the HA gene through time. The host-specific

727 lineages were classified into three groups according to the vaccination state:

128 unvaccinated group: (A) early-wild bird lineage (e-WB, only the top lineage was

retained), late-wild bird linage (l-WB); (**B**) low vaccinated coverage group:

730 Indonesian poultry lineage I (IP-I), Indonesian poultry lineage II (IP-II), Bangladeshi

poultry lineage (BP); and (C) high vaccinated coverage group: Chinese poultry

732 lineage (CP). Divergences were computed using 1-year sliding windows. Shaded

- regions show 95% confidence intervals. The dashed line represents the date when
- each country started implementing avian influenza vaccination for poultry. (D) The
- accumulation of viral adaptative substitutions in the Chinese poultry lineage. Two

- regression lines were estimated, before (r_1) and after (r_2) 2005. The first sequence,
- sampled in 1996, was used as the ancestral sequence, those sampled from 1997 to
- 738 1999 were excluded due to insufficient sample size.

Host-specific	Vaccination	Livestock density in 2015 (birds/km ²) †		Methods			
lineages	coverage	chicken	duck	RC	FEL (<i>P</i> < 0.1)	SLAC (P < 0.1)	FUBAR (PP > 0.9)
Chinese poultry lineage	73% ²⁵	921	126	3, 61, 142, 156, 157, 171, 172, 178, 185, 205, 242, 285, 289, 527	87, 142*, 154*, 156, 157*, 172*, 185, 285*, 291*, 325*	3, 142*, 154*, 157*, 172*, 185*, 285*	142*, 154*, 157*, 171, 172*, 285*
Bangladesh poultry lineage	<50% ²⁶	1448	292	170, 204, 205	204*, 205*	204, 205	170, 204*, 205*
Indonesia poultry lineage I	1 20/ 25	1262	106	170, 204, 211	205*, 554	205	170*, 205*
Indonesia poultry lineage II	12%	1202	106	10, 156, 529	3, 11, 156*, 529	156*	5*, 11*, 156*
early-wild bird lineage				10, 102, 170, 171	102*, 170*, 171	102*, 170	102*, 170*, 171
late-wild bird lineage	1 -	-		10	185, 507	-	252

740	Table 1. Positively-selected sites in the HA gene among different host-specific H5
741	AIV lineages.

742 *†*Mean livestock density was calculated using data from the Gridded Livestock of the

743 World (GLW) ⁸⁰ website, hosted by Food and Agriculture Organization (FAO;

744 https://dataverse.harvard.edu/dataverse/glw). Regions with <10 birds per square

745 kilometer were excluded from the calculation.

746 *Asterisks mark sites inferred to be under positively selected with posterior

747 probability (PP) >0.95 and <0.05. FEL, Fixed Effects Likelihood. SLAC, Single

748 Likelihood Ancestor Counting. FUBAR, Fast Unconstrained Bayesian

749 AppRoximation. RC, renaissance counting method implemented in BEAST.