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Projecting dry-wet abrupt alternation
across China from the perspective of soil
moisture
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Jianxiu Qiu 1,2 , Chenxi He 1, Xiaoping Liu1, Lun Gao3, Chao Tan4, XinghanWang5, Dongdong Kong6,
Jean-Pierre Wigneron7, Deliang Chen 8,9 & Jun Xia10

Under a warmer climate, the enhancement of dry-wet abrupt alternation (DWAA) risk poses a great
challenge for sustainable development. Here, we introduce a novel framework for DWAA detection
based on our proposed soil moisture concentration index. By the end of this century, over humid
southernChina, the shift of soilmoisture time series fromanomalouslywet to anomalously dry pattern,
or the other way around, will be more abrupt. In addition, the proposed framework driven by Coupled
Model Intercomparison Project Phase 6 simulations projects more widespread DWAA-affected areas
over southwesternChina, coastal regionsof southeasternChina, and the lower reachesof theYangtze
River, especially under a high emission scenario. The framework proposed in this study provides an
efficient system for DWAA detection and prediction, and the findings of this study provide a reference
for upgrading hydraulic infrastructure and mitigating future DWAA events.

Under a global warming scenario, extreme events, such as heavy rainfall,
flooding, and drought, are likely to increase in frequency globally1–3. Among
these events, abrupt switches between the two extreme states of drought and
flood, namely dry-wet abrupt alternation (DWAA), exert far more severe
socioeconomic impacts than a single drought or flood event4–6. A DWAA
event covers both ends of the spectrum including wet-to-dry (WD) state,
dry-to-wet (DW) state and the rapid switch between these two extreme
states7,8. Such events can cause geological disasters9,10, ecological stress11,12,
and severe conflict between domestic water supply and demand13,14. How-
ever, the lack of adequate methods for quantifying DWAA deeply con-
strained our insight into the changing DWAA pattern in the coming
decades.

Conventionally, DWAA events were identified using a univariate
rainfall15 or runoff 16,17, or multivariate composite indices, such as the
standardized precipitation evapotranspiration index (SPEI)18 or Palmer
drought severity index (PDSI)19. Among these, the univariate rainfall or
runoff can indicate a rapid switch from dry to wet state for one single end of
the DWAA spectrum, whereas it cannot characterize abrupt alternation

from wet to dry state at the other end of the spectrum (such as flash
droughts), as it does not contain direct information on water demand
such as evapotranspiration. The metric of precipitation−evapotranspira-
tion (P−E) has proved to be generally well-fitted for evaluating the changes
in water availability over the ocean. However, P− E shows a large inter-
model spreaddue to substantial disagreement in bothP andEprojections by
different global climate models (GCMs)20–22. In addition, multivariate
drought indices require parametric fitting and are thus unsuitable for
tracking non-stationary hydrometeorological conditions under a changing
climate. Moreover, previous DWAA research was largely conducted at a
monthly timescale, which is suitable for recording conventional meteor-
ological droughts (e.g., using one- or three-month SPEI), whereas it cannot
effectively capture the rapid evolution of DWAA events, seriously reducing
the forecast lead time of DWAA.

The key to the efficient detection of DWAA events is the accurate
measurement of seasonality or temporal concentration of soil water avail-
ability. Compared with the above-mentioned metrics, daily-scale soil
moisture (SM), as an integrator of rainfall, evapotranspiration (ET) and
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runoff, is more directly relevant to terrestrial ecosystem23, and can therefore
accurately quantify the ecological impact of a given DWAA event. In
addition, surface SM can depict a rapid occurrence of either WD or DW
event, as opposed toprecipitation,which cannot characterize a rapidwet-to-
dry switch since rainless for a short period does not necessarily indicate
drought. Moreover, the daily scale of the surface SM dataset is more
appropriate for detecting the rapid change of terrestrial water status, com-
pared to the monthly drought index such as SPEI.

In this study, we propose a novel metric, namely the soil moisture
concentration index (SMCI), for measuring the seasonality of soil water
resources. The SMCI is proposed based on the Gini index, an economic
concept that expresses the degree of inequality in terms of the difference
between the curve of real incomedistribution (knownas the Lorenz curve or
the concentration curve) and the curve of absolute equality of income dis-
tribution. The closer the Gini index to zero, the more equal the income
distribution tends to be. Recently, similar concept of Gini index has been
applied in the field of hydrometeorology, such as characterizing the con-
centration of precipitation24–26.

In this study, such a concept is innovatively applied to SM in amodified
way. That is, without the sorting operations on the SM time series, the
cumulative curve of the raw SM time series within a time window and the
cumulative curve of the assumed uniformly distributed SM time series are
plotted separately, so that the cumulative difference between the two curves
can be either positive or negative, which corresponds to SM shift fromwetter
(relative to theSMaverageof the timewindowconsidered) end todrier end, or
vice versa. This cumulative difference is further normalized by the cumulation
of the assumed uniformly distributed SM time series, and denoted as SMCI.

Further, based on the distribution theory of runs27, this proposed SMCI
is used in combination with soil moisture anomaly (SMA) to construct an
effective framework forDWAAdetection (more details inMethods).We use
this framework to investigate the historical and future projection of DWAA
spatiotemporal patterns over China, which is sensitive to drought and flood
disasters due to complex topography and monsoonal climate, especially
under climate change28–30. Finally,we attribute theSMCIpattern to the critical
hydrometeorological variables, including rainfall, ET, and runoff, all of which
expressed in concentration indices, and thus identify the main factor dom-
inating SMCI and potential DWAA over different climatic regions of China.

Results
Spatial distribution of SMCI over China
The positive or negative signs of SMCI indicate potential occurrences of
eitherWDorDWevent, and themagnitudeof SMCI(|SMCI|)measures the
abruptness degree of SM time series shift from anomalously wet pattern to
anomalously dry pattern, or the other way around. In addition, without the
sorting operation, the corresponding SMCI is defined for each time point
within a sliding window, which makes SMCI a more dynamic index.

For the growing season (April to September) of 1979–2100, themedian
of SMCI (Fig. 1a) and absolute SMCI (|SMCI|; Fig. 1b) are estimated based

on the surface SMsimulations frommulti-model ensemblemean (MME)of
CoupledModel Intercomparison Project Phase 6 (CMIP6) under the SSP2-
4.5 scenario (more details in Methods). In SSP2-4.5, “SSP2” represents
conditions under shared socioeconomic pathway 2, “4.5” indicates an
additional radiative forcingof 4.5W/m2 in the year 2100basedonamedium
forcing (or “business-as-usual”) scenario. It shows that the temporal con-
centration of SM is highest over the semi-arid to arid region (AR) in
northwestern China. It is followed by the transition region (TR) which
transitions from arid to humid region (HR). The lowest SMCI occurs in the
adjacent region between HR and plateau climate region (PR), indicating
comparatively uniform temporal distribution in this region.

A similar pattern is observed in Fig. 1a, b, except that negative SMCI is
prevalent in the eastern PR and western HR (Fig. 1a). As indicated in
Methods, SMCI is superior to the conventional precipitation concentration
index (PCI)31, in that SMCI differentiates temporal concentration by its
positive and negative signs. In case of negative SMCI, the cumulative curve
of actual SM is initiallymoreflatten than hypothetical uniformly distributed
SM, and then grows steeper than the latter, demonstrating a concave shape
in actual SM time series cumulative curve. This indicates that SM is initially
lower than the averagewithin the timewindow, or at the dry end of the time
window considered, and then switches to the wetter end. The abruptness of
the switch can be inferred from the difference in curvatures of two cumu-
lative curve sections, or the area integrated by the cumulative curve of actual
SM minus the hypothetical uniformly distributed SM. On the other hand,
the positive SMCI, or convexity of the cumulative curve, indicates otherwise.
Therefore, the eastern PR andwesternHR show a higher probability of DW
event occurrence.This trendhas already been observedover PRwhere rainy
days are more prevalent within the course of a year due to increasing water
vapor source32.

In addition, the discrepancy of SMCI between EC-Earth3 and EC-
Earth3-Veg emphasizes the role played by vegetation in smoothing out the
temporal unevenness of SM in western arid China, where the shift of SM
time series from anomalously wet to anomalously dry pattern, or the other
way around is very abrupt (SupplementaryNote 1). Furthermore, this study
shows high spatial consistency and temporal correlation between |SMCI|
generated using three extensively-used SM datasets, namely CMIP6, the
fifth generation reanalysis from European Centre for Medium-Range
Weather Forecasts (ERA5), and product from Soil Moisture Active Passive
mission (SMAP) (Supplementary Note 2).

Temporal trend of SMCI
The temporal trend of the annual mean |SMCI| is analyzed using the
Theil–Sen estimator, and the normalized regression slope (i.e., grid-based
slope divided by grid-based annual mean |SMCI|) is shown in Fig. 2. Under
the median CO2 emission level (SSP2-4.5 scenario), the increasing trend of
SMCI is most prominent, with significance level of p < 0.05 across most of
HR, and with highest increasing magnitude over southwestern HR during
the entire study period 1979–2100. This indicates increasing potential for

Fig. 1 | Spatial distribution of SMCI based on
surface SM simulations of CMIP6 MME for
1979–2100 under the SSP2-4.5 scenario. a The
median of SMCI, b the median of |SMCI|. The inset
violin plots at the bottom left of each sub-figure
show the spread of SMCI or |SMCI| for each sub-
region, with the horizontal dashed lines indicating
25th, 50th, and 75th percentiles from bottom to top.
Sub-region classification is based on a climatic
zoning map compiled by the China Meteorological
Administration.
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the DWAA event in this region, and this trend has already been frequently
observed in Yunnan Province in the southwestern HR33–35, where flash
drought is commonly reported in the last four decades34,36,37.

The annual anomaly of |SMCI| for China and each of the four sub-
regions are shown in individual plots around the spatialmap (Fig. 2). Across
China, the CMIP6 MME projects |SMCI| to show a statistically significant
(p < 0.05) increasing trend, indicating a trend of more concentrated SM in
the coming decades. This is also evidenced by the ERA5 SM during
1979–2020. In contrast to the overall increasing trend of |SMCI|, PRshows a
significant (p < 0.05) decreasing trend in |SMCI| from CMIP6, and this
decreasing trend is projected to accelerate over the far future of this century
(2070–2100). It is worth mentioning that the discrepancy in SMCI fluc-
tuation between CMIP6 and ERA5 is likely due to the different vertical
support38 of these two SM datasets, as SM from CMIP6 and ERA5,
respectively, represent simulations at a depth of ~10 and 7 cm, which may
also explain the more consistent trend between ERA5 and SMAP L4 with
vertical support of ~5 cm.

To illustrate the anthropogenic impact on the SMCI, we further
compare |SMCI| changing trends under amedian emission scenario (SSP2-
4.5) and those under a high emission scenario (SSP5-8.5), which is a
combined scenario of a high energy-intensive, socioeconomic develop-
mental path with strong radiative forcing in Fig. 3.

Overall, under the SSP2-4.5 scenario, |SMCI| is projected to
increase significantly in southwestern China, indicating a higher
probability of DWAA in this area. This region has abundant water
vapor sources from two channels: the Bay of Bengal and the South
China Sea. Due to the abundance of water vapor, the equivalent
potential temperature and atmospheric instability significantly
increase under the warming climate26, leading to more frequent short-
duration intense precipitation39.Moreover, under the warming climate,
the northwestward extension of the subtropical high pressure allows
more warm and moist water vapor from the South China Sea to sup-
plement this region, further promoting the increase in |SMCI| over this
region39.

Fig. 2 | Temporal trends in the annual mean of |SMCI| for 1979–2100 estimated
using theTheil–Sen estimator. a Spatial distribution of the temporal trend based on
CMIP6 MME under the SSP2-4.5 scenario. The inset histogram at the bottom left
displays the frequency of each level of temporal trend. Pixels with significant
(p < 0.05) trend is highlighted by black dots. b Trends in the spatially averaged

annual mean of |SMCI| anomaly based on CMIP6MME, ERA5, and SMAP L4 over
China. The blue shading envelope illustrates the spread of CMIP6 models under
investigation, and the symbols of * and ** are annotated to indicate the regression
significance level of p < 0.05 and p < 0.01, respectively. c the same as (b), but in TR,
d HR, e PR, f AR.

Fig. 3 | Temporal trends of |SMCI| for 2015–2100
estimated using the Theil–Sen estimator. aTrends
under the SSP2-4.5 scenario, b under the SSP5-
8.5 scenario. Pixels with significant (p < 0.05) trend
is highlighted by black dots. The inset histograms at
the bottom left of each sub-figure display the fre-
quency of each level of temporal trend.
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Meanwhile, under the SSP5-8.5 scenario, much extensive areas along
the coastal zone of southeastern China, northwestern China (or the western
AR), and middle/lower reaches of the Yangtze River, are anticipated to be
exposed toDWAAevents. Overall, the paradigm of “wet season gets wetter,
dry season gets drier (WWDD)”21,40 is projected to be more prominent
under a scenario with a greater increase in CO2 emission and higher air
temperature. Here, we define a pixel to be in alignment with the WWDD
paradigm if there is a significant (p < 0.05) increase in its |SMCI| time series.
About 9.5% of China conforms to the WWDD paradigm under SSP2-4.5,
whereas this percentage increases to 24.3% under SSP5-8.5. One of the
identified WWDD hot spots in our study is the southwest of HR, or
southwesternChina (Fig. 3), which coincideswith region recognized as “wet
get wetter” (WW) using satellite soil moisture dataset41.

This discrepancybetweenmedian- andhigh-level emission scenarios is
particularly prominent for HadGEM3-GC31-LL (Supplementary Fig. 4),
whose percentage conforming toWWDD increases from 11.7 to 38.9%. In
addition, GCMs with identical land surface models (LSM) show high
consistency in WWDD paradigm identification, such as MIROC6 and
MIROC-ES2L.GCMswith the latest versionofLSMshowhigher agreement
with MME inWWDD paradigm compared to those with obsolete LSM, as
indicated by CMCC-ESM2 (with CLM4.5) versus NorESM2-MM (with
CLM4), and ACCESS-CM2 (with CABLE2.5) versus ACCESS-ESM1-5
(with CABLE2.4).

The impacts on SMCI changing magnitude exerted by anthropogenic
activities vary over different regions. Under the high emission scenario
SSP5-8.5 over HR in central and southern China, the projected increase in
|SMCI| and the consequent potential DWAA risk will be more prevailing
compared to those under the SSP2-4.5 scenario (compare Fig. 3a, b).
Similarly, the northeastern China and northern AR are projected to witness
a greater andmore significant increase in |SMCI|, and exhibit a higher riskof
DWAAevents. The unprecedented sudden shift betweendrought andflood
has already been observed over AR in a more frequent manner4, and is
anticipated to boost in the future. In contrast, under the SSP5 scenario, PR is
expected to experience a greater and more significant decrease in |SMCI|,
showing more dispersed surface soil water resources.

The emerging hot spot analysis (EHSA) could identify hot (cold) spots
that exhibit a statistically significant clustering of high (low) |SMCI| values,
demonstrates similar patterns (Supplementary Fig. 5). First, the temporal
concentration of surface soil water, expressed as |SMCI|, shows an overall
opposing pattern to that of the spatial patternof annual precipitation.This is
consistentwith the spatial pattern of SMCI shown inFig. 1 (i.e., a |SMCI| hot
spot prevails over AR while a |SMCI| cold spot prevails over HR, indicating
the spatial clustering of high |SMCI| in AR and low |SMCI| in HR). Second,
consistent with the Theil–Sen estimator, the intensity of spatial clustering of
low |SMCI| over the eastern PR shows an overall increasing trend, and this
increase is statistically significant (p < 0.05; shown as an intensifying cold
spot). This indicates that SM is becomingmore temporally dispersed in this
region. In addition, the intensity of spatial clustering of low |SMCI| over the
easternHRshowsanoverall decreasing trend, significant at thep < 0.05 level
(shown as a diminishing cold spot), indicating an increasing temporal
concentration of SM, or movement towards the WWDD paradigm, in
southern China. These trends are also magnified under the SSP5-8.5 sce-
nario in EHSA.

Validation of our DWAA framework
The credibility of our proposed DWAA detection framework is validated
against the records collected from statistical yearbooks and literature. Four
prominent DWAA events are selected for such validation.

Event 1:DWAA inYangtzeRiverBasin (YRB) in 2011. According to the
Bulletin of Flood and Drought Disaster in China (2011), DWAA events
occurred in the middle/lower reaches of the YRB around June 3, 2011. In
the same year, the China Meteorological Administration selected this
event as one of the top ten extreme weather and climate events that
received the most public attention domestically and abroad. Specifically,

from January to May 2011, over the YRB, the rainfall in Hubei (HB),
Hunan (HN), Jiangxi (JX), Anhui (AH), and Jiangsu (JS) was 51.1% less
than in the same period of past years, hitting a record low since 1951. In
June of the same year, heavy rainfall occurred, causing an abrupt change
from drought to flood in this region within a short time.

This spike of annualDWevents in 2011 iswell depicted by ourDWAA
framework,with35.7%ofYRBstruckbyDWat least once in2011according
to ERA5 (hereinafter we refer “area fraction” as the fraction of certain areas
that experienced at least one event within a certain period), and the number
reached 7.3% for areas that encounteredDW twice, exceeding its preceding
and following years (Supplementary Fig. 6). In addition, the spatial pattern
of the detectedDWAAshowedhigh frequency in the southwesternHB, and
southernAH,well alignedwith the bulletin record. In addition, around 20%
of YRB consistently experienced DW events from 2010 to 2013, aligning
with the DWAA hot spots identified by our framework in the following
Section “Frequency of DWAA events”.

Due to the intrinsic dynamic feature of SMCI, theDWAAevent can be
further broken down into daily scales (Fig. 4a). During 2011, the DWAA
events over YRB peaked on June 3 and June 15, with DWAA area fractions
of these two days (1.4 and 3.5%) far exceeded baseline, which highly aligned
with the bulletin record.

Similar results of 2011 are observed in our DWAA framework using
CMIP6 GCMs (Supplementary Fig. 7). Despite of discernable discrepancy
between 20 selected CMIP6 GCMs, the CMIP6 MME showed high agree-
ment with ERA5, with DW area fraction of YRB during 2011 attained
32.8%, and the number was 5.0% for areas that encountered DW twice. In
addition, the DWAA detection results from CMIP6 MME are highly con-
sistentwith theERA5SMin termsof spatial distributionandarea fraction. It
should be noted that the configuration for the DWAA framework is set
identical for both ERA5 andCMIP6. That is, both set the same half-window
width (T = 7) for SMCI calculation, the same percentile for SMCI threshold
(the 7th percentile for DW event) and SMA threshold (the 20th and 80th
percentiles, respectively, for positive and negative values). This increases the
fairness in the intercomparison of DWAA results using different SM
datasets.

Event 2: DWAA in Yunnan Province in 2017. According to the China
Meteorological Disasters Yearbook, from May to early ten days of June
2017, the whole of Yunnan Province witnessed a large negative pre-
cipitation anomaly percentage (PA) of lower than −50%, ranking the
third lowest since 1961. On June 10, across Yunnan Province 83 stations
recorded meteorological drought, 13 stations recorded severe drought,
and 10 stations extreme drought. Over Yunnan Province, cities of Qujing
(QJ), Lijiang (LJ) and Kunming (KM), and autonomous prefecture of
Honghe (HH), all suffered from severe drought and adverse impact on
agriculture. The abrupt shift fromdrought toflood orDWevent occurred
in themiddle ten days of June, with heavy rainfall causing regional floods
over central and eastern Yunnan Province.

This DW event can also be accurately identified in our DWAA fra-
mework (Fig. 4b and Supplementary Fig. 8). Spatially, HH, KM, QJ, and LJ
in the mid-eastern of Yunnan Province are identified with extensive DW
strikes. Temporally, on June 11 and 13, largest area of Yunnan Province
experienced DW events (Fig. 4b). Our designed DWAA framework suc-
cessfully detects the recorded DWAA event with more detailed spatial and
temporal information.

Event 3: DWAA in Guangdong Province in 2015. According to the 86
metrological observations across Guangdong Province, from March to
April 2015, the whole province witnessed a large negative PA, with the
monthly PA inmost cities and counties of the province lower than−50%.
In May, the postponed yet more fierce flood season rapidly brought in
abnormally high precipitation, especially in the northern Pearl River
Delta and northern Guangdong, where the monthly PA reaches
100–160%42. In short, the unpunctual and unusual flood season induced
this DW event in Guangdong Province in 2015.
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This DW event can also be accurately identified from our DWAA
framework (Fig. 4c and Supplementary Fig. 9). In terms of timing, the
DWAA annual area fraction peaked in 2015, reaching almost 60%. More-
over, in terms of spatial distribution, the areas identifiedwithmore frequent
DW events within Guangdong in 2015, such as the northern Pearl River
Delta and northern Guangdong, coincided with areas recorded with pro-
minent abrupt change from dry to wet status.

Event 4: DWAA in Chongqing Municipality in 2000. Based on pre-
cipitation of fixed months, Zhang et al. 43 employed summer long-cycle
drought-flood abrupt alternation index and identified year 2000 with
prominent DWevent in ChongqingMunicipality. This could be detected
in our DWAA framework with more spatial details (Fig. 4d and Sup-
plementary Fig. 10), clearly recognizing the northeast, southeast, and
west of Chongqing with higher DW frequency.

The above-mentioned four DWAA events are all recorded and diag-
nosed based on meteorological observations of precipitation. This largely
constrains our validation type to be DW event, which is largely determined

by precipitation. Even though, our DWAA framework provides more
spatial and temporal details of the DWAA occurrences. On this basis, our
DWAA framework fueled by CMIP6 SM is used to project the future
DWAA events in China, and explore their spatiotemporal variation in the
following section.

Frequency of DWAA events
Via the synergistic use of SMCI and SMA, DWAA events are iden-
tified using the framework proposed in Methods section. In Fig. 5a, b,
we show the spatial distribution of the frequency of DW and WD
events during 1979–2100 in China. For a fair comparison, the entire
study period is divided into three sub-periods with equal length (S1:
1979–2019; S2: 2020–2060; and S3: 2061–2100). The frequencies of
DW and WD events show similar spatial patterns among different
sub-periods, while exhibiting high spatial heterogeneity among four
different sub-regions. HR and coastal regions are more prone to DW
events, while the junction of the HR and PR are more exposed to WD
events.

Fig. 4 |DWevents identified in ourDWAA framework usingERA5daily SM. aYRB in 2011,bYunnanProvince in 2017, cGuangdong Province in 2015, anddChongqing
Municipality in 2000. The inset line charts at the bottom left of each sub-figure show the temporal evolution of the DWAA area fraction in the corresponding years.
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The number of total occurrences count (hereinafter referred to as
“occurrences”) of DWandWD events are also compared between different
emission scenarios of SSP2-4.5 andSSP5-8.5 (Fig. 6a). For a fair comparison,
the occurrences here are spatially averaged to remove the impact of spatial
extent. Overall, HR is projected to have the highest DWAA occurrences,
while AR and TR are projected to experience the lowest DWAA occur-
rences.With increasing emission level, a notable increase is projected inWD
occurrences, while the DW occurrences over entire China do not show
significant increase. However, it should be noted that areas affected by DW
areprojected to increase across four sub-regions indifferentGCMs (Fig. 6b),
while areas projected to be struck by WD is generally increasing except for
PR, which aligns with the significant decrease in SMCI observed over PR
with high emission level (Fig. 3). With increased emission level, more
widespread area is affected byDWAA(Fig. 6b), and specifically, the increase
in area fraction under the influence ofDWevent is slightlymore prominent
than that under the influence of WD event.

Inter-model differences are higher inWDoccurrences projection than
those in DW. In addition, GCMs with more advanced LSM show higher
agreement with MME in DWAA prediction compared to those with
obsolete LSM, as indicated by CMCC-ESM2 with CLM4.5 versus
NorESM2-LM (NorESM2-MM) with CLM4.

From the perspective of intensity (Supplementary Fig. 11), HR is
expecting the highest DW intensity, while southern PR and southwestern
HR are expecting the highestWD intensity. Both are in alignmentwith their
respective frequency patterns. This is corroborated by the recently more
frequent record-breaking hydrological events, including the flash flooding
in northwestern China44–46, and flash drought in Yunnan Province33–35.

Discussion
As shown in the temporal analysis of SMCI, both the Theil–Sen estimator
and EHSA reveal that over southern China (or eastern HR), there is a
significantly (p < 0.05) increasing trend in the temporal concentration of SM,
or a movement towards the WWDD paradigm, especially under the SSP5-
8.5 scenario. Precipitation, ET, and runoff could affect the changing pattern
of the SMCI. Therefore, we examine the contribution fromprecipitation, ET,
and runoff to SMCI using random forest (RF) regression analysis. Con-
sidering the availability of model simulations for the four pertinent variables

(SM, ET, runoff, and precipitation) under two scenarios in the future and
during the historical period, only NorESM2-LM and NorESM2-MM meet
this criterion. Therefore, we calculate the concentration indices for ET,
runoff, and precipitation (denoted as ECI, RCI, and PCI, respectively), and
furtheruse theECI,RCI, andPCI topredict SMCIviaRFmodel. Themethod
of calculating the ECI, RCI, and PCI is exactly the same as the method of
calculating SMCI, just replacing the variable SMwith the variable of interest.
The prediction performance of the RF model is shown in Fig. 7a, while the
variablewith the highest importance for SMCIprediction is shown inFig. 7b.

Variables control the variations of SMCI and DWAA frequency differ
among four sub-regions. Over most of AR, ECI dominates SMCI fluctua-
tions, which suggests that high ET driven by increasing temperature could
be themain reason for the higher concentration in the temporal distribution
of SM. In contrast, over the lower Yangtze River, which is highly affected by
the western Pacific subtropical high (WPSH), the higher variability of
precipitation denoted byPCI, is likely responsible for the SMCIpattern. The
overall dominance patterns of ECI, RCI, and PCI over SMCI remain
unchangedduring thehistorical period 1979–2014 (Supplementary Fig. 12).
The factors for characterizing the temporal dynamics of SM, and further
SMCI, include properties such as terrain, soil texture, and vegetation.
However, our major goal here is to analyze the relative importance of
hydrological cycle components, so only the above three essential hydro-
logical variables are considered in the RF model.

As the change in SMCI is largely attributable to the changing pattern of
precipitation over HR and TR, it is therefore influenced by large-scale
atmospheric circulation signaled byWPSH. TheWPSH channels moisture
from the tropics and underpins the East Asian summer climate. As a result,
the interannual variability of the WPSH dominates climatic extremes in
southern China47,48. In response to greenhouse warming, especially warm
anomalies in the Indian and/or tropicalAtlanticOcean, an increase in future
WPSH variability is projected by CMIP6, translating into an increased
frequency of climatic extremes across the Chinese monsoon area49–51, and
increased temporal concentration of SM in the Yangtze River region.

In this study, a novel framework based on SMCI to detect theWWDD
paradigm, and further investigate the DWAA frequency is proposed. This
framework shows advantages in its usageoffine scale (daily to sub-daily) SM
information for identifying the swift alternation of anomalous SM

Fig. 5 | Frequency of DWAA events. Spatial distribution of a DW, bWD frequency in three sub-periods (S1: 1979–2019; S2: 2020–2060; and S3: 2061–2100) for CMIP6
MME under the SSP2-4.5 scenario.
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conditions,which is directly influential for terrestrial ecosystem. In addition,
this framework is suitable for discerning bothDWandWDevents, which is
superior to other univariate approaches.

We find that the SMCI over China generally shows consistent spatial
patterns across different CMIP6 SM simulations, i.e., a higher SMCI over
AR of northwestern China, and a lower SMCI over HR of southern China.

By the end of the 21st century, the SM over AR and HR is projected to be
temporally more concentrated, conforming to the WWDD paradigm.
Compared with the median emission level (SSP2-4.5 scenario), the higher
emission (SSP5-8.5 scenario) enhances this concentration tendency, as the
temporal concentration of SM increases more significantly over HR, while
exhibiting an opposite trend over PR. All models consistently highlight the

Fig. 6 | DWAA occurrences and area fraction
during 1979–2100 under the SSP2-4.5 and SSP5-
8.5 scenarios. a Total occurrences of DWAA for
four sub-regions of China normalized by spatial
extent. Pixels that do not have a single DWAA are
not considered. b Area fraction for four sub-regions
of China that went through at least one
DWAA event.
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coastal zoneof southeasternChinaasDWhot spot, and southwesternChina
as WD hot spot. Attribution analysis highlights the intensifying intra-
annual variability in precipitation as the major reason for the observed
increase in the SMCI over HR, where the WWDD paradigm is partly
confirmed.Ourwork suggests that over the area highlighted asWWDDhot
spot, efforts, including upgrading hydraulic engineering infrastructure,
should be planned to tackle future DWAA.

Methods
Datasets
All datasets used in this study are listed in Table 1.

In this study, long-term SM information is obtained from GCMs
within the CMIP6. GCMs include land surface processes to incorporate the
climatic impacts on SM and the relative feedback of SM to the atmospheric
forcing. Considering data availability, we use daily surface SMdatasets from
20 CMIP6 models (Table 2), which include historical simulations (1979‒
2014) and future projections (2015‒2100) under shared socioeconomic
pathway 2 (SSP2-4.5) and 5 (SSP5-8.5). Specifically, SSP2-4.5 represents an
additional radiative forcingof 4.5W/m2 in the year 2100basedonamedium
forcing (or “business-as-usual”) scenario, while SSP5-8.5 represents an
additional 8.5W/m² under a high forcing (high CO2 emission) scenario52,53.
Besides data availability, the 20 CMIP6 models are selected due to their
relatively high performance in SM simulations according to validation
results using the in-situ SM observation network54,55. To acquire multi-
model ensemble mean, SM datasets from CMIP6 are resampled to 1° using
nearest neighbor interpolation.

In addition to GCMs, we also include SM simulations from the
fifth-generation reanalysis dataset ERA5 released by the European
Centre for Medium-range Weather Forecasts56. The hourly SM data-
sets from ERA5 during the period 1979‒2020, with a spatial resolution
of 0.25° × 0.25° and topsoil depth of 0–7 cm, are collected and
aggregated into daily values.

Microwave-based SMAP L4 SM product57,58, which assimilates SMAP
brightness temperature observations into the catchment land surfacemodel,
is also used in this analysis. The 3-h surface SM (0‒5 cm depth) dataset in
SMAP L4 is selected and averaged to daily SM time series.

SMCI measuring the temporal concentration of SM time series
In this study, anovel SM-based index, namely SMCI, is proposed tomeasure
the temporal concentration of SM time series within a time window of
length L (L = 2T+ 1withT denoting the half-window length). The SMCI is
a normalizedmeasure in deviation degree of SM temporal distribution from
the hypothetically uniform distribution, and can be calculated using the
following steps (Fig. 8):

(i) Normalize the SM time series within a window of length L. To
estimate the SMCI at time i, we first extract the SM time series θt centered at
time i with half-window length of T: {θi-T, θi-(T−1),…, θi, θi+1,…, θi+(T−1),
θi+T}, and then apply the min‒max normalization to this SM time series.

θ0t ¼
θt � θmin

θmax � θmin
; i� T ≤ t ≤ iþ T ð1Þ

Fig. 7 | Contributions of ECI, RCI, and PCI to
SMCI variation for 2015–2100 under the SSP2-
4.5 scenario. a RF model performance in Pearson
correlationR betweenmodeled and predicted SMCI,
b feature with the highest importance in RF
regression.

Table 1 | Datasets used in this study

Variable Dataset Temporal resolution Spatial resolution (∼lat × lon) Time span

SM CMIP6 daily Cf. Table 2 1979‒2100

ERA5 hourly 0.25° × 0.25° 1979‒2020

SMAP L4 3-hourly 9km × 9km 2015‒2023

Precipitation/ Runoff/ ET NorESM2-LM daily 1.875° × 2.5° 1979‒2100

NorESM2-MM daily 0.94° × 1.25° 1979‒2100
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where, θ0t is the normalized SM time series; θmax (θmin) is the maximum
(minimum) of θt. In this paper, T is taken as 7 (unit: day) and the SMCI
shows limited sensitivity to the parameter of T (Supplementary Fig. 13).

(ii) Estimate the accumulation of the normalized SM time series f1(t)
within the same window (Fig. 8b, f). To facilitate the comparison of the
accumulation curves, the accumulation of f1(t) is set to start from the
coordinates of the origin, and the accumulation of the normalized SM
sequence {0, θ0i�T ,…, θ0i,…, θ0iþT }, or f1(t) is calculated as follows:

f 1 tð Þ ¼
Z iþT

i�T
θ0tdt ð2Þ

(iii) Estimate the accumulationof hypothetically uniformly-distributed
SM f2(t) within the same window (Fig. 8c). It is estimated by assuming that
the total amount of surface soil water content within the window is dis-
tributed in a temporally uniformmanner. Similar to (ii), the accumulationof
f2(t) starts from the coordinates of the origin.

�θ0t ¼
R iþT
i�T θ

0
tdt

2T þ 1
ð3Þ

f 2 tð Þ ¼
Z iþT

i�T

�θ0tdt ð4Þ

(iv) Normalize the difference between f1(t) and f2(t) (Fig. 8d, g). The
integrals of the difference between f1(t) and f2(t) within the samewindow of
[i - T, i+ T] is computed, and divided by the integral of f2(t) to obtain the
SMCI estimates at time i. Similar to (ii) and (iii), the accumulation of

numerator and denominator both start from the coordinates of the origin.

SMCI ¼
R iþT
i�T f 1 tð Þ � f 2 tð Þ� �

dtR iþT
i�T f 2 tð Þdt

ð5Þ

It should be noted that the SMCI is sign-sensitive, or we can dif-
ferentiate between the WD and DW event by comparing whether the
slope of the accumulative curve of the normalized SM time series is
larger than the slope of the uniformly-distributed time series. For
instance, if f1(t) curve is concave, or the SMCI is negative (Fig. 8a–d, and
the first sub-graph of the “Example of DW event” in Fig. 9, where SMCI
<0). In this case, SM is first drier than the hypothetically uniform dis-
tribution and then wetter than the uniform distribution baseline, sug-
gesting a higher potential of experiencing a DW event. In contrast, a
case where the SMCI is positive suggests a higher risk of a WD event
(Fig. 8e–g, and the first sub-graph of the “Example of WD event” in Fig.
9, where SMCI >0). Unlike the conventional PCI, this two-sided feature
of the SMCI matches the two-sided spectrum of DWAA events, and
thus meets the requirement to investigate both DW and WD types of
abrupt alternation events. The above-mentioned procedure is illu-
strated in the column “Step1: Calcuate SMCI” of Fig. 9.

DWAA event detection
Asmentioned above, the SMCI reflects the degree of deviation of SM from a
uniform distribution within a given time window. When the SMCI
approximates zero, this indicates that SM is evenly distributed over time,
and there is a low likelihoodof aDWAAevent. In contrast,when the |SMCI|
largely deviates from zero, amore concentrated SMdistribution is expected,
and there is a higher probability of aDWAA event. Therefore, we first select
a SMCI threshold for identifying possible DWAA events.

We sort all positive SMCI estimates from 122 years (1979‒2100) of
CMIP6 simulations in ascending order per pixel, and take the SMCI cor-
responding to the 70th percentile as the threshold (Thpos) for detecting
potential WD event. Likewise, we take the SMCI corresponding to the 7th
percentile of all negative SMCI values as the threshold (Thneg) for detecting
potential DW events. Note that the 70th and 7th percentiles are determined
iteratively by sensitivity analysis (Supplementary Fig. 14). All local max-
imum and minimum SMCIs exceeding Thpos and Thneg are regarded as
potential DWAA occurrences, and the corresponding time (P) is recorded.
Owing to the large variation in soil texture and differences in local hydro-
climatic properties over the study area, we take individual thresholds for
each pixel to accurately detect DWAA events (“Step 2: Select possible
events” in Fig. 9).

It should be noted that only using the local extreme of SMCI for
DWAA detection could lead to false alarms. For instance, in a case with an
anomalously wet SM state, if intensive precipitation continues, there are a
correspondingly rapid increase in the SM, resulting in a localizedmaximum
SMCI, which could be mistakenly identified as a DWAA event. Therefore,
we also incorporate information on the SMA to enhance the accuracy of
DWAA event detection.

SMA is estimated by subtracting the SM raw value at time i from the
multi-year mean SM ( �SMÞ at time i across the study period and divided
by �SM as follows:

SMA ¼ SM� SM

SM
× 100% ð6Þ

The SMA is classified into dry and wet states using the threshold Aneg

and Apos: (i) classified as dry state when SMA < Aneg; (ii) classified as wet
statewhen SMA>Apos. TheAneg (Apos) is determinedby sorting all negative
(positive) SMA values in ascending order and taken at the 80th (20th)
percentiles.

With the ancillary information of SMA, this framework is capable of
discerning whether the actual alternation from an anomalously wet to

Table 2 | Details of the 20 selected GCMs in CMIP6

GCM Land
surface model

Spatial resolution
(∼lat × lon)

Member
used

BCC-
CSM2-MR

BCC_AVIM2 1.125° × 1.125° r1i1p1f1

ACCESS-
ESM1-5

CABLE2.4 1.25° × 1.875° r1i1p1f1

ACCESS-CM2 CABLE2.5 1.25° × 1.875° r1i1p1f1

CanESM5 CLASS3.6 2.8° × 2.8° r1i1p1f1

NorESM2-LM CLM4 1.875° × 2.5° r1i1p1f1

NorESM2-MM CLM4 0.94° × 1.25° r1i1p1f1

CMCC-ESM2 CLM4.5 0.94° × 1.25° r1i1p1f1

GFDL-CM4 GFDL-LM4.0.1 1.0° × 1.25° r1i1p1f1

MRI-ESM2-0 HAL 1.125° × 1.125° r1i1p1f1

EC-Earth3 HTESSEL 0.70° × 0.70° r1i1p1f1

INM-CM4-8 INM-LND1 1.5° × 2.0° r1i1p1f1

INM-CM5-0 INM-LND1 1.5° × 2.0° r1i1p1f1

MPI-ESM1-
2-HR

JSBACH 0.94° × 0.94° r1i1p1f1

MPI-ESM1-
2-LR

JSBACH 1.875° × 1.875° r1i1p1f1

HadGEM3-
GC31-LL

JULES 1.25° × 1.875° r1i1p1f3

KACE-1-0-G JULES 1.25° × 1.875° r1i1p1f1

UKESM1-0-LL JULES-ES-1.0 1.25° × 1.875° r1i1p1f2

MIROC6 MATSIRO6.0 1.41° × 1.41° r1i1p1f1

MIROC-ES2L MATSIRO6.0 2.813° × 2.813° r1i1p1f2

IPSL-CM6A-LR ORCHIDEE 2.0 1.26° × 2.5° r1i1p1f1
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anomalously dry state (or vice versa) occurs at the potential DWAA time
point P. Specifically, we can safely identify P as an incidence of DW if all the
following conditions are satisfied: the SMA shows (i) an anomalously dry
state for more than D1 days (prior period), (ii) an anomalously wet state for
more than D2 days (post period), and (iii) the alternation (transition period
C) completes within less than 5 days. This procedure is illustrated in “Step 3:

Identify DWAA” in Fig. 9. A similar procedure can be used to identify
incidences of WD. The synergistic use of SMCI and SMA can correctly
identify a continuously anomalous dry status before and after a potential
alternation P1, and thus avoid the false detection of DWAA events at P1,
meanwhile successfully identifies a “true” DW event at P2 (row labeled
“Example of DW event” in Fig. 9). Similarly, the incorrect identification of

Fig. 8 |Detailed calculation process of SMCI. aRaw SM time series as an illustrative
example which generates negative SMCI, b calculation process of the accumulation
of the normalized SM time series, c calculation process of the accumulation of the

hypothetically uniformly-distributed SM time series, d calculation result of SMCI;
e–g the same as (a, b, d), respectively, but as an example which generates posi-
tive SMCI.
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theP2,P3,P4 andP5 is avoided, and theWDevent atP1 is correctly identified
in the row labeled “Example of WD event” in Fig. 9.

The intensity of a DWAA event is estimated by the SMA maximum
and minimum during the event and the number of days C to complete the
transition as follows:

Intensity ¼ SMAmax � SMAmin

C
ð7Þ

Theil–Sen analysis and Mann–Kendall test
Trends are first calculated using Theil–Sen analysis59,60, and then the
Mann–Kendall (MK) test61,62 is used to determine the significance of each
trend. Theil–Sen analysis is also known as Sen’s slope estimation, a robust
nonparametric statistical approach to estimate the temporal trend of time
series, calculated as follows:

β ¼ Median
xj � xk
j� k

� �
ð8Þ

whereβ is the estimatedmagnitude of the trend in the time series, and xj and
xk are time series j and k (j > k) with length n, respectively.

The MK test is a nonparametric time series trend test that does not
require data to obey a normal distribution, and is unaffected by missing
values and outliers. The statistic S, is calculated as:

S ¼
Xn�1

k¼1

Xn
j¼kþ1

sgn xj � xk
� �

ð9Þ

The trend test is performed using the test statistic z, which is calculated
as follows:

z ¼

S�1ffiffiffiffiffiffiffiffiffi
Var Sð Þ

p ðS > 0Þ
0 ðS ¼ 0Þ

Sþ1ffiffiffiffiffiffiffiffiffi
Var Sð Þ

p ðS < 0Þ

8>><
>>:

ð10Þ

Var Sð Þ ¼ n n� 1ð Þ 2nþ 5ð Þ
18

ð11Þ

Using a two-sided test, the null hypothesis of no trend is rejected if |z|
> z(1 − p/2) at a given significance level p. z(1 − p/2) refers to the z-score for
which the cumulative probability is equal to 1 - p/2 in the standard normal
distribution.

Emerging hot spot analysis (EHSA)
EHSA63,64 is also used to extract the spatiotemporal pattern of the SMCI. A
hot spot is defined as a location that exhibits statistically significant clus-
tering (strong local autocorrelation) within a spatial pattern. Regions in the
non-random set of high and low values of the feature of interest (namely
SMCI) are identified using the Getis‒Ord Gi* statistic65, which returns the
z-score of SMCI for each location with an associated p-value (statistical
probability); the MK method is then used to identify hot and cold spot
trends (Supplementary Table 1).

Random forest (RF) regression
Weuse theRF regressionalgorithmto establish relationshipsbetweenSMCI
and relevant hydrometeorological variables in the surface water cycle. The

Fig. 9 | Illustration of DWAA detection framework. The first row introduces the identification steps for DWAA events, and the second and third rows explain in detail the
identification processes for a DW and WD event respectively.
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RF regression is amachine learning algorithmbased on classification trees66.
RF uses a bootstrap resampling method to drawmultiple samples from the
original sample,model the decision tree for each bootstrap sample, and then
combine the predictions of multiple decision trees to arrive at the final
predictionbyvoting. ThemeritsofRFmodel include (i) efficient handlingof
high-dimensional datasets and non-requirement of feature selection as the
feature subset is chosen randomly; (ii) readily measurement of the relative
importance of each feature on the estimates, whichmakes it highly suitable
for attribution analysis. Therefore, based on RF analysis, key control factors
determining the SMCI spatial pattern are evaluated.

Data availability
The ensembles of Coupled Model Intercomparison Project Phase 6
(CMIP6) simulations are available at https://aims2.llnl.gov/search/cmip6/.
The ERA5 hourly volumetric soil water data are available at https://cds.
climate.copernicus.eu/. The SMAP L4 3-hourly 9 km EASE-Grid surface
and root zone soil moisture data (V007) are available at https://nsidc.org/
data/smap. The data used to create the figures can be found at https://doi.
org/10.6084/m9.figshare.25295566.

Code availability
Codes used to generate main figures are available on request from the
corresponding author.
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