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Abstract
Widespread autumn cooling occurred in the northern hemisphere (NH) during the period 2004–2018, primarily due to the strengthening 
of the Pacific Decadal Oscillation and Siberian High. Yet, while there has been considerable focus on the warming impacts, the effects of 
natural cooling on autumn leaf senescence and plant productivity have been largely overlooked. This gap in knowledge hinders our 
understanding of how vegetation adapts and acclimates to complex climate change. In this study, we utilize over 36,000 in situ 
phenological time series from 11,138 European sites dating back to the 1950s, and 30 years of satellite greenness data (1989–2018), to 
demonstrate that leaf senescence dates (LSD) in northern forests responded more strongly to warming than to cooling in autumn. 
Specifically, a 1 °C increase in temperature caused 7.5 ± 0.2 days’ delay in LSD, whereas a 1 °C decrease led to an advance of LSD with 
3.3 ± 0.1 days (P < 0.001). This asymmetry in temperature effects on LSD is attributed to greater preoverwintering plant-resource 
acquisition requirements, lower frost risk, and greater water availability under warming than cooling conditions. These differential 
LSD responses highlight the nonlinear impact of temperature on autumn plant productivity, which current process-oriented models 
fail to accurately capture. Our findings emphasize the need to account for the asymmetric effects of warming and cooling on leaf 
senescence in model projections and in understanding vegetation–climate feedback mechanisms.

Significance Statement

Autumn cooling was widespread in the northern hemisphere from 2004 to 2018; however, its influence on leaf senescence and plant 
productivity remains poorly understood. Using in situ observations, satellite data, and model estimates, we demonstrate that leaf sen-
escence in northern forests responds more significantly to natural autumn warming than cooling. This study highlights the associ-
ation between the asymmetric responses of leaf senescence and plant productivity to temperature changes and contributes to the 
improvement of model projections.
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Introduction
The timing of autumn leaf senescence plays a critical role in the 
regulation of carbon (C) and nutrient cycling in terrestrial ecosys-
tems (1–5). Understanding the changes in leaf senescence dates 
(LSD) under climate change is therefore essential for the accurate 
prediction of future dynamics and feedbacks of global biogeo-
chemical cycles (6). Existing studies have identified varied re-
sponses of LSD to climate warming, leading to divergent 
patterns of LSD (delayed, advanced, or stable) (7–9). Compared 
with spring phenology, a detailed understanding of autumn 
phenological dynamics remains lacking (10, 11), where the under-
lying mechanisms of complex LSD responses to temperature 
change are unclear (12).

Variability in LSD is driven by multiple climate and biotic fac-
tors, including temperature, precipitation, drought, photoperiod, 
wind speed, spring leaf-out date, and growing-season C assimila-
tion (8, 13–20). Autumn temperatures exert direct effects on leaf 
physiological status, such as chlorophyll levels, photosynthesis, 
pigment degradation, and nutrient remobilization, ultimately 
triggering leaf senescence (21–23). Autumn temperatures may 
also exert indirect impacts on LSD through altering soil moisture 
and vapor pressure deficit (VPD) (24–26).

Although understanding of ecological effects of regional cool-
ing under on-going global warming has increasingly gained atten-
tion (26–29), patterns of LSD responses to autumn warming and 
cooling scenarios remain a subject of ongoing debate that limits 
understanding of climate change impacts and maintains bias in 
forecasts of vegetation–climate interactions (30–32). For example, 
empirical field data show a stronger LSD response in European de-
ciduous tree species to warmer than cooler autumn temperatures 
(30), whereas data from temperature manipulation experiments 
show larger LSD responses to cooling than to warming and a 
lack of difference between the two conditions (31, 32). Recent ana-
lyses indicate a substantial cooling trend in northern hemisphere 
(NH) autumn temperatures over the period 2004–2018 that is as-
sociated with the strengthening of Pacific Decadal Oscillation 
and Siberian High (26, 33); thus, long-term, large-scale data pro-
vide the opportunity to test for natural temperature-driven regu-
lation and biophysical and biochemical drivers of autumn LSD 
and ecosystem C uptake.

To this end, we aim to quantify responses of autumn LSD and C 
update to natural warming and cooling and test for underlying 
mechanisms using ground and remotely sensed data, comprising 
a phenological time series of >36,000 records collected from 
11,138 sites across Europe between 1951 and 2016 and estimates 
derived from normalized difference vegetation index (NDVI) 
data obtained between 1989 and 2018 covering the NH autumn 
cooling period at middle and high latitudes (>30°N). Specifically, 
we ask: (i) Does LSD in northern forests respond asymmetrically 
to natural autumn warming and cooling? (ii) What are the under-
lying mechanisms for these potential asymmetric patterns? (iii) 
Do asymmetrical temperature effects on LSD influence plant 
productivity responses?

LSD responses to natural autumn warming and 
cooling
At the species level, ridge and multiple linear regression analyses 
of in situ long-term records from the Pan European Phenology 
(PEP) database (34) (see Materials and methods) for four represen-
tative temperate tree species (Fig. 1A) indicated a tendency toward 
asymmetric LSD responses to natural autumn warming and cool-
ing, evidenced by different changes in LSD caused by 1 °C increase. 

Apart from Aesculus hippocastanum L., LSD’s sensitivities to warm-
ing were overall greater than that to cooling in autumn for other 
three species, i.e. Betula pendula Roth, Fagus sylvatica L., and 
Quercus robur L., using ridge regression (Fig. 1B) and multiple linear 
regression analyses (Fig. 1C).

For the biome-level remote-sensing analyses, we applied a nat-
ural autumn cooling period (2004–2018) to identify warming and 
cooling sites (see Materials and methods) and test for LSD re-
sponse patterns (Fig. 2). Results showed that LSD was delayed at 
warming sites and became earlier at cooling sites for evergreen 
needleleaf, deciduous broadleaf, and mixed forests (Fig. 2B), and 
the greater overall biome ridge sensitivity of LSD to autumn 
warming (0.64 ± 0.008, mean ± SE) than to cooling (0.39 ± 0.007) 
(P < 0.001) reflected consistent asymmetric LSD responses for 
evergreen needleleaf (0.63 ± 0.008 vs. 0.57 ± 0.009; P < 0.001), de-
ciduous broadleaf (0.68 ± 0.04 vs. 0.09 ± 0.02; P < 0.001), and mixed 
forests (0.71 ± 0.02 vs. 0.45 ± 0.008; P < 0.001) (Fig. 2D). Similarly, 
multiple linear regression analyses showed asymmetric patterns 
of biome LSD responses to warming and cooling (all forests: 7.5 
days/°C ± 0.2 vs. 3.3 ± 0.1, P < 0.001; evergreen needleleaf: 8.2 ±  
0.2 vs. 4.8 ± 0.2, P < 0.001; deciduous broadleaf: 4.4 ± 0.3 vs. 2.3 ±  
0.2, P < 0.001; mixed forests: 4.6 ± 0.3 vs. 3.3 ± 0.1, P < 0.001) 
(Fig. S1). Although we compared the LSD responses in each biome, 
the warming and cooling sites were spatially separated from each 
other, which might introduce uncertainty. Then, we conducted a 
temporal analysis to complement the spatial analyses, based on 
grid cells in which there were shifts in warming and cooling be-
tween the period 1989–2003 and 2004–2018 (see Materials and 
methods; Fig. 2E), and similarly found greater sensitivity of LSD re-
sponses to autumn warming than to cooling among the forest bio-
mes (Fig. 2F and Fig. S2).

In line with a previous study of field observations of warm and 
cold autumn conditions identified from a long-term average tem-
perature threshold (30), our analyses of ground and remotely 
sensed data showed larger tree species and forest biome LSD re-
sponses to autumn warming than to cooling, indicating nonlinear 
temperature control of leaf senescence; thus, cooling effects on 
LSD should not be assumed to be the inverse of those to warming 
(35). In contrast to our findings, temperature manipulation experi-
ments show larger or null LSD responses to autumn cooling than 
to warming (31, 32), possibly due to confounding effects of un-
measured and/or uncontrollable environmental factors that 
lead to an underestimation of phenological responses in warming 
experiments (12, 36, 37).

Mechanisms of asymmetric LSD responses to 
shifts in autumn temperature
We hypothesize that the asymmetric forest biome and species LSD 
responses to temperature shifts may be associated with differen-
ces in climatic forcing effects, such as cold degree days (CDD), 
adaptation to frost risk, and/or soil water availability (38, 39, 13). 
To test these hypotheses, we compared LSD responses to changes 
in CDD, preseason temperature variability and frost risk, and 
water stress, based on the Standardized Precipitation- 
Evapotranspiration Index (SPEI) at the autumn warming and cool-
ing sites from 2004 to 2018 (see Materials and methods).

The first hypothesis accounts for changes in LSD response to 
exponential decreases in CDD with rising temperatures under 
warming and cooling conditions (Fig. S3), where sensitivities of 
LSD to CDD were larger under autumn warming than cooling, re-
gardless of base temperature (5, 10, or 15 °C) for the calculation of 
CDD (P < 0.001) (Fig. 3A). Comparison of the relations between LSD 
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and CDD under autumn warming and cooling and contrasting 
CDD base temperatures showed that LSD responses to CDD 
were larger under warming (P < 0.001) (Fig. 3B and Fig. S4), while 
random slope model estimates showed a larger LSD response to 
CDD under warming (P < 0.001), when effects of geographical loca-
tion (latitude and longitude) were controlled (Fig. S5). Before leaf 
senescence, trees must absorb ample carbohydrate and nutrient 
stores to ensure tissue maturation, support overwintering and fa-
cilitate budburst in the subsequent spring (5, 30) and under favor-
able, autumn warming conditions, trees may delay leaf 
senescence to enhance C uptake (5, 30). Thus, our analyses indi-
cate that under a given shift in CDD caused by warming or cooling, 
delays in leaf senescence caused by warming may be larger than 

advances caused by cooling, due to the asymmetry of LSD re-
sponses to changes in CDD.

Our second hypothesis relates to tree adaptations to frost dam-
age (39–41), as indicated by studies that show spatial variation in 
phenology responses to temperature changes, with smaller re-
sponses observed at sites experiencing higher local temperature 
variability (40, 42). As expected, we found larger variations in tem-
perature at cooling sites than sites that experienced warming, cor-
responding to lower LSD responses (Fig. 3C). Furthermore, the 
standardized frost risk index we developed to explore differences 
in frost risk between autumn warming and cooling conditions (See 
Materials and methods) showed greater risks of frost at cooling 
sites (Fig. 3D) that lead to conservative response strategies of 

B C

A

Fig. 1. European distribution of study sites and analyses of LSD responses to natural autumn warming and cooling in B. pendula Roth, F. sylvatica L., Q. robur 
L., and A. hippocastanum L. A) Location of the long-term study site records for the four European temperate tree species. B) Ridge regression analyses of LSD 
responses. C) Multiple linear regression analyses of LSD responses. Records of warming and cooling were selected based on change in temperature and 
partial correlation analysis at P < 0.05 and differences in LSD responses between warming and cooling conditions were analyzed using Student’s t test at 
P < 0.05. Boxplots show median (horizontal line) and mean (cross) data within the 25–75th percentiles; ***P < 0.001, **P < 0.01, and *P < 0.05.
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A

E

DC

B

F

Fig. 2. Grid cells of remotely sensed data in which there was autumn warming and cooling during the period (2004–2018) and analyses of forest biome 
LSD responses. A) Location of autumn warming and cooling grid cells. B) Trends in biome LSD. C) Location of forest biome types that experienced 
warming and cooling, based on the MODIS MCD12C1 IGBP land cover product. D) Ridge regression analysis of biome LSD sensitivity to temperature, 
controlling for effects of precipitation and radiation. E) Location of grid cells in which there were shifts in warming and cooling between the period 1989– 
2003 and 2004–2018. F) Ridge regression analysis of biome LSD sensitivity to temperature. Differences in LSD responses between warming and cooling 
conditions were analyzed using Student’s t test at P < 0.05. Boxplots show median (horizontal line) and mean (cross) data within the 25–75th percentiles; 
***P < 0.001, **P < 0.01, and *P < 0.05.

A B

FED

C

Fig. 3. Mechanisms of asymmetric LSD responses to autumn warming and cooling. A) Sensitivities of LSD to CDD under autumn warming and cooling 
with contrasting CDD base temperatures of 5, 10, and 15 °C (CDD5, CDD10, and CDD15, respectively). B) Linear regression analysis of relations between 
LSD and CDD10 under autumn warming and cooling conditions; differences in regression slopes tested by covariance analysis at P < 0.001. C) Standard 
deviation in preseason temperature (Preseason Tstd) under autumn warming and cooling conditions. D) Mean frost risk index under autumn warming 
and cooling conditions. E) Linear regression analysis of relations between LSD sensitivity to temperature (ridge sensitivity absolute values) and frost risk 
index. F) Mean SPEI under autumn warming and cooling conditions. Differences between autumn warming and cooling conditions (A, C, D, F) were tested 
using a linear mixed method with random intercepts among forest biomes. Boxplots show median (horizontal line) and mean (cross) data within the 
25–75th percentiles; ***P < 0.001, **P < 0.01, and *P < 0.05.

4 | PNAS Nexus, 2024, Vol. 3, No. 11

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/11/pgae477/7833472 by C

N
R

S U
M

R
 5546 user on 13 N

ovem
ber 2024



leaf sensing to avoid frost damage, as indicated by decreased LSD 
responses under increasing risks of frost (Fig. 3E).

The third hypothesis concerns the potential effects of water 
stress on leaf senescence. We found that water stress levels 
were higher at the cooling sites than at the warming sites 
(Fig. 3F). This observation aligns with findings that water stress 
can significantly reduce leaf stomatal conductance and photosyn-
thesis and enhance chlorophyll degradation (40, 43–45), potential-
ly lowering the temperature sensitivity of leaf senescence at 
cooler locations. However, warming and more widespread 
droughts in the future (46–48) may increase the impact of 
droughts associated with warming on LSD (13). Consequently, 
this could result in a diminished LSD response to warming, akin 
to outcomes observed in temperature manipulation experiments 
that involve significant temperature variations (e.g. changes > 2 °C 
in warming and cooling scenarios) (32). This suggests a complex 
interplay between temperature, water availability, and their com-
bined effects on leaf senescence, underlining the need for compre-
hensive studies to understand these dynamics.

Links between autumn temperature shifts, LSD 
responses, and plant productivity
Sensitivities of plant growth and productivity to temperature are 
highly variable across space and time and are regulated by a range 
of factors, such as vegetation type, prevailing climate, and 

temperature variability (49, 50). However, the lack of a mechanis-
tic understanding of the drivers of the high levels of heterogeneity 
in sensitivities of plant productivity to temperature poses a chal-
lenge to the robustness of process-oriented models (50, 51). 
Indeed, we found the high levels of spatial heterogeneity in au-
tumn productivity sensitivities to temperature across remotely 
sensed grid cells, as indicated by the climate space of mean an-
nual precipitation (MAP) and mean annual temperature (MAT) 
(Fig. S6). Hence, this study analyzed the phenological temperature 
sensitivity of plant productivity and explored the contribution of 
asymmetric LSD responses to asymmetry in plant productivity 
under autumn warming and cooling. Four productivity datasets, 
comprising a kernel NDVI (kNDVI) and three gross primary 
productivity (GPP) datasets (Global Land Surface Satellite 
GPP, GLASS-GPP; two-leaf light use efficiency modeled GPP, 
TLLUE-GPP; near-infrared reflectance of vegetation-based GPP, 
NIRv-GPP), all lines of evidences confirmed a larger response of 
autumn productivity to increasing autumn temperatures than 
under cooling (Fig. 4A). Sensitivities of autumn productivity to 
temperature were positively correlated with LSD sensitivities to 
temperature, where LSD sensitivities accounted for 46% of spatial 
variability in autumn productivity sensitivities to temperature 
(Fig. 4B), while partial least-squares structural equation modeling 
(PLS-SEM) and random forest modeling analyses indicated that 
LSD sensitivity to temperature was the most important driver of 
autumn productivity sensitivity to temperature (Fig. 4C and 

A

DC

B

Fig. 4. Responses and drivers of autumn productivity to warming and cooling. A) Sensitivities of autumn productivity to temperature under warming and 
cooling, based on kNDVI, GLASS-GPP, TLLUE-GPP, and NIRv-GPP data sets; kNDVI scaling factor is 0.01. B) Linear regression analysis of the relations 
between autumn kNDVI sensitivities to temperature [S(kNDVI|T)] and LSD sensitivities to temperature [S(LSD|T)]. C) PLS-SEM analysis of S(LSD|T) and 
climate factor effects on mean S(kNDVI|T); MAP, mean annual precipitation; MAT, mean annual temperature; SWD, downward solar radiation; VPD, 
vapor pressure deficit. D) Mean sensitivities of autumn GPP to temperature under warming and cooling in 16 DGVMs in the TRENDY-v11 project (see 
Materials and methods); sensitivity differences among models were tested using Student’s t test at P < 0.05 and the bars indicate SE. ***P < 0.001, **P < 0.01.
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Fig. S7). These results indicate that asymmetric LSD responses to 
autumn warming and cooling may lead to corresponding asym-
metric responses in autumn productivity. If we do not account 
for the asymmetric productivity response to a 1 °C autumn tem-
perature change (i.e. 1 °C warming or cooling), the biases in au-
tumn plant productivity across the three studied forest biomes 
(i.e. evergreen needleleaf, deciduous broadleaf, and mixed forests) 
in the NH would amount to nearly 0.031 ± 0.007 Pg C yr−1 (Fig. S8; 
see Materials and methods), which is half the minimum value 
within the range of carbon loss from deforestation in the 
Amazon forest (0.06 to 0.21 Pg C yr−1) (52). As the magnitude of 
warming and cooling increases (e.g. 2 °C), the biases would in-
crease further, indicating that asymmetric LSD and GPP responses 
to autumn warming and cooling significantly impact global ter-
restrial carbon budget.

We further analyzed sensitivities of autumn productivity to 
temperature under warming and cooling conditions using 
state-of-the-art Dynamic Global Vegetation Models (DGVMs) 
(see Materials and methods) and found that 11 out of 16 models 
showed larger responses of autumn productivity to warming com-
pared with cooling (Fig. S9). The sensitivity comparison of the 
combined results from 16 models reveals a stronger, though not 
statistically significant, response to warming than to cooling (P  
= 0.13; Fig. 4D). These findings suggest that current 
state-of-the-art models partially but limitedly capture the ob-
served differences in responses of autumn productivity to tem-
perature changes under warming and cooling. One potential 
reason could be related to the complexity of phenological control 
and its climatic responses. Incorporating a detailed characteriza-
tion of the asymmetric LSD responses may enhance the represen-
tation of asymmetric productivity responses to autumn warming 
and cooling in process-oriented models, thereby improving the ac-
curacy of seasonal vegetation dynamics predictions.

Conclusions
The phenological responses of trees to changing temperature will 
strongly regulate terrestrial carbon storage under climate change. 
By exploring the plant responses to warming vs. cooling, our study 
allows us to test for the presence of acclimation, which will under-
pin the extent and duration of phenological shifts under climate 
warming. Both in situ observations and satellite data suggest 
that the timing of LSD in northern forest biomes responds asym-
metrically to natural variations in autumn temperatures, showing 
a more pronounced response to warming than to cooling. This dis-
parity in LSD responses may be attributed to factors such as the 
greater sensitivity of LSD to CDD, lower risks of frost, and greater 
water availability under warming than cooling. Such asymmetric 
LSD reactions may, in turn, lead to unequal changes in autumn 
plant productivity in response to warming and cooling, a complex-
ity that current DGVMs struggle to accurately represent. This new 
understanding is crucial for refining vegetation and climate mod-
els, thereby improving the accuracy of future carbon cycle and cli-
mate projections.

Materials and methods
In situ LSD observation
We used ground LSD observations, the date of 50% autumnal col-
oring of tree leaves (BBCH code 94), across Europe from the long- 
term plant phenological observation database, the PEP Project 
(PEP725, http://www.pep725.eu/) (34). We collected all available 
phenological time series (>36,000) from 11,138 study sites since 

the 1950s for four dominant tree species, comprising A. hippocasta-
num L., B. pendula Roth, F. sylvatica L., and Q. robur L., which had suf-
ficient autumn warming and cooling samples (Fig. 1A). The 
median absolute deviation (MAD) method was applied to identify 
and remove erroneous data points in PEP725 records (30). For a 
time series of LSDt1, LSDt2, …, LSDt at each site, the MAD is calcu-
lated as follows:

MAD = median (|LSDt − median (LSD)|) (1) 

The data point exceeding 2.5 times the MAD was deemed an out-
lier and consequently eliminated from the LSD time series before 
analysis.

Remotely sensed greenness-derived LSD
We used the bi-weekly PKU Global Inventory Modeling and 
Mapping Studies (GIMMS) NDVI, at 1/12° spatial resolution, to es-
timate LSD between 1989 and 2018. The PKU GIMMS NDVI was 
produced utilizing a biome-specific back-propagation neural net-
work algorithm that using GIMMS NDVI3g product and Landsat 
NDVI samples, and its temporal coverage was extended to 2022 
following consolidation with the Moderate-Resolution Imaging 
Spectroradiometer (MODIS) NDVI using the random forest meth-
od. This new NDVI product efficiently eliminated the effects of 
sensor degradation and satellite orbital drift and showed high 
overall accuracy assessed by Landsat NDVI samples. To mitigate 
snow effects, we replaced all compromised NDVI values with 
the winter (December–February) mean of snow-free NDVI values 
across all years and then the NDVI time series was reconstructed 
using a Savitzky–Golay filter to eliminate abnormal values (53, 54); 
sparse vegetation cover was removed by eliminating grid cells 
with mean annual NDVI value < 0.1.

We estimated LSD using the double-logistic function and 
dynamic-threshold approaches, which were widely used methods 
for estimating phenological dates from remotely sensed data (13, 
15, 28). A double-logistic function was fitted to the NDVI time ser-
ies, followed by calculation of the second-order derivative for the 
fitted curve (55, 56), and LSD was determined as the date corre-
sponding to the second local maximum in the second half year:

y(t) = a + b
1

1 + ec(t − d)
+

1
1 + ee(t − f )

 

(2) 

where y(t) is the NDVI value at the day of year (DOY), t; a is the 
background NDVI value; and, b–e are the double-logistic function 
parameters.

For the dynamic-threshold approach, we computed NDVI ratio 
(Ratioday) annually for each NDVI time series as follows (57):

Ratioday =
NDVIday – NDVImin

NDVImax – NDVImin
(3) 

where NDVImin and NDVImax are the minimum and maximum 
NDVI of each year, respectively, and NDVIday is the daily NDVI. 

LSD is determined as the time (DOY) when Ratioday decreased to 

0.5 (57). The average LSD of the two approaches was calculated 
as the ultimate LSD.

Plant productivity data
We used two types of plant productivity indicator, comprising the 
newly developed kNDVI and GPP; kNDVI is a widely used indicator 
of GPP (58) and it was calculated based on a simplified operational 
index version, which was expressed as kNDVI = tanh(NDVI2), us-
ing the monthly MODIS MOD13C2 v061 product (59). We used 
three independent GPP products to minimize uncertainty 
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stemming from a single product: the eight-day GLASS GPP (60), the 
monthly TLLUE modeled GPP (61); and the monthly NIRv based 
GPP (62). All kNDVI/GPP data were resampled to 1/12° to match 
the spatial resolution of the PKU GIMMS NDVI.

Process-oriented modeled GPP
We employed modeled GPP data from 16 state-of-the-art DGVMs 
that participated in the TRENDY (Trends and drivers of the region-
al scale sources and sinks of carbon dioxide) project version 11, 
comprising CABLE-POP, CLM5.0, CLASSIC, DLEM, IBIS, 
ISBA-CTRIP, ISAM, JSBACH, LPJ-GUESS, LPX-Bern, JULES, 
ORCHIDEE, OCN, SDGVM, VISIT-NIES, and YIBs (63). We used 
GPP data from the S3 simulations that are based on all time- 
varying forcings of CO2, climate, nitrogen deposition, and land use.

Climate data
We used daily European gridded observational (E-OBS v27.0e) cli-
mate data at 0.1° spatial resolution (temperature, precipitation, 
and radiation) produced by ECA & D (European Climate 
Assessment & Dataset) project (64) in species-scale analysis, 
with PEP725 data to calculate temperature changes and determine 
temperature-relevant optimal preseason length (see Analyses), 
and daily Multi-Source Weather (MSWX) climate data at 0.1° spa-
tial resolution (65) were used in the biome-scale analysis, with 
satellite-derived LSD; VPD was calculated using “RHtoVPD” func-
tion of “plantecophys” package in R language, based on MSWX cli-
mate data (monthly temperature, atmospheric pressure, and 
relative humidity) (66). We obtained the monthly SPEI dataset 
(three-month scale) from Consejo Superior de Investigaciones 
Científicas to calculate soil water availability changes (67).

Cold degree day
We computed cold day degrees to assess climate forcing under 
warming and cooling (38):

CDDd = max (Tbase − Tdaily, 0) (4) 

CDD =
LSD

d = d0

CDDd (5) 

where CDDd represents the CDD for date d and Tdaily is the daily 

mean temperature; base temperature (Tbase) was set 5, 10, and 
15 °C (13) and CDDd = 0 when Tdaily > Tbase. We computed the ac-

cumulated CDD during the period 1st July (d0) to LSD (15), using 
the daily MSWX temperature dataset.

Analyses
We analyzed ground and remotely sensed based data at forest tree 
species and biome scales, respectively. For ground-based observa-
tions, we utilized PEP725 LSD and E-OBS climate data to identify 
autumn warming and cooling samples for each tree species, 
where we selected the highest coefficient from a partial correl-
ation analysis (P < 0.05) to determine the optimal preseason peri-
od, based on the timing of the greatest impact of temperature on 
LSD, whilst accounting for the effects of radiation and precipita-
tion; temperature effects on LSD were analyzed for 8 to 120 d be-
fore mean LSD, with a step of 8 d. Then, we calculated LSD 
responses to temperature changes during the optimal preseason 
using ridge regression and multiple linear regression analyses, 
while controlling for effects of precipitation and radiation. For 
ridge regression analysis, we calculated and normalized (0–1) 
anomalies for each variable, prior to estimation of sensitivities. 

We used linear least-squares regression, utilizing year as an inde-
pendent variable, to calculate trends in autumn temperature 
(September to November) at P < 0.05. Given the diverse temporal 
spans of ground observations, we utilized a 15-year moving win-
dow to detect autumn warming and cooling periods within each 
LSD time series for individual tree species; then, we calculated 
species average LSD responses to autumn warming and cooling, 
based on site mean values, and differences in response to warm-
ing and cooling were analyzed using Student’s t test method at 
P < 0.05. Process framework for identifying warming and cooling 
samples can be found in Fig. S10.

For analysis of remotely sensed data, we applied the NH au-
tumn cooling period (2004–2018) to detect autumn warming and 
cooling grid cells for forest biome types obtained from the MODIS 
MCD12C1 IGBP land cover product. Due to a lack of warming grid 
cells for evergreen broadleaf and deciduous needleleaf forests, 
analyses of LSD responses were restricted to evergreen needleleaf, 
deciduous broadleaf, and mixed forests. Differences in mean bi-
ome LSD responses between warming and cooling were analyzed 
utilizing Student’s t test method at P < 0.05. We analyzed differen-
ces in LSD responses (Student’s t test at P < 0.05) to shifts in warm-
ing and cooling between the periods 1989–2003 and 2004–2018, 
based on grid cells in which warming was followed by cooling or 
vice versa. We found no evidence for effects of day length on LSD 
responses to shifts in autumn temperature (Fig. 2D and Figs. S1 
and S11).

We tested for drivers of shape of LSD responses to shifts in tem-
perature, by analyzing sensitivities of LSD to CDD, frost risk, and 
water availability between autumn warming and cooling condi-
tions during the period 2004–2018. Differences in the sensitivities 
of LSD to CDD were tested using linear mixed models (30), covari-
ance analysis (68, 69), and random slope models (70). The linear 
mixed model analyses were based on linear regression analysis 
of site-based warming and cooling sensitivities of LSD to CDD 
that were then compared with direction of autumn temperature 
change as a fixed effect and random intercepts among forest bio-
mes. Covariance analysis comprised a comparison of fitted regres-
sion slopes between LSD and CDD under autumn warming and 
cooling conditions, while a random slope model compared tem-
poral LSD–CDD regression slopes between autumn warming and 
cooling conditions, with grid cell latitude and longitude as random 
factors (70).

We defined a frost risk index (0–1) that was standardized across 
the number of frost days in the studied warming and cooling grid 
cells, based on daily minimum temperature <0 °C during the pre-
season period (71, 72), and we calculated mean SPEI (three-month 
scale) during the preseason period. Linear mixed models were 
used to test for differences in frost risk and mean SPEI between au-
tumn warming and cooling conditions.

Autumn plant productivity was estimated from mean kNDVI 
and accumulated GPP from September to November (26, 28) and 
sensitivities of autumn productivity to autumn temperature 
were calculated using multiple linear regressions, controlling for 
effects of radiation and precipitation. PLS–SEM and random forest 
models were used to examine effects of sensitivity of LSD to tem-
perature S(LSD|T) on sensitivities of autumn productivity (i.e. 
kNDVI) to temperature S(kNDVI|T) and differences in autumn 
GPP sensitivities to warming and cooling estimated by 16 
DGVMs were analyzed using Student’s t test at P < 0.05. We quan-
tified the extent to which the asymmetry GPP responses impact 
carbon budget, based on the asymmetry responses derived from 
three GPP datasets (i.e. GLASS-GPP, TLLUE-GPP, and NIRv-GPP) 
and the coverage of the three studied forest biomes in the NH 
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(i.e. evergreen needleleaf, deciduous broadleaf, and mixed forests) 
using MODIS MCD12C1 land cover dataset (Fig. 4A and Fig. S8). 
The bias when not accounting for the asymmetric productivity re-
sponse was calculated based on the product of the forest area and 
the difference in GPP responses to 1 °C warming and cooling 
(Fig. 4A and Fig. S8).

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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