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Abstract
Worsening climate change impacts are amplifying the need for accurate estimates of vegetation
structure and aboveground biomass density (AGBD) to assess changes in biodiversity and carbon
storage. In Australia, increasing wildfire frequency and interest in the role of forests in the carbon
cycle necessitates biomass mapping across large geographic extents to monitor forest change. The
availability of spaceborne Light Detection and Ranging optimised for vegetation structure
mapping through the Global Ecosystem Dynamics Investigation (GEDI) provides an opportunity
for large-scale forest AGBD estimates of higher accuracy. This study assessed the use of the GEDI
canopy height product to predict woody AGBD across five vegetation types in Western Australia:
tall eucalypt forests, eucalypt open−woodlands, low-lying heathland, tropical eucalypt savannas,
and tussock and hummock grasslands. Canopy height models were developed using random forest
regressions trained on GEDI canopy height discrete point data. Predictor variables included
spectral bands and vegetation indices derived from synthetic aperture radar Sentinel−1 data, and
multispectral Landsat and Sentinel−2 data. AGBD was subsequently estimated using power-law
models derived by relating the predicted canopy heights to field AGBD plots. Mapping was
conducted for 2020 and 2021. The accuracy of canopy height predictions varied with height
quantiles; models underestimated the height of taller trees and overestimated the height of smaller
trees. A similar underestimation and overestimation trend was observed for the AGBD estimates.
The mean carbon stock was estimated at 69.0± 12.0 MgCha−1 in the tall eucalypt forests of the
Warren region; 33.8± 5.0 MgCha−1 for the open eucalypt woodlands in the South Jarrah region;
7.1± 1.4 MgCha−1 for the heathland and shrublands in the Geraldton Sandplains region;
43.9± 4.9 MgCha−1 for the Kimberley eucalypt savanna; and 3.9± 1.0 MgCha−1 for the
Kimberley savanna grasslands. This approach provides a useful framework for the future
development of this process for fire management, and habitat health monitoring.

1. Introduction

Forests, woodlands, and savannas provide a range of critical ecosystem and climate-regulating services.
Globally, forests sequester approximately 2.6 Gt CO2 per year through photosynthesis and tree growth
(Tubiello et al 2021). Forests also buffer microclimate temperatures under the canopy, support biodiversity
by providing habitat and food, and influence disturbance regimes (Gao et al 2014, De Frenne et al 2019).
However, shifts in temperature and precipitation associated with anthropogenic climate change are expected
to reduce taxonomic diversity and vegetation health and alter carbon dynamics through events such as

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2752-664X/ad7f5a
https://crossmark.crossref.org/dialog/?doi=10.1088/2752-664X/ad7f5a&domain=pdf&date_stamp=2024-11-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9765-1181
mailto:natasha.lutz@ouce.ox.ac.uk
http://doi.org/10.1088/2752-664X/ad7f5a


Environ. Res.: Ecol. 3 (2024) 045004 N Lutz et al

wildfires of increased frequency and severity (Chuvieco et al 2021, Balch et al 2022, Díaz and Malhi 2022).
Amid these worsening climate change and biodiversity impacts, future forest management requires accurate
quantification of existing carbon stocks (Filbee-Dexter and Wernberg 2020), estimations of vegetation
degradation (Viana-Soto et al 2022), and mapped changes in the distribution of plant functional types (Guo
et al 2017). Further, a growing Australian carbon market necessitates accurate baseline carbon estimates to
ensure carbon credit integrity is maintained in national and international markets (Renwick et al 2014,
Axelsson et al 2024). Carbon markets provide opportunities for Aboriginal and Torres Strait Islander
stewardship and associated finance flows to climate frontline communities (Renwick et al 2014,
Russell-Smith et al 2015). Inadequate monitoring and verification of carbon stocks undermines trust in a
market that may afford significant opportunities for sustainable development and biodiversity co-benefits.
Estimates of stored carbon on regional landscape scales currently remain marred by considerable uncertainty
(Hill et al 2013, Girardin et al 2021, Friedlingstein et al 2023).

Biomass consists of aboveground biomass (AGB), below-ground biomass, deadwood, and soil.
Vegetation biomass assessments typically focus on AGB and exclude the biomass of roots and other
below-ground components due to the challenges of obtaining these measurements (Lu et al 2016). In forest
and woodland ecosystems, AGB is an indicator of forest productivity and contributes significantly to the
overall carbon storage in vegetation, and so forms a key part of carbon accounting for emissions removal
projects (Calders et al 2015, Standish and Prober 2020). AGB can be estimated either in absolute terms (Mg
or tonnes) or as above-ground biomass density (AGBD) expressed as megagrams per hectare (Mg ha−1).
Carbon stock in Australia is generally estimated to be approximately 50% of the AGB stock for a given area
(Burrows et al 2002, Volkova et al 2015). In woody vegetation, canopy-top height is a useful predictor for
AGB, carbon stock and habitat heterogeneity (Simard et al 2011, Nandy et al 2021, Lang et al 2023). AGBD
and canopy height therefore form key variables of interest to environmental policymakers focusing on
climate change mitigation and biodiversity protection.

AGB estimates have been traditionally obtained from in situ destructive or non-destructive field
measurements, which are time and resource-costly, logistically challenging, and are restricted to
measurements at the tree or plot level (McCaw et al 1996, Stovall et al 2018, Brede et al 2022). Destructive
sampling provides accurate estimates but requires the felling of the trees involved (Catchpole and Wheeler
1992). Non-destructive field sampling techniques have conventionally involved the use of statistical
allometric models; however, the site or species-specific nature of these models can limit their applicability
over large regions (Calders et al 2015). More recently, non-destructive methods have also included indirect
measurements of AGBD derived from proximal Light Detection and Ranging (LiDAR) (Morais et al 2021).
High-density LiDAR point clouds from ground-collected terrestrial laser scanning, and airborne laser
scanning systems such as airplanes or unmanned aerial vehicle laser scanners (UAV-LS) such as drones, have
been increasingly deployed as methods to characterize three-dimensional (3D) forest structures such as
diameter at breast height, canopy height and canopy coverage (Calders et al 2015, Wang et al 2021, Brede
et al 2022, Demol et al 2022). However, while ground and airborne LiDAR sensors produce relatively
accurate AGBD estimates, they have high operational costs, often rendering a regional coverage
uneconomical (Erdody and Moskal 2010, Stojanova et al 2010).

Broad-scale forest structure characterization is typically achieved using remote sensing methods (Goetz
and Dubayah 2011, Montesano et al 2013, Brigot et al 2019, Salum et al 2020), which provide a cost-effective
method of assessing the biomass of forests and woodlands at the scales needed to monitor vegetation changes
with climate. A range of sensors, including passive multi-spectral sensors (Li et al 2020a), active sensors such
as synthetic aperture radar (SAR) (Mitchard et al 2009), and space-borne LiDAR (Narine et al 2020) have
been used to map AGBD over a range of scales and spatial resolutions. Previous studies have shown that
utilising a combination of these active and passive sensors improves the accuracy of vegetation structure and
biomass characterisation, as each data source presents different strengths and limitations (Montesano et al
2013, Ediriweera et al 2014, Rodríguez-Veiga et al 2019, Silva et al 2021, Li et al 2022a, Shendryk 2022, Guo
et al 2023). Passive optical sensors such as Sentinel−2 and Landsat detect biochemical vegetation attributes
through surface reflectance (Chaves et al 2020). The spectral indices, or band ratios, from these
multispectral sensors can be useful for detecting vegetation attributes such as green biomass, density and
canopy architecture through photosynthetic absorbance (Tucker 1979, Ustin et al 2004). Sentinel−2
multispectral imagery contains additional red-edge bands that capture plant stress or growth through
sensitivities to chlorophyll levels (Forkuor et al 2018, Li et al 2020b, Hua and Zhao 2021). Landsat
multispectral data provides the most comprehensive time-series of earth observation data. However, both
Landsat and Sentinel−2 multispectral sensors are sensitive to cloud cover (Li et al 2020b). In contrast,
Sentinel−1 is an active SAR sensor capable of penetrating clouds and some tree canopies. SAR instruments
such as Sentinel−1 determine vegetation structure by emitting microwave signals that elucidate the target
surface using the scattering of the returning echo signals, or back-scatter (Ferro-Famil and Pottier 2016).
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However, Landsat, Sentinel−2, and Sentinel−1 sensors all tend to underestimate biomass in dense forests
due to signal saturation and low canopy penetration (Luckman et al 1998, Joshi et al 2017), and overestimate
in sparse open forests due to an inability to distinguish between spectral reflectance from understorey and
canopy vegetation strata (Li et al 2020b, Wang et al 2021).

Spaceborne LiDAR offers an opportunity to improve ecosystem mapping at regional and global scales
(Liu and Popescu 2022, Mulverhill et al 2022). NASA’s Global Ecosystem Dynamics Investigation (GEDI) is
the first spaceborne LiDAR dedicated to monitoring vertical vegetation structure; capable of penetrating up
to 99% canopy cover (Hancock et al 2019). This improved technical capability enables more accurate and
widespread AGBD and vegetation structure mapping, particularly in dense forests where AGBD estimation is
typically associated with considerable uncertainty (Duncanson et al 2022, Leite et al 2022). GEDI data is
currently available from 2019 to 2023, with data collection recommencing in 2024 after a brief period of
hibernation. The GEDI sensor is aboard the International Space Station (ISS) and collects full-waveform
LiDAR (Dubayah et al 2020) across tropical, subtropical and temperate biogeographical zones between the
latitudes of∼51.6◦ north and south (Hancock et al 2019). As the GEDI sensor collects transects of discrete
circular footprints (snapshots of∼25 m diameter) separated by unsampled geographic extents, it is necessary
to combine it with co-located Landsat, and Sentinel−1 and Sentinel−2 remote sensing imagery to achieve
complete coverage (wall-to-wall) canopy height or AGBD maps (Silva et al 2021, Shendryk 2022).

A range of parametric modelling and non-parametric machine learning methods have been used in the
estimation of canopy height and AGBD and to quantify the associated uncertainties (Fassnacht et al 2016).
Parametric models such as multiple regression or Ordinary Least Squares (OLS) have been found to be
effective, and afford easy output interpretation due to observable model equations (Clark et al 2011, Ferraz
et al 2016, Duncanson et al 2022). Other studies have found non-parametric models outperform statistical
regression models in their ability to handle non-normally distributed input data and complex non-linear
relationships between variables (Hojo et al 2023, Wu et al 2023). Commonly used machine learning methods
include k-nearest neighbour (Jiang et al 2022), support vector regression (Gleason and Im 2012), decision
tree algorithms such as random forest (RF) (Baccini et al 2008, Powell et al 2010, Leite et al 2022) and more
recently, deep learning methods such as neural networks (Mugabowindekwe et al 2023, Seely et al 2023).
Comparable results from both parametric models and machine learning models have also been achieved
(Tang et al 2021). The applicability of various modelling approaches varies depending on the scale of
analysis, and the type and amount of data available. The RF algorithm is one of the most widely used
modelling approaches for ecological remote sensing applications, in part due to its ability to model complex
interactions between input variables and robustness to outliers (Wang et al 2016, Morais et al 2021).

Recent studies have utilised GEDI with a data fusion method to estimate canopy height globally (Lang
et al 2022, 2023) and regionally (Rishmawi et al 2021, Dhargay et al 2022, Shendryk 2022), and to map
canopy cover and height diversity (Schneider et al 2020). GEDI metrics have also been used to quantify
AGBD (Saarela et al 2018). However, the irregular spatial and temporal coverage of the ISS’s precessing orbit
means it is unlikely that GEDI LiDAR footprints can be spatially matched opportunistically with existing
field biomass inventory plots (Bullock et al 2023). To overcome this, previous studies have simulated GEDI
waveforms from UAV-LiDAR spatially coincident with field plot AGBD data, before applying this
relationship to on-orbit GEDI data across a region (Hancock et al 2019, Leite et al 2022). While effective, this
approach is limited to the small regions where field data plots have also been overflown with airborne
LiDAR. The GEDI mission team produces a global 1 km−spatial resolution AGBD product; however, this
may be of limited applicability at the finer scales of carbon projects or local policy implementation
(Duncanson et al 2022). Field AGBD inventory data or airborne LiDAR are lacking in many regions of the
world due to location remoteness or the cost of such data collection. Therefore, it is necessary to develop
methods of effectively utilising GEDI height metrics to estimate AGBD given existing field data availability or
limited calibration plots.

The utilisation of GEDI to estimate AGBD presents an opportunity to improve the accuracy of vegetation
mapping on regional scales in Australia. Current AGBD estimation methods in Australia for National
Inventory Reporting under the UNFCCC use the Full Carbon Accounting Model (Brack and Richards 2002,
Paul and Roxburgh 2020), for which spatial mapping uses passive optical Landsat satellite data and a RF
algorithm trained on field AGBD data (Roxburgh et al 2019). While airborne LiDAR data and field
campaigns have been used to map vegetation across Australia (Liao et al 2020), the use of currently available
spaceborne LiDAR such as GEDI to map vegetation structure and AGBD is scarce (Potapov et al 2021,
Duncanson et al 2022, Shendryk 2022).

The overall aim of this study was to develop a method of estimating vegetation structure, AGBD and
carbon stocks at the regional scale, utilising a fusion of the best freely available passive and active remote
sensing data and spaceborne GEDI LiDAR, and given limitations on the availability of existing biomass
calibration data. This method was applied to estimate canopy height and AGBD across four biogeographic
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regions of considerable carbon, biodiversity, cultural and economic value in Western Australia, namely the
Warren, South Jarrah, Geraldton Sandplains and Kimberley regions (Wardell-Johnson et al 2017, Jackson et
al 2017, IBRA 2018). Across these regions, five separate models were implemented to account for different
vegetation types; (i) tall eucalypt forests in the Warren region; (ii) mid−open eucalypt forests and woodlands
in the South Jarrah region; (iii) low heathlands and shrublands in the Geraldton Sandplains; and within the
Kimberley region, (iv) eucalypt savanna, and (v) tussock and hummock grasslands. This workflow
overcomes a lack of extensive field AGBD data or co-located airborne LiDAR data by first creating RF canopy
height models (CHMs) for each of the five vegetation types using GEDI height metrics and spatially
continuous Landsat, Sentinel and Shuttle Radar Topography Mission (SRTM) topographical data. Power-law
models were then derived for each vegetation type by relating the mean canopy height from the CHM with
existing co-located field plot data. This approach was undertaken for two separate years, 2020 and 2021, to
verify the consistency of the results given the irregular orbit track of GEDI. The results of this method were
then assessed to determine whether they are sufficiently accurate to be useful in guiding climate mitigation
policy and ecological monitoring.

2. Study areas

Vegetation structure and AGBD mapping were undertaken in four Interim Biogeographic Regionalisation
(IBRA, Version 7) regions of Western Australia: the Warren region and South-Jarrah region in the south,
Geraldton Sandplains region in the mid-west, and Kimberley region in the north (IBRA 2018) (figure 1). The
tall eucalypt forests and open woodlands in the south-west of Western Australia present some of the tallest
and most carbon-dense forests in Australia and are important hotspots for carbon and biodiversity
conservation (Wardell-Johnson et al 2017). The open kwongan heathlands and shrublands and Wandoo
woodlands of the Geraldton Sandplains region in the mid-west also occur within a region of high
biodiversity and species endemism (Griffin 1994). The tropical savanna and grassland ecosystems in the
north of Western Australia constitute some of the most structurally intact and fire-prone ecosystems in the
state (Russell-Smith et al 2015). They are consequently the subject of carbon abatement projects, an
emissions avoidance methodology, and numerous Indigenous cultural burning projects (Russell-Smith et al
2015, Yates et al 2023). They also currently form some of the most economically significant carbon stores in
Western Australia (Russell-Smith et al 2015).

2.1. Warren region
The Warren IBRA region covers 844, 270 ha in the south-west region of Western Australia. Vegetation in the
region is characterised by extensive tall Karri (Eucalyptus diversicolor) forests, often interspersed with Marri
(Corymbia calophylla), open forests with Jarrah (Eucalyptus marginata), and pockets of tingle forest featuring
Yellow Tingle (Eucalyptus guilfoylei), Red Tingle (Eucalyptus jacksonii) and coastal shrublands (figures 1
and 2). Canopy cover is generally between 30%–70% (Specht 1970), with recorded tree heights as tall as
83.3 m (Keith 2017). The Warren region experiences a Mediterranean climate and is defined by the high
rainfall zone of southwest Australia, with annual rainfall around 1200 mm (BoM 2024). Approximately 68%
of the region is legislatively protected as conservation reserve tenure managed by the state government’s
conservation agency (DBCA 2023a). Primary vegetation disturbance in the region is through prescribed
burning and wildfires, and infestations of the soil-borne pathogen Phytophthora cinnamomi (Boer et al 2009,
McDougall et al 2024).

2.2. South Jarrah region
The South Jarrah IBRA bioregion covers 2, 608, 550 ha in the south-west of Western Australia. Vegetation is
dominated by eucalypt mid-open forest and woodlands, with E. marginata, C. calophylla, and Eucalyptus
aubangusta (figures 1 and 2). Western regions of the Jarrah forests receive rainfall greater than 1200 m due to
the orographic uplift along the Darling escarpment (McCaw et al 2011) (figure 1). Approximately 37% of the
region is legislatively protected as conservation reserve tenure managed by the state government’s
conservation agency (DBCA 2023a). The flora and fauna in the region display a high degree of endemism
(Rix et al 2015). Similar to the Warren region, the South-Jarrah forests and woodlands are subject to frequent
wildfires and P. cinnamomi infestation (Boer et al 2009, McDougall et al 2024).

2.3. Geraldton Sandplains region
The Geraldton Sandplains region covers an area of 1, 171, 842 ha in the mid-west region of Western
Australia. The region is characterized by kwongan heathlands, Acacia shrublands and scattered eucalypt
woodlands with species including Eucalyptus wandoo (NVIS Technical Working Group 2017). Annual
rainfall in the region is 498 mm (BoM 2024) (figures 1 and 2). Heathlands are dominated by low shrubs up
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Figure 1. Different vegetation types found within the (A) Kimberley (B) Geraldton Sandplains and (C) Warren (within black
boundary) and South Jarrah (within the red boundary) IBRA Regions in Western Australia, with the National Vegetation
Information System, (NVIS) Major Vegetation Groups, Version 6 (NVIS Technical Working Group 2017).

to 2 m tall, with trees rarely exceeding 10 m tall (Keith 2017). Most biomass is contributed by Banksia,
Allocasuarina, and Xanthorrhoea species (Keith 2017). Acacia shrublands include trees less than 4 m tall,
dominated by Banskia attenuata, Nuytsia floribunda, and Allocasuraina low shrubland. Approximately 23%
of the region is legislatively protected as conservation reserve tenure managed by the State Government’s
conservation agency (DBCA 2023a).

2.4. Kimberley region
The Kimberley bioregion covers 11, 079, 500 ha in the north of Western Australia, and is characterised by
tropical savanna vegetation, with a discontinuous tree canopy layer and an understory of grasslands (NVIS
Technical Working Group 2017, O’Grady et al 2000). Vegetation heights typically range from 2 to 25 m
(Werner and Peacock 2019). The north Kimberley is characterised by the tropical savanna comprised of open
woodlands of Eucalyptus tectifica and Eucalyptus brevifolia, Acacia Pindan shrublands, and Sorghum grasses,
moving towards riparian closed forests and mangroves along the coast (figures 1 and 2) (Fox et al 2001). The
central and southern regions of the Kimberley feature Trioda and Sorgham hummock grasslands (Keith
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Figure 2. Example vegetation types observed in the study regions: (a) Karri forest (eucalypt tall forest vegetation type) found in
Warren IBRA region, and (b) Jarrah and Marri forest and woodland (eucalypt open forest and woodlands) found in Warren and
South Jarrah IBRA regions; (c) Banksia low shrubland (Acacia shrubland vegetation type), (d) Kwongan heath (heathlands) and
(e) Wandoo woodland (eucalypt woodlands) found in Geraldton Sandplains IBRA region; and (f) Acacia Pindan woodland
(Acacia shrublands vegetation type) found in the Kimberley region.

2017). Only 5.28% of the terrestrial Kimberley region is legislatively conserved (DBCA 2023a); however, 25%
is covered by registered carbon projects (Clean Energy Regulator 2023).

3. Methodology

3.1. Overall approach
Vegetation canopy height was spatially estimated using a RF model trained with GEDI L2A canopy height
data with multi-spectral and SAR data as predictors (figure 3). The model was cross-validated using a
pixel-level k-fold approach. The canopy height prediction map was then related to in-situ field-derived
AGBD data to spatially predict AGBD across the study regions. Vegetation data from the National Vegetation
Information System database (NVIS Technical Working Group 2017) was used to ensure the GEDI training
data and opportunistically sampled biomass data were representative of the vegetation types in the region. A
stratified sampling approach was implemented for GEDI footprints to prevent over-representation of a
particular vegetation type.
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Figure 3. Overall canopy height modelling and AGBD estimation workflow.

Figure 4. Quality processed transects of GEDI 2 A data across Mount Franklin National Park, Warren Region; (A) shows a
photograph of the region mapped in (B).

3.2. Data
3.2.1. GEDI LiDAR data
Canopy height LiDAR data was obtained from NASA’s GEDI instrument, which fires short pulses of light (14
nano-seconds long) towards the earth’s surface with a laser wavelength of 1064 nm, resulting in 25 m
diameter footprints separated by 60 m along the orbital track (Dubayah et al 2020) (figure 4). The GEDI
instrument has three lasers; two full power and a third coverage laser split into two beams, resulting in four
beams in total. These are optically dithered to produce eight ground tracks 600 m apart (Dubayah et al
2020). GEDI data was obtained as HDF5 files and converted to shapefiles clipped to the study areas using an
adapted version of the GEDI Subsetting Python script (LP DAAC 2021). Several quality filters were
implemented to select the most accurate data. Footprints collected from full-strength power beams (beams
0101, 0110, 1000, and 1011) were included as they are the most suitable for dense vegetation, and all coverage
beam footprints were omitted. Data that passed threshold requirements for energy, sensitivity, amplitude,
and surface tracking quality (indicated in the ancillary data by a ‘quality flag’ value of 1) were included and
all others (with a value of 0) were omitted (Dubayah et al 2020). To reduce solar radiation background noise,
only night-time LiDAR shots were included, indicated by footprints with a negative solar elevation angle
metric (Dubayah et al 2020).

Canopy height measurements were obtained from the relative height (RH) data of the GEDI L2A Version
2 Elevation and Height Metrics product (Dubayah et al 2020). RH metrics provide a measurement of the
canopy height relative to the elevation of the ground terrain by indicating the altitude at which a certain
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Table 1. Vegetation spectral indices considered for prediction of canopy height and AGBD. NIR, red, blue, green and red edge refer to
the near-infrared, red, blue, green and red edge bands respectively. For Sentinel−2 these refer to band 8 (NIR), band 4 (red), band 3
(green) and bands 5, 6, 7, 8A (red-edge bands (1–4)). For Landsat–8 OLI these refer to band 5 (NIR), band 4 (red) and band 2 (blue).

Radiometric Index Formula Platform Reference

NDVI Normalised
differenced
vegetation
index

(NIR−Red)
(NIR + Red) Sentinel 2 Pettorelli

et al (2005)

GNDVI Green
normalised
differenced
vegetation
index

(NIR−Green)
(NIR + Green) Sentinel 2 Gitelson

et al (1996)

NDVI-RE NDVI red
edge (bands
1–4)

(NIR−Red Edge)
(NIR + Red Edge) Sentinel 2 Danson and

Plummer
(1995)

MSAVI Modified
soil adjusted
vegetation
index

(
2NIR+1−[(2NIR+1)2−8(NIR−Red)]

1
2

)
2 Sentinel 2 Qi et al

(1994)

EVI Enhanced
vegetation
index

2.5 (NIR−Red)
(NIR + 6Red−7.5Blue) + 1 Landsat 8 Huete et al

(2002)

NDWI Normalized
difference
water index

(Green− NIR)
(Green + NIR) Sentinel 2 McFeeters

(1996)

quantile of energy is returned (Dubayah et al 2020). The GEDI processing algorithm uses different settings to
interpret the LiDAR waveform, resulting in one hundred RH metrics (RH1 to RH100). The RH metric RH95
(95th percentile of energy return) was used for this study as RH95 has been found to correlate closely with
airborne ALS LiDAR data (Potapov et al 2021) and be the best estimate of top canopy height. The coverage of
GEDI measurements across the study areas is not consistent spatially or temporally, as the GEDI instrument
is constrained by the orbital tracking and inclination of its host platform, the ISS. Consequently, stratified
sampling of the GEDI data was used to ensure the representation of vegetation types was proportional to the
area of their distribution within the study region. Data was compiled for 2020 and 2021 to explore the
difference of GEDI sampling orbital tracks between years.

3.2.2. SAR data
Sentinel−1 dual polarisation C−band SAR data with vertical-vertical (VV) and vertical horizontal (VH)
backscatter polarisations from the ascending or descending orbit was used to predict canopy height and
AGBD (Li et al 2020b, ESA 2022). Both ascending and descending data was available for the Warren and
South Jarrah regions, while only descending data was available for the Geraldton and Kimberley regions.
Median composites for 2020 and 2021 were compiled at 30 m pixel resolution. Sentinel−1 C− band data is
provided calibrated and ortho-corrected by the Sentinel−1 Toolbox. SAR data was used to complement the
optical data, particularly in regions with persistent cloud cover.

3.2.3. Multi-spectral data
Sentinel−2 Level 2A multi-spectral surface reflectance (10 m resolution) and Landsat-8 Operational Land
Imager (OLI) data (30 m resolution) were used to compute vegetation spectral indices and obtain surface
reflectance median image composites for 2020 and 2021 to coincide with the GEDI data.

3.2.4. Vegetation indices
Several spectral indices were explored as predictors of canopy height metrics and biomass (table 1). The
normalised difference vegetation index (NDVI) is used as a proxy for canopy cover, as it indicates the
absorbance of chlorophyll and is correlated to the fraction of photosynthetically active radiation (Pettorelli
et al 2005). Red-edge NDVIs (NDVI-RE) are a derivation of NDVI that include the four red-edge bands in
Sentinel-2 (the narrow wavelengths between the visible red and infra-red bands) that are more sensitive to
changes in chlorophyll content and are useful for vegetation stress detection (Tillack et al 2014). The
modified soil adjusted vegetation index (MSAVI) is a form of NDVI that includes an adjustment that
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Figure 5. Comparison of GEDI RH95 and field collected canopy heights estimated using a laser rangefinder in (A) Acacia low
shrubland and kwongan heathland vegetation in Leseur National Park in the Geraldton Sandplains region, and (B) Tall Karri
eucalypt forests and Jarrah woodlands in Mount Franklin National Park in the Warren region; R2 = coefficient of determination,
RMSE= root mean square error. Dashed black line is 1:1 line.

minimises the influence of soil luminance and is beneficial in areas where vegetation cover is limited (Qi et al
1994). The enhanced vegetation index (EVI) is more responsive to canopy structural variations and performs
better than NDVI in dense canopy where leaf area index is high (Huete et al 2002, Jiang et al 2008). The
normalised difference water index was used to delineate inland water sources which other indices may
confuse with vegetation (McFeeters 1996). Due to its ability to penetrate clouds, Sentinel-2 was used for most
vegetation indices. The EVI composite data product from Landsat-8 was used for the EVI raster layer (USGS
2022). For the CHMs, vegetation index raster images were created at a spatial resolution of 30 m. To avoid
erroneous non-zero biomass estimates in non-forested pixels, areas of naturally bare land such as sand dunes
and open inland water sources were masked from analysis. Nine vegetation indices (including the four NDVI
red-edge indices) and 21 bands were included, and between two and four SAR indices, depending on the
availability of ascending or descending SAR back-scatter data (table 1).

3.2.5. Topographical data
Elevation, slope, and aspect were included as potential predictor variables, obtained from a digital elevation
model derived from the 30 m NASA SRTM (Geoscience Australia 2020). At local and regional spatial scales,
elevational gradients, slope angle, and orientation can influence vegetation structure and species distribution
through microclimatic variations in temperature, precipitation and edaphic conditions (Colgan et al 2012,
Jucker et al 2018, Rahman et al 2022, Zhang et al 2024). For example, trees in valleys tend to be taller due to
greater competition for light resources, greater access to water and nutrients, protection from wind and
deeper soils allowing increased anchorage for roots (Fortunel et al 2018). Slope aspect influences ecosystem
characteristics due to variable exposure to solar radiation, air streams, cloud cover and precipitation (Bale
et al 1998). These drivers of vegetation structure and biomass can be particularly relevant when modelling
across heterogeneous or complex topography (Ediriweera et al 2014).

3.2.6. Field validation: canopy height field data
A Nikon Forestry Pro laser rangefinder was used to estimate the heights of 163 trees in Mount Franklin
National Park in the Warren region and 30 trees in the Lesueur National Park in the Geraldton Sandplains
region. These canopy height measurements were correlated with co-located or nearby GEDI RH95 canopy
heights to determine the degree of agreement between RH95 measurements and the regions studied
(figure 5). The RH95 metric GEDI canopy heights were not statistically different from the field measurements
(t-test; p> 0.05), and as such the RH95 was deemed appropriate for use in the canopy height mapping.
Greater variation was observed between the GEDI and field measurements of taller trees in denser forests.

3.2.7. AGB field data
AGBD maps created through remote sensing are modelled estimates of biomass based on spectral
correlations, and such maps rely on quality field estimates for calibration and validation (Foody 2010,
Olofsson et al 2014). AGB training data was obtained from the Terrestrial Ecosystem Research Network
(TERN) Biomass Plot Library, a database of in situ stem inventory AGB data compiled from government,
university, and research organisations (TERN 2021). Site-level AGB density per hectare data was utilised for
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most sites. Where data was available at the tree level, allometric models relating tree height and diameter
were used to estimate biomass, which was aggregated to create plot-level biomass estimates in megagrams
(Mg) per hectare (Paul et al 2016, TERN 2021). The AGB data was not the result of a stratified sampling
campaign, and in certain instances, had been specifically acquired from region with mature forests. Effort
was therefore made to include a representative range of vegetation types in the final training data selection.

For the Warren region, site inventory data was obtained for trees and shrubs from field surveys between
2005 and 2015. This was supplemented by data obtained at the tree level at eight 100 m by 100 m plots,
totalling 973 trees. These trees were used to obtain representative measurements of tree distributions in the
heterogeneous vegetation for a range of species representative of the eucalypt forests in the region;
Blackwood (Acacia melanoxylon), Willow myrtle, (Agonis flexuosa), Sheoak (Allocasuarina decussata), Marri
(C. calophylla), Karri (E. diversicolor), Jarrah (E. marginata), Yellow Tingle (E. guilfoylei), Red Tingle, (E.
jacksonii), and Karri Hazel (Tricalcium odoratissimum). For the remaining regions, tree-level data was
unavailable, and site-level data was obtained at a 1-hectare resolution (TERN 2021). Plot-level data was
available between 2005 and 2014 for the South-Jarrah region; the year 2018 for the Geraldton Sandplains
region, and between 2010 and 2012 for the Kimberley region.

3.2.8. AGB data processing
The TERN AGB plot data was screened to remove duplicates, plots that were known to have experienced
disturbance, or plots that were considered outliers. Two plots located in the Warren region were removed due
to the presence of a high number of E. jacksonii individuals which as a species grow pronounced buttressing
that results in inflated diameter measurements and elevated biomass estimates for a given height (TERN
2021).

Fire histories were obtained for regions where the AGB field samples were collected. Samples within the
Warren, South Jarrah and Geraldton Sandplains regions subjected to fire in the time-since AGB data
collection were omitted as fires in tall-open and temperate eucalypt forests and shrublands often have
prolonged and significant impacts on biomass and ecosystem functioning (Enright et al 2014, McCaw and
Middleton 2015). The timing of burns and the perimeters of fires that occurred after the AGB data collection
were determined using the Fire History (DBCA-060) dataset (DBCA 2023b). Fire severity mapping was then
undertaken to assess the region burnt by each fire. Landsat Thermal OLI imagery was used due to the long
time series of data available. Pre-and post-fire cloud-masked imagery was obtained within three months
before and following a fire, respectively, to optimise the burn signal while minimising changes due to
phenology (Tran et al 2018). The differenced normalised burn ratio was used as a proxy for fire burn severity.
Near infra-red (NIR) and short-wave infrared (SWIR) wavelengths were used to calculate a normalised burn
ratio for pre- and post-fire images:

NBR=
(NIR− SWIR)

(NIR+ SWIR)
(1)

Burnt regions were identified from the difference in pre- and post-burn NBR values. Thresholds of burn
severity were adopted as per Key and Benson (2006). For field AGB samples from the fire-adapted Kimberley
savanna region, fire histories of AGB sampling locations were checked using available fire history datasets
(NAFI 2023) and samples were only omitted if a fire had occurred within three years prior to mapping, as a
time interval of three or more years is considered long-unburnt for the region (Wysong et al 2021).
Following this data cleaning process, 23 samples remained for the Warren region, 35 from the South-Jarrah
region, 22 from the Geraldton Sandplains shrublands, 34 from the Kimberley eucalypt savanna, and 12 from
the Kimberley grasslands region.

3.3. RF CHM
RF machine learning algorithms were used to predict canopy height from remotely sensed earth observation
data and GEDI data (Breiman 2001). RF is a decision tree-based machine learning modelling approach
which can be used for non-parametric datasets exhibiting complex non-linear relationships (Belgiu and
Drăguţ 2016). A separate RF model was developed for each major vegetation type within the IBRA regions
studied to account for distinctions in tree density and structure. Vegetation was delineated according to the
Major Vegetation Groups of the National Vegetation Information System (NVIS Technical Working Group
2017). The resulting five models were (i) tall eucalypt (Karri) forests in the Warren region, (ii) the mid-open
eucalypt (Jarrah) forests and woodlands of the South Jarrah region; (iii) the heathlands and shrublands of
the Geraldton Sandplains region; (iv) the eucalypt savannas of the Kimberley region; and (v) the tussock and
hummock grasslands of the Kimberley region. Each model was built using only the GEDI, multi-spectral,
and SAR information collected from that region or vegetation type. RF models were run with 500 decision
trees, with the variables used for each decision-tree split being the square of the total number of variables
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(Breiman 2001). To increase model parsimony and computational efficiency, highly correlated predictor
variables were omitted (Wilkes et al 2015). The relative importance of the predictor variables in determining
the canopy height were measured by the percentage increase in mean square error (%MSE).

Model performance and errors were evaluated with a random 10 k-fold cross-validation approach, in
which observations are split into k sets. Model training was iteratively performed on k-1 sets, with a different
set withheld for validation each time. The RF model was performed with k= 10 (Rodríguez-Veiga et al
2020). The predictive performance of the k-fold cross-validated RF models was evaluated using the root
mean square error (RMSE), relative RMSE (rRMSE), prediction bias, and R2 (Luo et al 2019). The RMSE is
the standard deviation of the residuals. A lower RMSE value indicates data is more concentrated around the
line of best fit, and less error. The RMSE was calculated according to the following:

RMSE =

√√√√√ n∑
i=1

(ŷi − yi)
2

n
(2)

The relative RMSE was used to quantify uncertainty, compare performances across models and was
calculated according to the following (Li et al 2022b):

rRMSE (%) =
RMSE

ȳ
100 (3)

The bias, calculated by the mean error, was used to assess the average difference between the predicted
and observed mean canopy height values. A positive bias means the predicted values are greater than the
observed values on average. Bias was calculated according to the following (Lang et al 2022):

bias =
1

n

n∑
i=1

(ŷi − yi) (4)

where for each of [2], [3], and [4]: ŷi is the predicted canopy height (m), yi is the observed canopy height, ȳ is
the mean canopy height, and n is the number of samples.

This accuracy assessment was calculated for contiguous stratified ranges of the reference GEDI canopy
height as well as the overall model for each vegetation type. The selected ranges varied between regions and
were determined based on the range of canopy heights and the number of reference data points within each
range. The model height predictions were further validated by calculating the estimation bias of the model
using a separate three thousand independent GEDI reference data points, stratified into the same contiguous
ranges. The RF framework was implemented in the Google Earth Engine (GEE) javascript platform, with
further statistical analysis undertaken in R (v 4.3) (R Core Team 2023), using the RF (Liaw and Wiener
2002), caret (Kuhn 2008) and ggplot (Wickham 2016) packages.

3.4. AGBD-height power model
The canopy height prediction map was used as a predictor for AGBD. This was achieved using power-law
models derived by relating AGBD field data to co-located 30 m× 30 m canopy height estimates, and creating
regressions of the general formula (Meyer et al 2018, Duncanson et al 2022):

AGBD= a(MCH)
b (5)

where AGBD is the abovegound biomass density (Mg ha−1), MCH is the mean canopy height for the pixel, a
is a scaling factor, and b is the power-law coefficient (Meyer et al 2018). Carbon stocks were then quantified
from the AGBD estimates based on the assumption that carbon is 50% of dry weight, resulting in Megagrams
of carbon per hectare (MgC ha−1) (Burrows et al 2002, Volkova et al 2015).

3.5. Uncertainty estimation
Four sources of error were considered in the canopy height modelling: the error from the RF model; the
vertical accuracy of the GEDI data (assumed to be 0.5 m) (Dubayah et al 2020); the within-pixel sampling
error, which arises due to the difference in shape and size of the area of the GEDI footprint (25 m) and the
pixel size chosen for the mapping (30 m); and the temporal error between the collection of the GEDI data and
the predictor remote sensing imagery. As per Zhang et al (2014), the error associated with the difference in
the spatial variability of GEDI footprints and remote sensing plots was considered negligible because the area
of the 30 m pixel is approximately the same as the 25 m footprint, taking into account the 5 m geolocation
error of the GEDI data (Zhang et al 2014). The temporal error was also assumed to be zero given the GEDI
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and earth observation data (Landsat, Sentinel) were sampled over the same period. The overall uncertainty
for each map pixel in the canopy height modelling was derived additively from these four sources of error:

εMCH =
(
ε2RF model + ε2GEDI + ε2within−pixel + ε2time

) 1
2 (6)

For the AGBD mapping, the uncertainty at the pixel level was assumed to be composed of six
independent sources of error. Firstly, the error associated with the canopy height modelling earlier explained.
Secondly, the uncertainty associated with temporal differences between the date of AGBD field plot collection
and collection of the mean canopy heights used to predict AGBD, as trees may have grown or degraded in
that time. The temporal error was estimated as per Weisbin et al (2014) and adopted to be relevant to the
dates of the data used in each model. Thirdly, a measurement error from upscaling tree-level parameters to a
plot scale (Chave et al 2004). Measurement errors originate due to human error in the measurement of tree
diameter and height, which aggregate cumulatively at the plot level (Araza et al 2022). The measurement
error was assumed to be 10% according to Mitchard et al (2011). Fourthly, an allometry error associated with
the choice of empirical model used to estimate AGB. The error associated with estimating AGB using
allometric equations was assumed to be 11%, as per Chave et al (2004). Fifthly, the error resulting from the
empirical model used to convert canopy height into AGB. Finally, a within-pixel sampling error as a result of
local variability in AGBD within pixels. The within-pixel sampling error is a function of field plot size (ha)
and remote sensing pixel size and occurs where AGBD is locally heterogeneous, and where field plots are
smaller or larger than the size of the map pixels. The within-pixel sampling error is larger as the sampling
area decreases. The within-pixel sampling error for the AGBD model was estimated by adapting the
within-pixel sampling error matrix by Réjou-Méchain et al (2014). Using the 30× 30 m canopy map
estimate and a 1 ha field AGBD plot area, the within-pixel sampling error for the AGBD model was assumed
to be 4% (Réjou-Méchain et al 2014). The overall uncertainty for each map pixel, εAGBD, was then derived
additively from these six sources of error, as per Rodríguez-Veiga et al (2016), as the following:

εAGBD =
(
ε2MCH + ε2time + ε2measurement + ε2allometry + ε2MCH to AGBD + ε2within−pixel sampling

) 1
2 (7)

4. Results

4.1. Canopy height modelling
4.1.1. Model accuracy
For the year 2021, the multispectral and SAR predictor variables explained more than 70% of the variation in
the canopy height of the tall eucalypt and mid-open eucalypt forests, but as low as 39% of the variation in
heights in eucalypt savanna vegetation (table 2). The accuracy of the canopy height prediction models
between 2020 and 2021 were comparable (see supplementary table 1 for 2020 results). Although the overall
bias approached zero for all regions, the models consistently overestimated the heights of low-lying
vegetation and underpredicted the upper bounds of vegetation height. Negative bias was observed overall for
the tall eucalypt forests in the Warren region and for the mid-open eucalypt forests and woodlands in the
South Jarrah region in 2021, indicating these vegetation types were underpredicted on average. A positive
bias in low-lying heathland, savanna and grassland vegetation indicates these vegetation types were
overpredicted by the model on average.

Elevation and the SAR backscatter variables (VVdesc, VVasc, VHdesc, or VVasc) were the most important
features in predicting canopy height for all vegetation types except the heathlands and shrublands in the
Geraldton Sandplains region. The GNDVI and the MSAVI, were important in the sparse heathlands and
shrublands of the Geraldton Sandplains region, but less so in other regions and vegetation types (table 2).

4.1.2. CHM validation
The ability of the RF models to predict canopy height using GEDI RH95 data was tested in each of the five
vegetation types using three thousand model output estimations against a co-located and independent subset
of the GEDI data (figure 6). Again, all models showed non-uniform bias, with an underestimation (negative
bias) of GEDI values for higher canopies and an overestimation (positive bias) of lower canopy heights. For
all regions, a linear regression between the predicted height values and GEDI RH95 data resulted in a slope of
between 1.01 and 1.1, with intercepts of between−1.5 for the Warren region (for the year 2021) and−0.12
for the eucalypt savanna in the Kimberley (for the year 2021), reflecting an approximate 1:1 relationship
(figure S1).

4.1.3. Canopy height mapping
Predicted mean canopy heights estimated at the 30 m pixel level reached a maximum of 42 m in the
south-western Warren region, 32 m in the South-Jarrah region, 11 m in the Geraldton Sandplains region and
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Table 2. Performance of RF models predicting canopy height for 2021, stratified by reference canopy height ranges as well as the overall
model (indicated in bold). The variable importance of predictor variables, and sample size for each model is also listed. Variables with ∗

are derived from Landsat. RMSE is the Root Mean Square Error; R2 is the coefficient of determination.

Study region
Reference CH
range (m)

n training
samples

RMSE
(m)

Relative
RMSE (%) Bias (m) R2

Variable importance of
overall model (top 10)

Warren
Tall eucalypt
forests

0–10 5116 5.86 70.60 3.40 0.70 Elevation, VVdesc, VVasc,
NDVIRE2, NIR

∗, VHdesc,
SWIR1∗, EVI, GNDVI,
NDVIRE3

10–20 3457 6.51 43.40 2.13
20–30 3195 6.23 24.92 −0.56
30–40 1548 8.88 25.37 −6.34
>40 1100 15.3 34.00 −13.85
Overall 14 416 7.43 29.72 −0.02

South Jarrah
Mid- open
eucalypt forests
and woodlands

0–5 4927 3.16 89.12 2.37 0.74 Elevation, VVdesc,
NDVIRE2, VVasc, VHdesc,
NDVIRE3, SWIR1∗, VHasc,
NDVIRE4, NIR

∗.

5–10 1087 5.09 64.25 2.81
10–15 2707 3.27 30.62 0.61
15–20 3632 3.30 20.60 −1.36
>20 1635 9.49 31.75 −7.39
Overall 13 988 3.81 37.96 − 0.18

Geraldton
Sandplains
Heathlands,
shrublands

0–2.0 5182 0.38 19.83 0.27 0.41 Elevation, GNDVI, EVI,
VHdesc, MSAVI, NDVIRE1,
NDVIRE2, SWIR1∗, VVdesc,
NIR∗.

2.0–2.5 6136 0.41 19.34 0.20
2.5–3 792 0.48 17.90 −0.11
3–7 987 1.83 43.67 −1.36
>7 204 4.35 54.88 −4.53
Overall 13 301 0.99 40.31 0.013

Kimberley
Eucalypt savannas

0–2.5 2822 1.96 99.73 1.78 0.39 VHdesc, SWIR1∗, Elevation,
EVI, VVdesc, NDVIRE3,
NDVIRE2, NIR

∗, Blue,
NDVIRE4.

2.5–5 4084 1.86 53.10 1.18
5–10 4073 2.19 30.60 −1.15
>10 1044 6.75 48.36 −4.40
Overall 12 023 2.68 48.36 0.05

Tussock &
hummock
grasslands

0–2.5 3107 1.16 54.08 0.84 0.43 VHdesc, VVdesc, NDVIRE1,
SWIR2∗, Blue, NIR∗,
NDVIRE2, Elevation, EVI,
NDVIRE3.

2.5−5 2861 1.37 38.58 0.81
5–8 1327 1.91 30.64 −1.56
>8 691 5.01 52.34 −3.21
Overall 7986 2.09 52.17 0.003

12 m in the Kimberley region (figure 7). The canopy height predictions between 2020 and 2021 were not
significantly different (ANOVA; p> 0.05) (figure 7, see supplementary figure S2 for 2020 canopy height
map). The Warren region exhibited the greatest spatial heterogeneity and variation in the canopy height
estimations.

4.2. Above-ground biomass and carbon density mapping
4.2.1. Model performance
Overall, the canopy height and AGBD power-law models exhibited relatively good performance, with R2

higher than 0.80, and RMSE less than 72.4 (table 3). The strongest correlation between the heights and
AGBD was observed in the Geraldton Sandplains region, with the lowest observed in the Warren region.

4.2.2. AGBD characterisation across study regions
The spatial distribution of AGBD varied between vegetation types and regions (figure 8, see supplementary
figure S3 for 2020 results). Regions with higher estimated AGBD were the tall eucalypt forests in the
south-west of the Warren region, and the northern region of the Kimberley. The mean estimated values of
AGBD in the Warren region were consistent between years, with 139.0± 16.7 Mg ha−1 to 138.0± 24.0 Mg
ha−1 in 2020 and 2021 respectively. While the maximum AGBD values for the South Jarrah region remained
relatively consistent between years (324 Mg ha−1–336 Mg ha−1), the mean AGBD reduced from
82.0± 10.0 Mg ha−1 in 2020 to 67.5± 10.0 Mg ha−1 2021. In the Geraldton Sandplains region, the average
AGBD decreased from 18.8± 2.9 Mg ha−1 to 14.2± 2.7 Mg ha−1 in 2021. In the northern eucalypt savanna
of the Kimberley, the AGBD estimates were 83.0± 3.5 Mg ha−1 in 2020 and 87.8± 9.9 Mg ha−1 in 2021. In
the Kimberley grasslands, the AGBD mean increased slightly from 7.5± 1.8 Mg ha−1 in 2020 to
7.7± 2.0 Mg ha−1 in 2021. For the year 2021, the mean carbon stock was estimated at 69.0± 12.0 MgC ha−1

in the Warren region; 33.8± 5.0 MgC ha−1 for South Jarrah; 7.1± 1.4 MgC ha−1 for Geraldton Sandplains
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Figure 6. Average predicted canopy heights versus average reference GEDI RH95 heights at the pixel scale for each reference range,
for the year 2021. Error bars indicate the standard deviation of the predicted canopy heights for each reference range. The dotted
black line indicates a line-of-best fit; and the dashed grey line indicates a 1:1 line. Bias forms the main source of error for canopy
height ranges where the error bars do not overlap the 1:1 line.

region; 43.9± 4.9 MgC ha−1 for the Kimberley eucalypt savanna; and 3.9± 1.0 MgC ha−1 for the Kimberley
savanna grasslands.

5. Discussion

The availability of spaceborne GEDI LiDAR specifically designed to measure vertical vegetation structure
provides new powerful opportunities for improved understanding of habitat heterogeneity and accuracy in
AGBD mapping. This study demonstrated the potential for utilising a fusion of GEDI LiDAR, active SAR,
passive optical multispectral, and topographical data, to create spatially continuous AGBD maps, at a
resolution and accuracy appropriate for climate mitigation and biodiversity policy application. While this
approach was implemented to evaluate differences over five vegetation types over three biomes of unique
flora speciation within Western Australia, these vegetation types are structurally similar to vegetation both in
other regions of Australia, and in Mediterranean and tropical regions globally, broadening the applicability
of these methods and conclusions.

Published AGBD field estimates for Western Australian vegetation types are scarce at the plot level
(Adams et al 2001, Raison et al 2003, TERN 2021) and negligible at the landscape or regional level,
confirming the need for this study. The baseline plot estimates available in literature indicate that the AGBD
predictions obtained here are credible for the vegetation types mapped. The AGBD estimates for the
northern Kimberley tropical savanna were within the range obtained by Collins et al (2009), who reported
AGB densities of between 10 and 174 Mg ha−1 in the tropical savanna ecosystems of the Northern Territory
using SAR data and field measurements. The mean estimates obtained in this study for the Kimberley
grasslands, Geraldton Sandplains heathlands and shrublands and South Jarrah mid-open forest and
woodlands are in broad agreement with published field sampled estimates of those vegetation types: Adams
et al (2001) estimated 4.5 Mg ha−1 and 6.7 Mg ha−1 for hummock Triodia grasslands; Grierson et al (2000)
estimated 82 Mg ha−1 in Jarrah forests; and Low and Lamont (1990) estimated 13.9 Mg ha−1 in Banksia
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Figure 7. Canopy height (m) (left) and height uncertainty maps (right) for the (A) Kimberley, (B) Geraldton Sandplains, (C)
Warren and South Jarrah regions for the year 2021. The inset map shows close-up views of canopy height gradients and
vegetation structure heterogeneity.

heathlands and shrublands in the Geraldton region. This relative alignment between the AGBD estimates
obtained through this study and field-based sampling, suggests that the methods used result in AGBD
predictions that are reasonably accurate, enabling their use in decision making requiring a baseline
assessment of AGBD and carbon stocks. The predicted AGBD estimates for the Warren region overlapped
the lower bounds of range reported by Wood et al (2015), who reported plot–level estimates between
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Table 3. Performance of AGBD models. RMSE= root mean square error; R2 = coefficient of determination.

Study region n training samples RMSE R2

Warren 23 72.4 0.82
Tall eucalypt forests
South Jarrah 35 67.6 0.87
Mid- open eucalypt forests
and woodlands
Geraldton Sandplains 22 21.1 0.94
Heathlands, shrublands
Kimberley 34 34.7 0.84
Eucalypt savannas
Tussock & hummock
grasslands

12 5.7 0.87

310 Mg ha−1 and 540 Mg ha−1 obtained from non-destructive field sampling. These estimates obtained by
Wood et al (2015) intentionally sampled tall, dense, old-growth forests, and as such their observations
represent the upper tail of the distribution of biomass estimates and they are not wholly representative of the
range of vegetation in the broader Warren region. The reduced maximum AGBD observed in the Warren
region prediction maps, relative to these field sampled estimates may have also propagated from the
non-uniform bias observed in the canopy height predictions (Réjou-Méchain et al 2019).

While the combination of GEDI, passive multispectral and active SAR data, and the use of RF models
produced average canopy height estimates plausible for the vegetation types mapped in this study (Specht
1970, Rayner 1991, Vigilante and Bowman 2004) the method underestimated canopy heights in tall dense
forests and overestimated the height of shorter sparse vegetation. This trend reflects a known bias observed
in the use of RF models and data fusion methods to predict canopy height (Staben et al 2018, Li et al 2020b,
Fassnacht et al 2021). This underestimation of taller heights in the RF canopy height prediction models is
typically attributed to signal saturation of passive multi-spectral sensors and insufficient canopy penetration
by SAR sensors (Duncanson et al 2010). The overestimation of the lower vegetation height values is likely
associated with the limited ability of passive sensors to distinguish between the spectral reflectance of canopy
and understory vegetation or soil, or the distorting influence of complex terrain on SAR backscatter (Li et al
2020b, Wang et al 2021). The reduced canopy height bias in the middle height quantiles is consistent with the
statistical behaviour of regression machine learning models, which encourage the training data mean and
prediction mean to be approximately equal (Araza et al 2022), and may explain how the mean AGBD
estimates were approximately accurate relative to field obtained estimates.

For most regions, only slight variations in the height and AGBD estimates were observed between 2020
and 2021, reinforcing the robustness of the modelling process. The lower AGBD estimates in the South
Jarrah region in 2021 relative to 2020, may reflect a loss of biomass from environmental disturbances such as
fire; the region experienced an estimated 59 000 ha of woodland burns during 2020 (DBCA 2023b). It may
also reflect variations in the raw GEDI height data distribution. The orbit of the ISS undertook a more
complete coverage of the region in 2020 and reported a slightly higher mean height (11 m rather than 9 m in
2021). RF models predict within the bounds of the training data provided (Millard and Richardson 2015),
and if the GEDI sensor onboard the ISS fails to sample the full distribution of tree heights in an area of high
vegetation structural heterogeneity, the canopy map and resulting AGBD map are likely to underestimate or
overestimate those values. While stratified sampling of the GEDI data was undertaken to avoid excess
sampling of a given vegetation type in a given year, certain vegetation types, such as Jarrah (E. marginata)
‘mid open forests’, may still exhibit considerable height variation. This effect would likely be negligible in
regions of vegetation structural homogeneity. The GEDI trained CHM is applicable beyond the temporal
bounds explored in this study, given the same type of data is used (same processing level and version) from
Sentinel−1, Sentinel−2 and Landsat. The power-law allometric relationship between canopy height and
AGBD varies with vegetation type and climate (Chave et al 2014, Jucker et al 2017). Over a long period of
time, the growth behaviour of vegetation may change due to changing climatic conditions, the vegetation
may degrade from disturbances such as wildfire, or regrow through conservation efforts. In these cases, the
allometric relationship between canopy height and AGBD for a given region may change and might benefit
from recalibration with updated field data.

The proportion of variance in GEDI canopy heights explained by the predictor variables of the canopy
height RF models were within the range achieved at similar spatial resolutions from airborne LiDAR in
regional studies in temperate and tropical biomes (García et al 2018, Torres de Almeida et al 2022), and other
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Figure 8. AGBD maps (left) and AGBD uncertainty maps (right) for the (A) Kimberley, (B) Geraldton, (C) Warren and South
Jarrah regions for the year 2021.

space-borne LiDAR sensors such as full-waveform ICESat (Lefsky et al 2005, Iqbal et al 2013). The
proportion of variation in AGBD explained by the GEDI CHM was similar or higher than in regional-level
airborne LiDAR studies in temperate and tropical biomes utilizing power-law or OLS modelling approaches
(Zhao et al 2009, Ferraz et al 2016, 2018, Naidoo et al 2016, Xu et al 2017, Labriere et al 2018). These results
indicate the potential for this method to inform climate and biodiversity policy as accurate broadscale AGBD
and carbon stock mapping is possible on a landscape scale, without the costs associated with airborne LiDAR.
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The RF GEDI CHMs exhibited greater accuracy when applied to woody vegetation types than for
heathland with low lying vegetation and sparse canopy. This is in agreement with Leite et al (2022) who
found GEDI waveform metrics explained 88% of variation in woody fuels, and only 46% of herbaceous
shrub fuels in a Cerrado savanna ecosystem in Brazil. This suggests that the utilisation of GEDI height
metrics in this method is most appropriate for woody biomass regions, which does correlate to the vegetation
types for which the GEDI instrument sensor has been designed (Dubayah et al 2020). However, while the
savanna and grassland ecosystems in the Kimberley and sparse shrubland ecosystems in the Geraldton
Sandplains exhibited the lowest proportion of explained variation in the RF models (indicated by lower
coefficients of determination), the use of these canopy height prediction maps to generate AGBD estimations
which are in relative agreement with published field-derived estimates suggests that this method remains
useful for policy applications.

Uncertainty may also be introduced into the CHM through factors which impact GEDI’s ability to detect
the ground elevation. Relative to the Warren tall eucalypt forest model, the South Jarrah open forest model
exhibited higher accuracy, potentially reflecting the impact of canopy cover on the strength of the GEDI
return signal (Hofton and Blair 2019). Topographic relief and slope can be a source of uncertainty in CHMs
derived from LiDAR as complex terrain may cause GEDI full-waveforms to broaden and ground and
vegetation signals to overlap, degrading the accuracy of the ground and height estimation (Hyde et al 2005).
Although GEDI’s small 25 m footprint is designed to reduce mixing of ground and vegetation signals
(Dubayah et al 2020), several studies have shown rugged terrain and steeper slopes may result in GEDI
canopy height overestimation or underestimation due to inaccurate ground detection (Huettermann et al
2022, Wang et al 2022). Conversely, Olivera et al (2023) explored the effect in tropical Brazilian forests and
found GEDI terrain slope only significantly impacted the quality of daytime GEDI shots. The data
pre-processing undertaken in this study aimed to reduce the potential for slope and elevation impacts by
selecting only the night-time and highest quality shots; however, there may be some error introduced from
these factors that is transferred downstream to the biomass estimates that rely on the canopy height
prediction.

The accuracy of AGBD estimations is dependent on the quality and quantity of the biomass field
calibration data; although field AGBD estimates are commonly assumed as accurate ground-reference data,
they can be a source of error (Réjou-Méchain et al 2019). While effort was made to include a representative
range of vegetation types in the data selection, the AGBD data used in this study was not the result of a
designed or stratified sampling campaign, and as such certain vegetation types were less represented (TERN
2021). The uncertainty of the AGBDmodelling presented here could be improved by the inclusion of a larger
training dataset through additional field AGBD plots, particularly in regions which exhibit high spatial
heterogeneity in the vegetation structure, such as the Warren region. The AGBD estimation would also
benefit from more recent field biomass estimates. While the temporal lapse was accounted for in the
estimation of pixel-level error propagation, and fire area mapping, any remote sensing AGBD model
validation process benefits from field data that is coincident spatially and temporally (Réjou-Méchain et al
2019).

Exploration of deep learning methods such as convolutional neural networks are emergent in AGBD
estimation literature (Lang et al 2022, 2023) and present an alternative method which may help reduce the
estimation bias observed with RF models. The GEDI instrument aboard the ISS begun data collection again
in 2024 after a brief period of hibernation in 2023. A longer time series of GEDI data would support
quantification of AGBD changes over timescales useful for applications such as measuring forest
regeneration over five or ten years. While the inconsistent orbital tracking of the ISS and subsequent
variations in coverage of GEDI between time periods presents some challenges, further research, over
different spatial and time scales in regions with known disturbance histories would help to better quantify
the significance of this effect on inter-temporal biomass estimations.

6. Conclusion

This is the first known attempt using this specific combination of GEDI, multispectral and SAR sensors, and
modelling approaches to estimate AGBD at a regional scale for Western Australia. The accuracy of this
method was higher or similar to previous spaceborne sensors such as ICESat, and regional airborne LiDAR
methods, indicating that this is an exciting opportunity to undertake accurate, low cost, broadscale AGBD
and carbon stock mapping. Although uncertainties remain, there is promising capability for this method to
guide future biodiversity and climate mitigation policy through assessing fuel load dynamics and predicting
wildfire occurence, validating baseline carbon estimates, and improving understanding of key ecosystem
functioning attributes such as habitat structure and heterogeneity.
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