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1 1. Introduction

2 Accurate prediction of crop yield and actual crop evapotranspiration (ETa) is essential for 

3 managing water resources and optimizing crop production in agriculturally dominated regions. 

4 These predictions are crucial for supporting decision-making and developing effective 

5 management strategies aimed at mitigating the impacts of natural disasters and climate change. 

6 Agricultural system models simulate the biophysical processes of crops under various climate 

7 conditions and management practices (Motha, 2011), and they help ensure sustainable crop 

8 production and enhance resilience against environmental challenges when they provide 

9 accurate and reliable predictions (Kim et al., 2021; Deb et al., 2022; Ishaque et al., 2023). Over 

10 the years, numerous crop models, ranging from simple to complex, have been developed to 

11 simulate these processes for different crops under various soil, weather, and management 

12 conditions (Kimball et al., 2023). However, the accuracy of these models in predicting crop 

13 yield and ETa remains uncertain due to potential issues with model structure, parameters, and 

14 input and calibration data (Bassu et al., 2014; Fang et al., 2019). For example, Bassu et al. 

15 (2014) study revealed that simulated maize yield varied from 10-12.5 Mg/ha, 8.5-12 Mg/ha, 

16 6-8 Mg/ha, and 4.5-6 Mg/ha in Lusignan (France), Ames (USA), Rio Verde (Brazil), and 

17 Morogoro (Tanzania), respectively, based on 17 calibrated maize models. Similar variability 

18 in simulated maize yield and daily and seasonal ETa simulations were noted by Kimball et al. 

19 (2019) where 29 maize crop models were used. Therefore, it is challenging to determine in 

20 advance which model is most suitable for simulating crop yield and ETa across diverse climatic 

21 conditions (Martre et al., 2015; Kothari et al., 2022; Kimbal et al., 2023). 

22 Studies on crop modeling have shown that using a combination of multiple crop models is more 

23 reliable and efficient than individual models (Bassu et al., 2014; Kothari et al., 2022; Kimbal 

24 et al., 2023). Multiple crop model ensembles help reduce errors by achieving an optimal 

25 balance between bias and variance. In these crop modeling studies, the estimated mean and 

26 median values are common ensemble predictors that equally weigh all models, demonstrating 

27 better simulation accuracy than single crop models. While weighted ensemble predictors have 

28 been suggested (Wallach et al., 2016), research is limited on the use of weighted MAAs in crop 

29 modeling. A few studies used Bayesian model averaging (BMA) (Neuman, 2003) in ensemble 

30 yield simulations and found better results than using the mean and median (Huang et al., 2017; 

31 Gao et al., 2021). Numerous other weighted MAAs, such as inverse rank, multiple linear 

32 regression (Kumar et al., 2015), machine learning algorithms (Zaherpour et al., 2019), and 
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33 Information Criterion Averaging (Akaike, 1974; Schwarz, 1978), are also discussed in the 

34 literature and used in hydrological and groundwater modeling studies. 

35 Several hydrological and groundwater modeling studies have been performed to find the best 

36 MAAs for forecasting streamflow and groundwater levels (e.g., Ajami et al., 2006; Arsenault 

37 et al., 2015; Kumar et al., 2015; Jafarzadeh et al., 2021; Wan et al., 2021). Arsenault et al. 

38 (2015) compared nine MAAs using 12 hydrographs (4 models × 3 metrics) across 429 

39 catchments and found that the MLR B method outperformed others, with no catchment 

40 requiring more than seven ensemble members to obtain better stream flow simulation. 

41 Similarly, Kumar et al. (2015) evaluated ten different MAAs methods using eight hydrological 

42 models to determine the best method for discharge estimation in the Mahanadi River basin in 

43 India and concluded that MLR C was the most suitable MAAs method, with five model 

44 ensembles providing the best discharge simulations for the study area. We hypothesize that 

45 those MAAs can also improve the simulation accuracy of the crop yield and ETa by an 

46 ensemble of agricultural systems models. However, to our knowledge, these MAAs have not 

47 yet been applied in crop modeling studies to compute ensemble yield and daily ETa estimates 

48 from simulations.

49 Crop yield and ETa simulation accuracy can be increased by calibrating crop model parameters 

50 using various observed data sources. These include field experimental data, such as initial water 

51 content, phenological events, soil water content, leaf area index (LAI), daily ETa, biomass, and 

52 yield. However, these measured data sets are often not available at all sites, and the limited 

53 availability of measured data can remarkably impact the predictive capabilities of individual 

54 crop models in predicting crop yields and ETa. In past maize modeling studies, the mean or 

55 median of yield and daily ETa simulations were satisfactory under blind (uncalibrated) and 

56 calibrated applications; however, the best MAAs approach to improving simulations is still 

57 needed. The present study evaluates the performance of seven MAAs and identifies the best 

58 MAA approach to estimate maize yield and daily ETa for blind and calibrated model 

59 applications across several locations in the USA and Canada. The study utilized two simulation 

60 data sets: Group A) five maize models were used in this study to simulate maize yield and daily 

61 ETa compared to measured data from nine US and Canadian sites, and Group B) the simulation 

62 results from previous AgMIP study (Kimball et al., 2023) for 41 maize models used to simulate 

63 maize yield and daily ETa at Mead, Nebraska and Bushland, Texas were evaluated. AgMIP 

64 (Agricultural Model Intercomparison and Improvement Project) is a global initiative focused on 
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65 improving agricultural system models to better assess the impacts of climate change, economic shifts, 

66 and social factors on agriculture (https://agmip.org/agmipcharter2/ ). By uniting scientists and 

67 comparing multiple models against real-world data, AgMIP enhances the accuracy of predictions for 

68 key crops such as maize, wheat, and rice, helping to inform strategies for food security and agricultural 

69 resilience.

70

71

72 2. Materials and Methods

73 2.1 Description of field experiment sites and experiment data  

74 Nine maize (Zea mays L.) field experiment sites (Group A) were selected for analysis: Ames 

75 (Iowa, USA), Gilmore (Iowa, USA), Greeley (Colorado, USA), Ithaca (Nebraska, USA), 

76 Glenlea (Manitoba, Canada), Harrow (Ontario, Canada), Ottawa (Ontario, Canada), Sainte-

77 Anne-de-Bellevue (Quebec, Canada), and Saint Emmanuel (Quebec, Canada) (Table 1 and Fig. 

78 1). In addition, two maize field sites (Group B) previously used for AgMIP maize project ETa 

79 and yield simulations studies (Mead and Bushland) were selected, focusing on four treatments 

80 (i.e., Mead rainfed, Mead irrigated, Bushland 75% Mid Elevation Sprinkler Application 

81 (MESA) irrigation, Bushland 100% MESA irrigation). The Bushland, Mead, Ithaca, and 

82 Greeley sites were irrigated while the remaining sites were rainfed. The average growing 

83 season air temperature, rainfall, and soil types of each site are given in Table 1. The average 

84 growing season temperature varied between 10.40°C in Ithaca, USA, and 22.80°C in Bushland, 

85 USA, while seasonal precipitation ranged from 191 mm in Greeley, USA, to 592.36 mm in 

86 Ithaca, USA across the maize experiment sites. 

87 A detailed description of available measurements of each site is given in Supplementary 

88 Information Table 1. In-situ measured daily weather data, including maximum and minimum 

89 air temperature, rainfall, wind speed, relative humidity, and solar radiation, were utilized for 

90 all sites except Sainte-Anne-de-Bellevue, where specific site weather data were not measured. 

91 Weather data for Sainte-Anne-de-Bellevue was obtained from the nearest weather station of 

92 Environment Canada. For soil-related information, measured soil profile data were used across 

93 all sites. Comprehensive crop management details, including tillage practices, cultivar details, 

94 seeding rate, seeding date, plant density, fertilizer application rate, harvesting date, biomass, 

95 and grain yield were obtained for all sites. The quantity and timing of irrigation was obtained 

96 for the irrigated sites. Phenological dates, detailing the various stages of plant development, 
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97 were meticulously recorded for Ames, Bushland, Greeley, Mead, Ottawa, and Saint Emanuel. 

98 Additionally, time-series measurements of Leaf Area Index (LAI) and actual crop 

99 evapotranspiration (ETa) were obtained for Ames, Bushland, Greeley, Mead, and Ottawa. 

100 Measured layer-wise soil water content data were available for all sites except Harrow and 

101 Sainte-Anne-De-Bellevue. 

102 2.2 Crop model setup and calibration

103 As mentioned in section 2.1, we utilized two types of crop yield and ETa data sets. The first 

104 set named “Group A” was comprised of simulated crop yield and ETa data from the 

105 uncalibrated (Blind Phase) and fully calibrated phases of the five maize models in this study 

106 (Table 1). The second set (Group B) included simulated daily ETa and yield data from 

107 uncalibrated and fully calibrated phases of 41 maize models for the Bushland and Mead sites. 

108 This data was sourced from the Agricultural Model Inter-comparison and Improvement Project 

109 (AgMIP; https://agmip.org/). The description of 41 Maize Models is given in Supplementary 

110 Information Table 2. A detailed explanation of the model set-up and calibration process is 

111 presented in Kimball et al. (2023). 

112 The five best Maize crop models, as selected from the AgMIP studies were used to simulate 

113 crop yield and ETa for Group A’s sites. (Supplementary Information Table 3). These include 

114 DSSAT-CERES maize with Priestly-Taylor Ritchie ET equation (DCPR), DSSAT-CERES 

115 maize with FAO56 Ritchie ET equation (DCFR), APSIM-maize with SOILWAT Archontoulis 

116 subroutine (AMW), APSIM-maize with SWIM Archontoulis subroutine (AMSA), and 

117 RZWQM2. The selection of a combination of crop models was based on an AgMIP project in 

118 which 29 maize crop models were compared (Kimball et al., 2019). Maize yield predictions 

119 were calibrated and validated using measured field data (Kimball et al.,2019). The RZWQM2 

120 model which uses the Shuttleworth-Wallace approach to estimate potential transpiration (PT) 

121 and potential evaporation (PE) (Shuttleworth and Wallace, 1985) did not perform well in 

122 simulating ETa among the five crop models, however, it was in the top five in simulating crop 

123 yield and therefore included in this study. Models were set up utilizing site-specific measured 

124 data, encompassing layered soil texture along with corresponding physical and hydraulic 

125 properties, tillage dates, cultivar details, seeding dates, plant density, irrigation amounts, and 

126 fertilizer rates. 

127 In the blind phase, for Group A sites, all five maize models were set up using site-specific 

128 measured input data, including soil, weather, and crop management details (such as seeding 
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129 date, plant density, and fertilizer rate). The models’ phenology parameters were then adjusted 

130 to align with the crop maturity dates across all sites. Subsequently, the models were run to 

131 simulate ETa and yield. During this phase, models were not calibrated with available soil 

132 moisture, ETa, and yield data. In the calibrated phase, however, all maize models were fine-

133 tuned against the measured data to improve their ETa and crop yield simulation accuracy. 

134 Cultivar parameters in each model were initially adjusted to align anthesis, silking, and 

135 maturity dates with observed ones depending on sites and available phenological measurement 

136 dates. Subsequently, the models underwent calibration against soil water content data by 

137 adjusting saturated and lateral hydraulic conductivity for all sites except Harrow and Sainte-

138 Anne-de-Bellevue. Following this, the models were fine-tuned for ETa by adjusting parameters 

139 related to albedo, soil resistance, and leaf stomatal resistance at sites with ETa measurements. 

140 Lastly, the models were calibrated for leaf area index (LAI) for those sites (Ames, Bushland, 

141 Mead, Ottawa, and Sainte-Anne de Bellevue) that had LAI observations and crop yield by 

142 adjusting cultivar parameters influential on crop yield. Among the field experiment sites, ETa 

143 was simulated for Greeley, Ames, and Ottawa as observed maize ETa data was available only 

144 for these sites. Crop yield was simulated for all sites.

145 2.3 Model Averaging Approaches (MAA)

146 The simulated yield and daily ETa data from all sites were ensembled using seven MAAs: 

147 Simple Model Averaging (SMA), Median, Inverse Rank (IR), Bates and Granger Averaging 

148 (BGA), and three variants of Granger Ramanathan (MLR A, MLR B and MLR C), 

149 (Supplementary Information Table 4). First, the simulated yield and daily ETa from all maize 

150 models were combined using all seven model averaging methods. We referred to it as “all 

151 maize models”.   Then, the simulated yield and daily ETa of one flavor model from each model 

152 family were selected and ensembled. It was named “group maize models”.  The simulated yield 

153 was averaged across all sites, while the simulated ETa values were averaged for three sites of 

154 Group A (Ames, Greeley, and Ottawa) and all sites of Group B. SMA, Median, IR, BGA, MLR 

155 A, MLR B, and MLR C were applied to all sites to estimate the weight of each maize model. 

156 The average yield and ETa were then determined by multiplying the weight of each maize 

157 model with its corresponding simulated yield and daily ETa for each site. The resulting yields 

158 and daily ETa obtained through multimodel average methods were subsequently compared 

159 with observed yield and daily ETa sets. Details of the multiple MAAs are given below: 
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160 a.  Simple Model Averaging (SMA): In this approach, the weight of each model is 

161 assigned equally. Mathematically, it can be estimated as:

162                  𝑊 = 1
𝑛                                                                                                                 (1)            

163 Where n is the number of ensemble models, and W is the estimated weight of each model.

164

165 b. Median: The median of simulated values of all ensemble models is taken to combine 

166 the forecast.

167

168 c. Inverse Rank: The inverse rank approach, rank the model simulation based on their 

169 performance. The first rank is assigned to model with lowest mean squared error, the 

170 model with the second lowest mean squared error is assigned the rank 2. Then 

171 weightage of each model is calculated as follows:

172        𝑊 =
𝑅𝑎𝑛𝑘𝑖

―1

∑𝑁
𝑖=1 𝑅𝑎𝑛𝑘𝑖

―1                                                                                                  (2)

173

174 d. Bates and Granger Averaging (BGA): The BGA method combined the forecast of 

175 ensemble models by minimizing the mean square error between simulated and observed 

176 values. It can be estimated as:

177 𝑊 =
1

𝑅𝑀𝑆𝐸2

∑𝑁
𝑖=1

1

𝑅𝑀𝑆𝐸2
                                                                                                             (3)

178 Where RMSE is the root mean square error of the ith ensemble model.

179  

180 e. Granger Ramanathan (MLR A, MLR B, and MLR C): The MLR A approach, 

181 developed by Granger and Ramanathan in 1984, employs the ordinary least squares 

182 (OLS) method to assign weights, effectively lowering the root mean square error 

183 (RMSE) but lacking bias correction. MLR B is similar to MLR A but includes a bias 

184 correction mechanism. Conversely, MLR C uses constrained least squares, ensuring 

185 that the weights of all models sum to one. In MLR C, weights are estimated by:

186 𝑊 = (𝑄𝑇
𝑠𝑖𝑚𝑄𝑠𝑖𝑚)―1𝑄𝑇

𝑠𝑖𝑚𝑄𝑜𝑏𝑠                                                                                 (4)

187 Where Qobs is the matrix of the observed values, Qsim   is the matrix of simulated values, and 

188 𝑄𝑇
𝑠𝑖𝑚 is the transpose matrix of simulated values.
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189

190 2.4 Performance Evaluation of the Models 

191 The evaluation of the crop models and model averaging methods performance was assessed by 

192 statistical indicators such as relative root mean square error (RRMSE). Jamieson et al. (1991) 

193 concluded that RRMSE values below 10% are “excellent”, values from 10-20% are “good”, 

194 values from 20-30% are “satisfactory”, and values exceeding 30% are “poor”. 

195                            𝑅𝑅𝑀𝑆𝐸 =
100

𝑜
1
𝑛

∑𝑛
𝑖=1(𝑜𝑖 ― 𝑠𝑖)2                                                                 (5)

196 Where n is the number of observed and simulated data points, 𝑜𝑖 is the observed value, 𝑠𝑖 is 

197 the model simulated value, 𝑜 is the mean of observed values.

198 3. Results 

199 3.1 Group A Sites Simulations

200 In this section, the simulated daily ETa and seasonal yield were examined using five maize 

201 crop models (DSPR, DSFR, AMW, AMSA, and RZWQM2) across nine sites in the USA and 

202 Canada, under both the blind and calibrated phases. Additionally, the MAAs' estimated daily 

203 ETa and seasonal yield results were assessed. The analysis focused on daily ETa simulations 

204 at Ames, Greeley, and Ottawa, where daily ETa measurements were available. Seasonal yield 

205 was analysed at all nine sites. For Ames, Greeley, and Ottawa, the analysis focused on the 

206 growing seasons of 2006, 2010, and 2006 for daily ETa simulations, respectively.

207 3.1.1 Blind phase

208 Crop Evapotranspiration

209 A wide range of daily ETa simulations was observed in the five maize models at all sites, 

210 especially in the mid and end-growth stages during the blind phase (Fig. 2). The RRMSE 

211 between measured and simulated daily ETa ranged from 47.5-63.6% at Ames, from 36.5-

212 104.2% at Greeley, and from 34.5-75.4% at Ottawa (Fig. 3a). In 2006 at Ames, the measured 

213 average daily ETa during the growing season was 2.5 mm, while the simulated average daily 

214 ETa ranged from 2.3-2.7 mm/day. Similarly, at Greeley in 2010, the measured average daily 

215 ETa was 4.4 mm, and simulated average daily ETa values ranged from 3.6-6.9 mm/day. In 

216 Ottawa in 2006, the measured average daily ETa was 2.3 mm, while simulated values varied 

217 between 2.2-3.3 mm/day. 
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218 However, ensembling the daily ETa simulations from all five maize models using seven model 

219 averaging methods improved the accuracy of daily ETa simulations based on the RRMSE (Fig. 

220 3a and Table 2). The performance of MLR C model averaging methods to combine daily ETa 

221 simulations was best at the Ames and Greely sites, whereas MLR A performed slightly better 

222 at the Ottawa site. Figure 2 indicates closer agreement between measured and MLR C 

223 ensembled daily ETa over the growing season at all sites. 

224 When daily ETa simulations of group maize models were ensembled, the performance of 

225 model averaging methods decreased compared to the ensembling of all maize models (Table 

226 4). Though MLR B and MLR C model averaging methods showed almost similar performance 

227 in combining daily ETa, MLR B ensemble daily was best at the Greeley and Ottawa sites, 

228 whereas MLR C performed best at the Ames site.

229 Crop Yield

230 Uncalibrated maize models showed unsatisfactory performance across all sites, as indicated by 

231 high RRMSE values (Fig. 4a). However, combining simulated yields from all maize models 

232 using model averaging methods remarkably improved yield simulation performance, achieving 

233 acceptable RRMSE criteria. Generally, the performance of MLR A and MLR B was similar 

234 across all sites, followed by MLR C, IR, BGA, SMA, and the Median (Fig. 4). Additionally, 

235 when yield simulations from group maize models were ensembled, no improvements were 

236 found as compared to an ensemble of all maize models (Table 3). There was a slight decrease 

237 in the performance of the model averaging method in the ensemble of group maize models.

238 3.1.2 Calibrated Phase 

239 Crop Evapotranspiration

240 Substantial variability in the daily simulated ETa persisted at each site, despite calibrating all 

241 crop models (Fig. 5). The RRMSE values ranged from 45.2-52.4% at Ames, 36.4-53.7% at 

242 Greeley, and 34.6-71.5% at Ottawa (Fig. 3b), indicating that the RRMSE remained in the 

243 unacceptable range across all maize models and sites. At the Ames site, the average measured 

244 growing season daily ETa was 2.5 mm, while the average simulated daily ETa ranged from 

245 2.4-3.0 mm/day across all maize models. Similarly, in Greeley, the average growing season 

246 measured daily ETa was 4.4 mm, with simulated values between 3.7-4.5 mm/day. Similar 

247 results were observed at the Ottawa site. However, when an ensemble of all maize models was 

248 taken using model averaging methods, this variability was reduced across all sites as shown by 
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249 RRMSE values in Fig 3b. A slightly improvement in ensembled daily ETa simulations was 

250 noted across all model averaging methods compared to the blind phase (Table 2). The RRMSE 

251 for the ensemble varied from 37.1-49.9% at Ames, 26.4-33.4% at Greeley, and 29.7-38.3% at 

252 Ottawa across all MAAs. The MLR C ensemble of daily ETa showed closer agreement with 

253 the measured daily ETa than other MAAs at all sites. Furthermore, the accuracy of daily ETa 

254 improved when averaging group maize models compared to averaging all maize models (Table 

255 2). MLR C performed the best for combining daily ETa at Ames and Greeley, while MLR B 

256 was the best at the Ottawa site.

257 Crop Yield

258 When all maize models were fully calibrated, their performance improved across all sites. 

259 Comparing the simulated yields of individual maize models with the measured yields, the 

260 RRMSE was found to be less than 30% (Fig.4b), indicating that the performance of each crop 

261 model varied depending on the site, and no single model consistently outperformed others for 

262 simulating maize yield across all locations. The RRMSE between measured and simulated 

263 yield ranged from 0.44% to 28.90% across all maize models and sites. 

264 Yield simulations improved further when an ensemble of all maize models was taken using 

265 model averaging methods, as indicated by RRMSE values in Fig. 4b. The MLR A produced 

266 ensembled yield values were very close to the observed yields at all sites. The performance of 

267 MLR B was comparable to MLR A at most sites with slight variation. In the calibrated phase, 

268 the performance of model averaging methods was slightly better than in the blind phase. 

269 However, a minor decrease in the accuracy of yield simulations was noted when using an 

270 ensemble of group maize models with model averaging methods, indicating that the ensemble 

271 of simulated yield from group maize models did not improve the yield simulations (Table 3). 

272 Among the model averaging methods, the ensemble yields from MLR A and MLR B matched 

273 the measured yields at most sites. 

274 3.2 Group B Sites Simulations

275 3.2.1 Blind Phase

276 Crop Evapotranspiration

277 The 41 maize models from the AgMIP maize ET study simulated daily ETa were in a wide 

278 range at all sites (Kimball et al., 2023). The RRMSE between the daily simulated ETa and the 
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279 in-situ measured daily ETa ranged from 33% to 110% at Mead irrigated, 32% to 131% at Mead 

280 rainfed, 29% to 87% at Bushland 100% MESA, and 31.20% to 79% at Bushland 75% MESA 

281 sites across all maize models (Fig.6a). The previous analysis by Kimball et al. (2023) revealed 

282 that the median of all maize models closely matched the measured daily ETa throughout the 

283 growing season. In the present study, variability in daily ETa simulations decreased when the 

284 ensemble of all maize models was used. Even though roughly similar performance was noted 

285 for the MLR A, MLR B, and MLR C at all sites except Bushland 75% MESA, overall, MLR 

286 C-ensembled daily ETa performed better in matching the daily measured ETa over the growing 

287 season at most sites, followed by MLR A, MLR B, IR, BGA, SMA, and the Median (Table 4). 

288 The RRMSE between the ensembled daily ETa and the measured daily ETa ranged from 18.4% 

289 to 28% at Mead irrigated, 18.5% to 38.1% at Mead rainfed, 19% to 26.4% at Bushland 100% 

290 MESA, and 25.8% to 30% at Bushland 50% MESA sites in among MAAs (Table 4 and Fig.6a). 

291 The ensembled daily ETa was also compared using SMA and MLR C with the measured daily 

292 ETa during the 2003 growing season at Mead's irrigated and rainfed sites. Fig. 7 illustrates a 

293 close match between the measured daily ETa and the MLR C ensembled daily ETa, particularly 

294 towards the end of the growing season at the Mead Irrigated site. The MLR C ensembled daily 

295 ETa followed the pattern of the measured daily ETa more closely than the SMA ensembled 

296 daily ETa. However, none of the MAAs could reproduce the peak daily measured ETa. 

297 Similarly, at the Mead rainfed site, the MLR C ensembled daily ETa closely followed the daily 

298 measured ETa for the 2003 growing season (Fig.7), whereas the SMA ensembled daily ETa 

299 showed poor agreement with the measured daily ETa, especially during the mid-and late-

300 growing seasons. MLR C ensembled daily ETa also closely followed the pattern of daily 

301 measured ETa during the 2013 crop period at Bushland 100% MESA and 75% MESA sites. 

302 However, the MLR C and other MAAs underestimated ETa during the early and mid-crop 

303 periods. This discrepancy is attributed to the inadequacy of many crop models in accounting 

304 for varying wind speed and humidity. The models estimated ETa accurately during periods of 

305 lower ETa but considerably underestimated ETa during periods of higher ETa, characterized 

306 by high wind speeds and low relative humidity (Kimball et al., 2023). 

307 Additionally, the results of group maize models were analyzed, where one model from each 

308 crop model family was selected. This approach marginally improved the daily ETa simulations 

309 at all sites compared to considering an ensemble of all maize models (Table 4). For instance, 

310 the RRMSE between the daily measured ETa and the ensembled daily ETa of all maize models 

311 ranged from 18.4% to 28% across all models averaging methods at the Mead irrigated site. In 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4948334

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



11

312 contrast, the RRMSE between the daily measured ETa and the ensembled ETa of group maize 

313 models ranged from 18.6% to 24.4% across all model averaging methods. Similar findings 

314 were observed at the Mead rainfed, Bushland 100% MESA, and Bushland 75% MESA sites.

315 Crop Yield

316 Large variability in simulated maize yields was noted across 41 maize models during the blind 

317 phase (Fig. 8a). An ensemble of simulated yields of all maize models reduced the deviation 

318 between measured yield and simulated maize yield at all sites. Among the seven MAAs, MLR 

319 A performed the best followed by MLR B, MLR C, IR, BGA, SMA, and median at most sites. 

320 Moreover, the performance of group maize models was examined. Overall, this approach 

321 improved the yield simulations for a few cases (Table 4). The performance of all MAAs in 

322 combining the simulated yield of group maize models was roughly similar to ensembling the 

323 maize yield of all maize models.

324 3.2.2 Calibrated Phase

325 Crop Evapotranspiration

326 After fully calibrating all maize models, a slight improvement in daily ETa simulations was 

327 noted in all maize models. There was still wide variability in daily ETa simulations across the 

328 41 maize models. The RRMSE ranged from 28.5% to 75.0%, 30.3% to 90.0%, 30.0% to 68.5%, 

329 and 28.0% to 67.0% at Mead irrigated, Mead rainfed, Bushland 100% irrigation, and Bushland 

330 75% irrigation sites, respectively (Fig. 6b). Model averaging methods reduced the variability 

331 in daily ETa simulation by ensembling daily ETa simulations of all maize models. In the 

332 calibrated phase, improvement in ensembled daily ETa simulation across MAAs was slightly 

333 higher than in the blind phase at all sites (Table 4). Though MLR A, MLR B, and MLR C 

334 MAAs showed almost similar performance to ensemble daily ETa of all maize models, MLR 

335 A outperformed others at Mead rainfed and irrigated sites and MLR C outperformed others at 

336 Bushland 75 and 100% MESA sites. For instance, the RRMSE between the MLR A ensembled 

337 daily ETa and measured daily ETa was 19.0 and 19.4% at Mead irrigated and rainfed sites, 

338 respectively (Fig.6b). Similarly, RRMSE between the MLR C ensembled daily ETa and 

339 measured daily ETa was noted for 19.30% and 19.40% at Bushland 100% MESA and 75% 

340 MESA sites, respectively The model averaging methods ensembled daily ETa were also 

341 compared with measured daily ETa over the growing season at Mead and Bushland sites. Fig. 

342 9 shows a close match between in-situ measured daily ETa and MLR C ensembled daily ETa, 
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343 particularly during the 2003 growing season at Mead rainfed, where MLR C closely followed 

344 the measured pattern. 

345 Moreover, the ensemble of daily ETa of group maize models was compared using different 

346 model averaging methods. A slight improvement in ensembled daily ETa simulations was 

347 noted when considering group maize models (Table 4), however, the pattern of performance 

348 of MAAs to ensemble daily ETa simulations of group maize models was similar to all maize 

349 models. For example, MLR A model averaging method ensembled daily ETa was found best 

350 at Mead irrigated and rainfed sites, whereas MLR C ensembled daily ETa outperformed to 

351 others at Bushland 100 and 75% MESA sites in both cases (Table 4). 

352 Crop Yield

353 Simulated yield showed remarkable improvement in most maize models after full calibration 

354 compared to the blind phase (Fig 8b). The greatest improvement in yield simulations was 

355 observed at the Mead irrigated site; however, moderate variability in yield simulations was 

356 found across all maize models at the Mead rainfed, Bushland 100% MESA, and Bushland 75% 

357 MESA sites. This variability decreased substantially when simulated yields were averaged 

358 using model-averaging methods at all sites. The MLR A performed the best at all sites, 

359 followed by MLR B, MLR C, IR, BGA, SMA, and the median. The RRMSE between simulated 

360 and measured yields ranged from 0.03-4.0% at Mead irrigated, 5.6-12.8% at Mead rainfed, 4.2-

361 15% at Bushland 100% MESA, and 2.8-19% at Bushland 75% MESA sites across all model-

362 averaging methods (Table 4). Additionally, the ensembling of simulated yield from group 

363 maize models showed mixed results compared to combining simulated yields from all maize 

364 models across all model-averaging methods. There was a marginal improvement in yield 

365 simulation at Mead rainfed and Bushland 75% MESA sites compared to all maize models, 

366 while there was a slight decrease noted at Mead irrigated and Bushland 100% MESA sites 

367 (Table 4).

368 4. Discussion

369 Blind vs Calibrated

370 Combining simulations from multiple models through various model-averaging approaches 

371 often provides more accurate simulation performance (Sandor et al., 2023). In this study, as 

372 anticipated, MAAs performed slightly better during the calibrated phase than for the blind 

373 phase for combining ETa and yield simulations of all and group maize models (Table 5, 6). In 

374 crop modeling, calibrated is a crucial process aimed at estimating unknown parameters using 
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375 field observations, thereby reducing uncertainty in model simulations and making predictions 

376 more reliable (He et al., 2017). MAAs tend to perform better in the calibrated phase because 

377 the models are fine-tuned to specific datasets, which minimizes errors and variance, resulting 

378 in more accurate and stable predictions (Fletcher, 2018).

379

380 Interestingly, MAAs also performed well in the blind phase. The outcomes of the present study 

381 are comparable to those of Bassu et al. (2014) and Kimball et al. (2019), where the maize yield 

382 and ETa simulations from uncalibrated maize models in different climatic conditions sites were 

383 combined using the mean and median. However, in this study, an additional five MAAs were 

384 tested, which will be discussed in the next section. Similarly, Ajami et al. (2006) found that 

385 averaging streamflow simulations of uncalibrated multiple hydrological models using four 

386 model combination methods performed better than a calibrated single hydrological model. 

387 These studies found that multi-model combinations could enhance prediction accuracy by 

388 compensating for individual model errors to reduce variance (Bassu et al., 2014; Kimball et al., 

389 2019; Kimball et al., 2023; Sandor et al., 2023; Couëdel et al., 2024). The multi-model 

390 combination improves the simulation accuracy by reducing the variance associated with the 

391 predictions (Bassu et al., 2014; Fletcher, 2018). The individual model might exhibit high 

392 variance due to their sensitivity to model structures and parameters. By averaging the outputs 

393 of multiple models, these variances are reduced, leading to more stable and reliable predictions. 

394 In addition, different models may make different errors when predicting. When these models 

395 are averaged, the errors can cancel each other out to some extent, resulting in a more accurate 

396 overall prediction. Nonetheless, while multi-model ensembles offer a way to learn from the 

397 errors across various studies and improve the models, some individual models might still 

398 outperform the mean and median (Kothari et al., 2022). 
399

400 Best Model Averaging Method for ETa and Yield

401 The study assesses how well different MAAs can reduce variability and improve the accuracy 

402 of daily ETa and yield simulations at various Group A and Group B sites. Remarkably, SMA 

403 and the median approach performed better than individual calibrated maize models in 98% of 

404 the cases during the blind phase at Group A sites, with SMA usually outperforming the median. 

405 Similar results were observed in Group B sites for ETa and yield. This could be due to a trade-

406 off in prediction errors among different models, leading to more accurate overall predictions. 

407 These findings are comparable to that of Ajami et al. (2006), Bassu et al. (2014), Arsenault et 
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408 al. (2015), Sandor et al. (2023), and Couëdel et al. (2024) which showed that the mean of 

409 simulated streamflow and yield from hydrological and crop models, respectively, was better 

410 than individual calibrated models. 

411 Further enhancement in daily ETa and maize yield simulations was noted when other model 

412 averaging methods, such as IR, BGA, MLR A, MLR B, and MLR C, were used. Overall, the 

413 improvements ranged between 3.5-6.5% for daily ETa and 3.3-9.7% in terms of RRMSE for 

414 yield simulations at Group A sites across the five MAAs compared to the median (Table 5). 

415 Similarly, improvements in daily ETa and yield simulations ranged between 3.2% and 8.7%, 

416 and 7.3% and 9.5%, respectively, at Group B sites (Table 6).). The improvement in daily ETa 

417 and yield estimations by the additional five MAAs over the median was slightly greater for 

418 daily ETa and moderately greater for yield in the blind phase compared to the calibrated phase 

419 (Table 5 and Table 6). BGA often performed better in combining daily ETa simulations than 

420 SMA and the median, though it was usually outperformed by its variant IR (Table 5, 6). This 

421 can be explained by the IR method’s disregard for outliers (Aiolfi and Timmermann, 2006). 

422 For yield simulations, BGA and IR showed almost similar performance. According to Diks and 

423 Vrugt (2010), BGA did not outperform other methods (AICA, BICA, BMA, and MLR A) 

424 except SMA.

425 When comparing the performance of MLR A, MLR B, and MLR C, there were only marginal 

426 differences in their ability to combine daily ETa and yield simulations in 75% of cases, aligning 

427 with the study by Arsenault et al. (2015) (Table 2, 4). MLR A, MLR B, and MLR C performed 

428 considerably better than SMA and the median and slightly to moderately better than IR and 

429 BGA, depending on the site. Overall, averaging the RRMSE of all sites for all maize models 

430 and group maize models for blind and calibrated phases revealed that MLR C was best for daily 

431 ETa simulations, while MLR A was best for yield simulations (Table 5, 6). MLR C improved 

432 daily ETa estimation by an average of 6.5% and 8.7% in terms of RRMSE than the median, 

433 while MLR A enhanced maize yield estimation by 9.8% and 9.2% for Group A and Group B 

434 sites, respectively.

435 This is likely because of higher bias in daily ETa simulations across maize models compared 

436 to yield simulations. MLR A was better at reducing variance in yield simulations due to 

437 incorporating variance reduction. In contrast, MLR C reduces variance by giving positive 

438 higher weights to well-performing models while minimum weight to the worst-performing 

439 models even in some cases zero. Therefore, it combined the daily ETa simulations slightly 
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440 better than other MAAs. For ETa, the results were contradicted by Ajami et al. (2006), 

441 Arsenault et al. (2015), and Wan et al. (2021) and comparable to Kumar et al. (2015). 

442 Kumar et al. (2015) found that MLR C was the best method for combining simulated river 

443 discharge from eight hydrological models. For crop yield, findings were in line with (Diks and 

444 Vrugt, 2010), who reported that MLR A’s results were similar to advanced MAAs such as 

445 Bayesian Model Averaging (BMA) and Mallows Model Averaging (MAAS). The advantage 

446 of using MLR A over BMA or MAAS can be notable since MLR A has straightforward 

447 solutions for determining weights. In contrast, finding the best weights for BMA and MAAS 

448 requires more complex and time-consuming methods, such as the Differential Evolution 

449 Adaptive Metropolis (DREAM) adaptive Markov chain Monte Carlo (MCMC) algorithm.

450 Overall, the MLR A and MLR C methods were found to outperform others for ensemble yield 

451 and ETa simulations of maize models, respectively, in both data sets. This emphasizes the 

452 importance of selecting appropriate averaging techniques. The success of these methods can 

453 be attributed to their ability to integrate multiple model outputs, leveraging the strengths and 

454 compensating for the weaknesses of individual models.

455 Moreover, ensemble group maize models improved the simulation accuracy of crop yield and 

456 ETa in a few cases compared to ensemble all maize models. However, the accuracy of the 

457 ensembled ETa and yield simulation of group maize models was similar to that of the 

458 ensembled ETa and yield simulation of all maize models. This finding suggests that the 

459 diversity of models in the ensemble plays a crucial role in enhancing prediction accuracy. 

460 Therefore, it is advisable to select ensemble members from different crop family models to 

461 achieve the best results, although its also true that the quality of modelers regarding the 

462 assumptions they make in parameterizing models is also of importance (Albanito et al., 2022).

463

464 Model Averaging Methods when “No Observations Data” is available

465 Most MAAs, such as IR, BGA, MLR A, MLR B, and MLR C, typically rely on ground 

466 measurement data to determine the weights for each model in the ensemble. This data is crucial 

467 for selecting the best models and assigning appropriate weights. However, in real-world 

468 scenarios, experimental data not be available, posing substantial challenges for model selection 

469 and weighting.
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470 In such situations, SMA and the median method have shown promising results. SMA and the 

471 median method are straightforward approaches that average predictions from multiple models 

472 by assigning equal weights to each. This simplicity is particularly advantageous when there is 

473 no prior information about the performance of the individual models. By averaging the outputs, 

474 SMA reduces the impact of biases or errors from any single model, leading to more robust 

475 overall predictions. Both methods were effective in the current study, where they combined 

476 multiple crop model outputs to improve predictions of daily ETa and yield, even in the blind 

477 phase. This finding is consistent with previous crop modeling studies by Bassu et al. (2014), 

478 Martre et al. (2015), Kothari et al. (2022), Kimball et al. (2019, 2023), who reported that the 

479 mean and median of ETa and yield simulations from multiple crop models often outperform 

480 individual crop models.

481 However, the main drawback of SMA and the median method is that they do not fully leverage 

482 the strengths of the better-performing models. Because all models are weighted equally, these 

483 methods may underutilize the models that have superior predictive capabilities. Despite this 

484 limitation, SMA and the median method remain valuable tools in scenarios where observational 

485 data are lacking, providing a practical means of improving predictive accuracy by mitigating 

486 individual model weaknesses.

487 5. Conclusions

488 Averaging the results from multiple agricultural systems models has shown high accuracy in 

489 predicting crop yield and ETa. However, among those available Model Averaging Approaches 

490 (MAAs), it is not known which one performed the best. Therefore, this study aimed to evaluate 

491 the performance of seven MAAs (SMA, Median, IR, BGA, MLR A, MLR B, and MRL C) 

492 across eleven sites in North America to predict maize yield and daily ETa using two ensemble-

493 size maize crop models (all maize models and group maize models) and two calibration 

494 approaches (Blind and Calibrated phases). The data come from two sources: simulations for 

495 Group A sites were done in this study, while simulations for Group B sites were carried out by 

496 the Maize AgMIP project team.

497 The following conclusions were drawn from the study:

498  Model Averaging Approaches: All MAAs (Model Averaging Approaches) generally 

499 performed well, often surpassing individual crop models during both the blind and 

500 calibration phases. Among the MAAs, the MLR C method typically provided the closest 
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501 match to measured daily ETa values, while the MLR A method was most accurate for 

502 maize yield across all sites and phases. The simple mean consistently outperformed the 

503 median at all sites. Therefore, MLR A and MLR C are recommended for averaging 

504 simulations of yield and ETa, respectively, when measured data is available. However, in 

505 the absence of observed ETa and yield data, the SMA method can be used to ensemble the 

506 yield and ETa simulations.

507  Individual Maize Model Performance: No single maize model consistently performed 

508 best at all sites for simulating yield and daily ETa. Results indicate that fully calibrating 

509 the crop model, slightly improved the daily ETa simulation and moderately improved the 

510 yield estimates compared to the blind phase.

511  Phase Comparison for modeling averaging: The performance of all MAAs improved 

512 slightly to moderately for daily ETa and yield from the blind phase to the calibrated phase 

513 across all sites.

514  Ensemble Member Models: Using an ensemble of group maize models with different 

515 model structures slightly enhanced the accuracy of daily ETa and yield simulations at 

516 Group B in comparison to using an ensemble of all maize models.

517 These findings highlight the potential of MAAs to improve the precision of maize yield and 

518 daily ETa estimates, emphasizing the importance of using diverse model ensembles to achieve 

519 accurate agricultural predictions.
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Fig.1 Locations of crop field sites in the USA and Canada (own collection sites referred to as Group 
A sites, and AgMIP sites marked as Group B sites).
(Source: http://drought.memphis.edu/naspa/CompReconRange.aspx )

Fig.2. Box plots of daily simulated evapotranspiration (ETa) of the corn season 2006, 2010, and 
2006 at Group A sites (Ames, Greeley, and Ottawa) respectively. Observed daily ETa values and 
the MLR C model averaging method derived daily ETa values from the 5 maize models are also 
presented. The simulated outputs of the blind phase where the model was set up using in-situ 
measured data and no calibration was done. 

Fig. 3. RRMSE between the measured and simulated daily ETa across crop models and model 
averaging methods under blind (a) and calibration (b) phases at Group A sites.

Fig. 4. RRMSE between the measured and simulated maize yield across maize models and 
model averaging methods under blind (a) and calibration (b) phases Group A sites.  

Fig.5. Box plots of daily simulated evapotranspiration (ETa) of the corn season 2006, 2010, and 
2006 at Group A sites (Ames, Greeley, and Ottawa) respectively. Observed daily ETa values and 
the MLR C model averaging method derived daily ETa values from the 5 maize models are also 
presented. The simulated outputs of the calibrated phase where fully calibrated using crop 
phenology dates, LAI, soil moisture, ETa and yield data. 

Fig.6. RRMSE between the measured and simulated daily crop evapotranspiration (ETa) across 
maize models and model averaging methods at Group B sites under blind (a) and calibration 
phase (b). 

Fig.7. A comparison of measured daily ETa simulations and an ensemble of daily ETa simulations 
of all maize models using SMA and MLR C averaging methods at Group B sites under blind phase.

Fig.8. RRMSE between the measured and simulated maize yield across maize models and model 
averaging methods at Group B sites under blind (a) and calibration phase (b). 

Fig.9. A comparison of measured daily ETa simulations and an ensemble of daily ETa simulations 
of all maize models using SMA and MLR C model averaging methods at Group B sites under the 
calibration phase.
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Table 1. Details of selected crop field sites and corresponding soil type, average rainfall, and average
 temperature during the growing season (April-October). 

Growing season 
climatic parameters

Name Count
r y

Provinc
e State

Lat Long

Soil 
Type

Rainfa ll
(mm)

Mean 
Temp
(°C)

Modeled 
Component

Sources

Group A sites
Ames USA Iowa 42.02 -93.75 Loam 536.37 18.62 Yield 

and 
AET

Kimbal et al., 
2019

Gilmore USA Iowa 42.73 -94.45 Clay 
Loam

559.35 17.47 Yield Qi et al.,2011

Glenlea Canada Manitoba 49.64 -97.16 Clay 399.00 14.10 Yield Uzoma et. 
al.,2015

Greeley USA Colorado 40.44 -104.00 Loamy 
Sand

191.00 16.50 Yield 
and 
AET

Qi et al.,2016

Harrow Canada Ontario 42.22 -82.73 Clay 
Loam

505.93 18.21 Yield Jiang et al.,2020

Ithaca USA Nebraska 41.16 -96.41 Silty 
Loam

592.36 10.40 Yield Cheng et al., 2021

Ottawa Canada Ontario 45.38 -75.72 Loam 530.80 16.19 Yield and 
AET

Crépeau et al.,2021

St. Emmanuel Canada Québec 45.32 -74.17 Clay 
Loam

578.87 16.35 Yield Singh, 2013

Ste.-Anne-de- 
Bellevue

Canada Québec 45.43 -73.93 Loamy 
Sand

580.52 16.27 Yield Jiang et al.,2022

Group B Sites
Bushland USA Texas

35.18 -102.09

Silty Clay 350 22.80 Yield 
and 
AET

Kimbal et al., 
2023

Mead Rainfed USA Nebraska 41.17 -96.43 Silty 
Loam

592

19.90

Yield 
and 
AET

Kimbal et al., 
2023

Mead Irrigated USA Nebraska

41.16 -96.47

Silty 
Loam

592

19.90

Yield 
and 
AET 

Kimbal et al., 
2023
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Table 2.  A comparison of RRMSE between the measured daily ETa and ensembled daily ETa of all maize models and group maize models using 
seven model averaging methods at Group A sites under the Blind and Calibrated Phase.

Blind Calibrated

All Models Group Models All Models Group Models

Averaging 
Approaches

Ames Greeley Ottawa Ames Greeley Ottawa Ames Greeley Ottawa Ames Greeley Ottawa

SMA 42.8 36.2 44.9 45.9 45.8 37 38.4 27.8 38.3 39.4 29.2 35.7

Median 47.0 32.8 49.7 45.9 45.8 39.3 40.5 27.4 38.1 46.2 29.9 35.7

IR 41.6 32.6 37.9 44.0 37.2 33 37.5 27.2 35.2 38.8 27.4 30.4

BGA 42.0 30.4 37.7 44.6 35.5 33.4 39.8 27.5 34.6 38.7 27.6 30.9

MLR A 51.2 49.5 34.7 47.7 39.2 29.1 44.9 33.4 29.8 47.4 33.8 28.7

MLR B 60.1 34.8 35.5 49.2 34.9 29.4 49.9 30.2 29.7 48.8 36.0 28.4

MLR C 40.0 29.8 32.4 43.9 35.0 29.2 37.1 26.4 32.3 38.0 27.3 29.2

Table 3.  A comparison of RRMSE between the measured maize yield and ensembled maize yield of all maize models and group maize models 
using seven model averaging methods at Group A sites under the Blind and Calibrated Phase.

Blind

All Models Group Models

Averaging
Approaches

Ames Gilmore Glenlea Greeley Harrow Ithaca Ottawa St 
Emmanuel

Ste Anne 
De 
Bellevue

Ames Gilmore Glenlea Greeley Harrow Ithaca Ottawa St 
Emmanuel

Ste Anne 
De 
Bellevue

SMA 29.9 16.2 10.8 2.6 20.9 29.6 14.0 21.1 10.1 29.8 16.2 10.1 6.8 28.0 28.5 16.2 17.1 12.2

Median 29.2 15.8 11.1 14.4 20.8 24.5 14.4 17.4 12.9 31.2 13.3 9.5 15.5 37.2 24.5 16.4 15.7 13.1

IR 24.0 8.7 1.7 15.7 7.7 24.9 11.3 13.3 10.2 25.3 10.8 1.9 7.6 17.8 25.2 15.1 13.3 10.2

BGA 25.7 2.8 3.3 15.8 3.9 24.0 11.1 13.3 10.7 25.1 2.7 2.6 3.0 17.0 24.2 15.0 13.3 10.9

MLR A 2.9 1.2 1.6 1.0 2.2 7.7 5.7 1.7 6.6 3.4 1.2 1.8 7.8 1.2 8.1 11.8 1.6 7.4

MLR B 3.1 1.6 1.5 1.0 3.0 8.6 6.8 1.7 8.4 3.6 2.4 1.8 7.8 1.9 9.3 13.5 1.6 8.2

MLR C 21.3 2.5 1.9 15.5 3.9 20.2 9.9 11.8 9.9 23.4 2.5 1.8 6.7 17.0 21.0 14.0 11.8 10.0

Calibrated

All Models Group Models

SMA 15.8 12.5 1.7 1.4 10.6 9.4 13.2 3.7 9.1 15.0 10.0 3.5 1.3 15.28 9.54 12.2 2.60 10.6

Median 14.4 10.9 2.0 1.6 5.0 9.4 14.3 1.5 9.3 13.9 8.7 4.0 3.2 20.86 9.28 14.6 0.72 12.2

IR 11.5 8.2 0.5 1.1 6.1 9.0 11.7 1.1 10.5 11.8 7.2 1.7 4.0 11.76 9.21 11.4 3.20 10.8

BGA 11.4 6.3 0.4 0.5 5.7 9.2 11.9 0.6 9.4 11.2 5.4 1.1 4.0 11.74 9.39 11.7 0.71 11.4

MLR A 5.9 5.6 0.2 0.2 2.7 5.7 5.7 0.1 7.0 6.3 2.4 0.2 0.1 1.70 7.84 8.5 0.08 8.6
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MLR B 9.0 6.7 0.2 0.2 5.7 6.5 5.7 0.7 8.5 6.9 4.5 0.2 0.1 2.88 8.88 11.3 0.23 9.8

MLR C 9.9 5.8 0.2 0.4 5.0 8.6 10.7 0.1 8.1 10.9 5.4 0.6 4.0 11.94 9.00 10.7 0.93 9.7

Table 4.  Comparison of RRMSE between (a) measured daily ETa and ensembled daily ETa, and (b) measured maize yield and ensembled maize 
yield for all maize models and group maize models using seven model averaging methods at Group B sites under Blind and Calibrated Phases. 

Daily ETa (a)
Blind Calibrated

All Models Group Models All Models Group Models

Averaging 
Approaches

Mead 
Irrigated

Mead 
Rainfed

Bushland 
100% 
MESA

 Bushland 
75% 
MESA

Mead 
Irrigated

Mead 
Rainfed

Bushland 
100% 
MESA

Bushland 
75% 
MESA

Mead 
Irrigated

Mead 
Rainfed

Bushland 
100% 
MESA

Bushland 
75% 
MESA

Mead 
Irrigated

Mead 
Rainfed

Bushland 
100% 
MESA

Bushland 
75% 
MESA

SMA 26.1 36.8 24.6 26.8 24.4 34.3 23.5 25.7 25.9 35.0 25.4 26.9 23.8 33.5 24.8 26.1

Median 28.0 38.1 26.4 27.5 24.4 34.6 25.7 27.2 26.7 35.9 26.0 27.6 23.6 33.8 25.6 27.1

IR 22.5 25.4 21.7 25.8 21.2 24.0 20.3 24.9 22.9 24.7 19.4 24.5 20.8 23.9 18.9 24.4

BGA 25.0 30.6 23.3 25.9 22.7 27.4 22.1 25.4 24.4 30.7 23.0 26.2 22.4 28.6 22.7 25.9

MLR A 18.4 18.7 21.8 30.0 18.6 18.1 19.5 30.3 19.0 19.4 17.1 24.1 19.4 19.4 17.0 24.0

MLR B 18.9 19.7 22.9 27.4 18.8 18.3 21.6 27.9 19.8 19.7 17.4 24.7 19.9 20.0 17.4 25.0

MLR C 18.9 18.5 19.0 25.9 18.9 18.5 16.9 22.2 21.2 20.4 17.0 23.7 19.7 20.5 16.2 21.5

Seasonal Yield (b)

SMA 8.9 14.0 26.0 9.6 7.4 11.7 28.3 11.8 4.0 12.4 15.0 15.8 5.1 9.8 14.9 16.6

Median 13.3 17.0 20.3 11.0 10.0 16.0 26.3 11.9 1.6 12.8 12.8 19.1 2.0 9.3 12.7 16.8

IR 2.6 6.5 10.7 2.8 3.8 6.5 10.1 16.8 0.2 6.2 7.3 4.2 0.4 7.3 7.2 4.2

BGA 2.0 6.4 11.0 2.8 2.7 6.4 10.2 15.8 0.1 6.2 7.7 4.1 0.3 6.8 7.5 4.1

MLR A 7.9 1.6 6.8 1.7 2.0 2.4 8.0 8.3 0.0 5.6 4.2 2.8 0.1 3.6 3.5 3.4

MLR B 8.4 1.9 7.6 1.9 2.4 4.2 8.3 10.1 0.1 7.2 4.8 4.1 0.3 5.9 5.9 4.1

MLR C 1.5 4.7 10.7 2.8 2.7 4.7 9.1 15.5 0.1 5.7 6.6 4.2 0.2 5.9 6.6 4.2
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Table 5. Average RRMSE between measured daily ETa and maize yield, and ensembled daily 
ETa and maize yield for all models and group models at Group A sites  for both the blind and 
calibration phases.

Daily ETa Seasonal Yield

Blind Calibrated Blind Calibrated

All 
Models

Group 
Models

All 
Models

Group 
Models

Overall

All 
Models

Group 
Models

All 
Models

Group 
Models

Overall

SMA 38.7 42.4 37.1 35.6 38.4 17.3 18.3 8.6 8.9 13.3
Median 39.7 42.4 39.2 38.1 39.9 17.8 19.6 7.6 9.7 13.7

IR 35.7 37.2 34.2 33.8 35.2 13.1 14.1 6.6 7.9 10.4
BGA 35.3 37.0 35.0 33.6 35.2 12.3 12.6 6.2 7.4 9.6

MLR A 36.5 39.0 35.5 34.7 36.4 3.4 4.9 3.7 4.0 4.0
MLR B 36.0 38.3 35.2 34.5 36.0 4.0 5.6 4.8 5.0 4.8
MLR C 33.0 36.0 32.0 32.5 33.4 10.8 12.0 5.4 7.0 8.8
Mean 36.4 38.9 35.4 34.7 36.4 11.2 12.5 6.1 7.1 9.2

Table 6. Average RRMSE between measured daily ETa and yield, and ensembled daily ETa and 
yield for all models and group models at Group B sites for both the blind and calibration phases.

Daily ETa  Yield

Blind Calibrated Blind Calibrated

Averaging 
approaches

All 
Models

Group 
Models

All 
Models

Group 
Models

Overall All 
Models

Group 
Models

All 
Models

Group 
Models

Overall

SMA 28.6 27.0 28.3 27.0 27.7 14.6 14.8 11.8 11.6 13.2
Median 30.0 27.9 29.0 27.5 28.6 15.4 16.1 11.6 10.2 13.3

IR 23.9 22.6 22.9 22.0 22.8 5.6 9.3 4.5 4.8 6.0
BGA 26.2 24.4 26.1 24.9 25.4 5.5 8.8 4.5 4.7 5.9

MLR A 22.2 22.2 22.1 21.5 22.0 4.5 5.2 3.2 3.5 4.1
MLR B 22.2 22.2 21.9 21.5 22.0 4.9 6.3 4.0 4.2 4.9
MLR C 20.6 19.1 20.6 19.5 19.9 4.9 8.0 4.1 4.2 5.3
Mean 24.8 23.6 24.4 23.4 24.1 7.9 9.8 6.2 6.2 7.5
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