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Abstract 

Root senescence remains largely unexplored. In this study, the time-course of the morphological, metabolic, and 
proteomic changes occurring with root aging were investigated, providing a comprehensive picture of the root senes-
cence program. We found novel senescence-related markers for the characterization of the developmental stage of 
root tissues. The rapeseed root system is unique in that it consists of the taproot and lateral roots. Our study confirmed 
that the taproot, which transiently accumulates large quantities of starch and proteins, is specifically dedicated to nu-
trient storage and remobilization, while the lateral roots are mainly dedicated to nutrient uptake. Proteomic data from 
the taproot and lateral roots highlighted the different senescence-related events that control nutrient remobilization 
and nutrient uptake capacities. Both the proteome and enzyme activities revealed senescence-induced proteases 
and nucleotide catabolic enzymes that deserve attention as they may play important roles in nutrient remobilization 
efficiency in rapeseed roots. Taking advantage of publicly available transcriptomic and proteomic data on senescent 
Arabidopsis leaves, we provide a novel lists of senescence-related proteins specific or common to root organs and/
or leaves.
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Introduction

Senescence is the final stage in the development of plant 
organs. It has been mainly studied in leaves, where it is associ-
ated with the induction of numerous catabolic and proteolytic 
processes that participate in the degradation of macromole-
cules and ultimately in the dismantling of organelles. In leaves, 
catabolic events and chloroplast dismantling allow the release 
of numerous macro- and microelements that are essential 

for nutrient recycling and remobilization at the whole-plant 
level. Nutrient recycling and export from senescing organs is 
crucial for seed production and seed filling (Gregersen et al., 
2013; Avice and Etienne, 2014; Diaz-Mendoza et al., 2016). 
This is why leaf senescence has been widely investigated in 
crops and model plants to identify the mechanisms and regu-
lators involved in cell decay and chloroplast degradation. The 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erae417/7816147 by guest on 19 N

ovem
ber 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-7670-6638
https://orcid.org/0000-0003-0719-9350
https://orcid.org/0000-0002-8172-1605
https://orcid.org/0000-0003-3466-9477
https://orcid.org/0000-0001-7909-3884
https://orcid.org/0000-0002-1450-896X
https://orcid.org/0000-0002-4531-3874
mailto:philippe.etienne@unicaen.fr


Copyedited by: OUP

Page 2 of 19 |  James et al.

stay-green phenotype related to delayed senescence is one of 
the traits targeted by breeders to control carbon fixation and 
nutrient remobilization, and to improve seed yield and seed 
quality (Gregersen et al., 2013; Lee and Masclaux-Daubresse, 
2021). Transcriptomic studies of leaf senescence identified nu-
merous transcription factors belonging to the WRKY, NAC, 
and ERF families (Guo et al., 2004; Cao et al., 2023), which 
control the switch from anabolic to catabolic metabolism. From 
these studies of gene expression patterns, senescence-associated 
genes (SAGs) and senescence-down-regulated genes (SDGs) 
were identified, which provided a comprehensive picture of 
the leaf senescence program. Among these SAGs, master ac-
tors in the degradation of cellular components were identified 
(Avice and Etienne, 2014; Havé et al., 2017). The decrease of 
photosynthesis-associated genes, protease inhibitors, and tran-
scription factors related to chloroplast maintenance was associ-
ated with leaf senescence (Breeze et al., 2011).

Root senescence remains largely understudied compared 
with leaf senescence. The few reports on this topic describe 
root senescence as an age-dependent process leading to root 
browning, reduced nutrient uptake from the soil, and pro-
grammed cell death in the root cortical cell layer (Eissenstat, 
2000; Bingham, 2007; Schneider and Lynch, 2018). Barley 
roots have been shown to undergo a genetically determined 
intrinsic senescence program that is mainly influenced by plant 
age and shares features with leaf senescence (Liu et al., 2019). 
The similarities with leaf senescence reside in the involvement 
of the same transcription factor families, NAC, WRKY, and 
ERF, in the control of root and leaf senescence. The loss of 
physical integrity in roots is likely to be modulated by abscisic 
acid and cytokinin, as in leaves.

Roots can represent an important nutrient reservoir in 
many plant species such as perennials, meadow plants, and es-
pecially taproot plants. As an example, rapeseed is a nitrogen-
demanding plant whose taproot stores proteins that represent 
a substantial nutrient reservoir and a nitrogen source to be 
remobilized during seed filling (Rossato et al., 2002b; Gombert 
et al., 2010; Girondé et al., 2015). Indeed, while nitrate uptake 
decreases in rapeseed lateral roots after flowering, it was shown 
that the proteins accumulated in the taproot at the vegetative 
stage are hydrolyzed at the reproductive stage to support ni-
trogen export to the reproductive organs and especially to the 
seeds (Rossato et al., 2002b).

Few studies have shown that root nitrogen remobilization 
was associated with protease induction (Kohli et al., 2012) and 
root senescence, which involve the induction of amino acid 
transporters and glutamate catabolic enzymes (Wojciechowska 
et al., 2018). Additionally, previous studies indicate that the 
senescence-associated gene 12 protease (SAG12), a cysteine 
protease previously identified in senescing leaves (Buchanan-
Wollaston, 1997; Desclos et al., 2009), is essential to promote 
root-to-seed protein remobilization in nitrogen-deprived 
Arabidopsis (James et al., 2018, 2019). Consequently, it can be 
assumed that the remobilization of root nitrogen is associated 

with a senescence process that shares some molecular players 
with leaf senescence. However, it cannot be excluded that some 
processes may be specifically related to root senescence, partic-
ularly in the taproot, which plays a special role as a storage 
organ.

Therefore, the aim of this study was to monitor the onset 
and progression of root senescence associated with the remo-
bilization of reserves during seed filling in rapeseed and to 
identify key players involved in it. The progression of root 
senescence was monitored using changes in anatomical and 
cellular structure already described as markers of root se-
nescence in other plant species (Liu et al., 2019). Reserve 
remobilization, proteolytic activities, and in-depth proteomic 
analysis of the taproot and lateral roots were performed to 
provide a comprehensive picture of the main events occur-
ring in both root types during aging. Additionally, a com-
parison of the proteomic datasets with publicly available 
transcriptomic and proteomic data on leaf senescence in 
Arabidopsis was performed to identify leaf-common or root-
specific senescence actors. Finally, the possibility to provide 
a set of molecular markers to better assess the course of root 
senescence is discussed.

Materials and methods

Plant material
Seeds of Brassica napus var. Aviso were germinated on perlite over 
demineralized water for 4 d in the dark, followed by 6 d under nat-
ural light. After the emergence of the first true leaf, seedlings were 
transferred to a 10 liter tank (10 seedlings per tank) containing the 
following nutrient solution: 3.75 mM NO3

– nutrient solution [1.25 
mM Ca(NO3)2·4H2O, 1.25 mM KNO3, 0.5 mM MgSO4, 0.25 mM 
KH2PO4, 0.2 mM EDTA·2NaFe·3H2O, 14 μM H3BO3, 5 μM MnSO4, 
3 μM ZnSO4, 0.7 μM (NH4)6Mo7O24, 0.7 μM CuSO4, 0.1 μM CoCl2] 
renewed every week for 22 d. At 32 days after sowing (DAS), plants 
were transferred to two contrasting nitrogen conditions: high nitrogen 
(HN; 3.75 mM N) and low nitrogen (LN; 4.2 μM N) conditions. The 
LN condition was chosen as it corresponds to a nitrogen-limiting con-
dition known to reduce growth, exacerbate leaf senescence, and in-
crease root expression of SAG12 and nitrogen remobilization from 
roots to pods (Desclos et al., 2009; James et al., 2018, 2019). After this, 
plants continued to grow in a greenhouse with a thermoperiod of 
20/17 °C day/night and a photoperiod of 16 h with a mean photo-
synthetically active radiation of 350 µmol photons m–2 s–1 at canopy 
height (natural light supplemented with high-pressure sodium lamps 
Philips MASTER Green Power T400W Amsterdam, the Netherlands). 
At 47 DAS, plantlets were subjected to a 60 d period of vernalization in 
a climatic chamber maintained at 4 °C with artificial light (220 µmol 
photons m–2 s–1) during the day (10 h day/14 h night). At 108 DAS, ver-
nalization was stopped and plants were transferred to the same growth 
conditions as before the vernalization, but each plant was grown in an 
individual hydroponic pot of 4 liters for 57 d until the end of the flow-
ering of the principal stem (at 164 DAS). At 108 DAS (vernalization 
output; C1, T0), 130 DAS (beginning of flowering; F1, T1), and 165 
DAS (pod development; G4, T2), plants were harvested. A portion of 
root tissues was frozen in liquid nitrogen and stored at –80 °C for fur-
ther biochemical analysis, and the remainder was stored in an oven (60 
°C, 4 d) to obtain dry weight for biomass determination.
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Microscopy observation
The lateral root tissues were included in low melting point agarose 
(5%; w/v) and cut with a vibratome (Microm 650v; Thermo Scientific; 
USA) before observation with a light microscope (AX70 Olympus and 
Olympus SC30 camera, Japan) with the help of CellSens software. The 
strong lignification of taproot tissues did not permit the use of a vibra-
tome as for lateral roots. Consequently, sections of 2 mm of taproot were 
fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffer pH 7 for 1 
h to several days at 4 °C. The sections were rinsed in 0.1 M phosphate 
buffer pH 7 three times and post-fixed for 2 h with 1% osmium tetroxide 
in 0.1 M phosphate buffer pH 7. The sections were rinsed in phosphate 
buffer three times. The cells were then dehydrated in a progressive bath 
of ethanol (70–100%), embedded in resin EMbed 812, and polymerized 
for 48 h at 60 °C. For tissue observation, 1 µm semi-fine sections cut with 
a ultramicrotome and stained with 0.5% toluidine blue (1% sodium bo-
rate) were made and observed with a classical light microscope (Olympus 
AX70 and Olympus SC30 camera, Japan). For ultrastructure observation, 
ultrathin sections of 80 nm were made and contrasted with uranyl acetate 
and lead citrate. The sections were observed with a JEOL 1011 transmis-
sion electron microscope, and images were taken with a Gatan Orius 200 
camera and a digital micrograph.

Elementary analysis
All dried samples of taproot and lateral roots were ground to a fine 
powder using stainless steel beads in an oscillating grinder (Mixer Mill 
MM400 Retsch, Haan, Germany). As detailed previously by Maillard 
et al. (2016), the iron (Fe) concentration was quantified after acid diges-
tion of dry weight samples (~40 mg) with high-resolution inductively 
coupled plasma MS (HR-ICP-MS, Element 2TM, Thermo Scientific) 
using internal and external standards. The nitrogen concentration was 
quantified on 2 mg of dried powder with an elemental analyzer (EA3000, 
EuroVector, Milan, Italy).

Extraction and quantification of soluble and insoluble proteins
Soluble proteins in McIlvaine buffer (McIlvaine, 1921) were extracted 
from 200 mg of frozen fresh root tissue ground in a mortar with 300 µl 
of citrate phosphate buffer [20 mM citrate, 160 mM phosphate, pH 6.8 
containing 50 mg of polyvinylpolypyrrolidone (PVPP)]. After centrifu-
gation at 20 000 g at 4 °C for 20 min, the supernatant was collected and 
the proteins were assayed. The pellet was kept to extract the insoluble 
proteins in McIlvaine buffer. The pellet was resuspended in thiourea/
urea buffer. After 1 h of incubation with shaking at room temperature, 
the extracts were centrifuged twice at 20 000 g at 4 °C for 10 min, and 
the supernatant with insoluble proteins was collected. The concentra-
tions of the soluble and insoluble protein extracts were determined in the 
supernatants by protein staining (Bradford, 1976) using BSA as a standard.

Determination of proteolytic activities
Protease activities were determined on the soluble protein extracts and 
using the Abcam Assay Kit (ab111750), which incorporates fluorescein 
isothiocyanate (FITC)-labeled casein as a general protease substrate. 
Protease activities were determined at pH 5.5 and 7.5, the pH conditions 
at which cytotolic and vacuolar protease activities proceed, respectively 
(Poret et al., 2016). For this, 15 μg of soluble proteins were incubated in 
a 200 µl reaction volume containing 2 mM DTT and sodium acetate 
buffer (50 mM, pH 5.5) for cysteine proteases and aspartate proteases, or 
Tris-base buffer (50 mM; pH 7.5) for serine proteases. Protease class ac-
tivities were obtained by pre-incubating the sample with the addition of 
50 µM of a protease class-specific inhibitor in DMSO: E-64 for cysteine 
proteases, aprotinin for serine proteases, and pepstatin A for aspartate pro-
teases. After 30 min of incubation at 37 °C, the fluorescence of peptide 

fragments was measured at an excitation/emission (Ex/Em) wavelength 
of 485/530 nm.

Determination of amino acid content
Amino acids were extracted from 100 mg of dry matter to which 1 
ml of 80% ethanol was added. Samples were incubated under agitation 
at 80 °C for 15 min, then centrifuged at 2300 g at room temperature 
for 10 min. The supernatant was reserved. The pellet was resuspended 
in 1 ml of deionized water and incubated under agitation at 60 °C 
for 15 min followed by centrifugation at 2300 g at room tempera-
ture for 10 min, and the supernatant was collected with the previous 
one. This last step with 1 ml of deionized water was repeated a second 
time. The collected supernatant was dried in a concentrator. The pellet 
was re-suspended in 100 µl of deionized water. To 100 µl of extract, 
1 ml of ninhydrin (2,2-dihydroxyindane-1,3-dione) reagent [3.9 mM 
SnCl2·H2O, 2% ninhydrin (w/v), 100 mM citrate buffer, pH 5.5, and 
50% DMSO (v/v)] was added and incubated at 100 °C for 20 min. 
After stopping the reaction with ice, the samples were diluted with 5 
ml of 50% ethanol, and the absorbance at 570 nm was measured using 
glycine as a standard.

Quantification of starch
Starch content was extracted from 50 mg of dry matter and analyzed 
using the ‘Total Starch’ enzymatic kit (Megazyme International, County 
Wicklow, Ireland). Briefly, starch was digested first with thermal stable 
α-amylase and then with amyloglucosidase after gelatinization at 100 
°C. Residual glucose was determined spectrophotometrically at 510 nm 
using glucose oxidase/peroxidase and 4-aminoantipyrine (GOPOD rea-
gent) and glucose as a standard. The weight of free glucose was converted 
to anhydroglucose using a multiplication factor of 162/180.

Shotgun proteomic analyses
Protein extraction was performed using phenol extraction as described 
in Belouah et al. (2020). Protein pellets were then solubilized with 6 M 
urea, 2 M thiourea, 30 mM Tris–HCl, pH 8.5, 10 mM DTT, and 0.1% 
Rapigest (Waters). Protein content was estimated using a 2D QuantKit 
(GE Healthcare) and adjusted to 2 µg µl–1. A 20 µg aliquot of protein was 
digested and desalted as described in Belouah et al. (2020). A total of 400 
ng of desalted peptide digest were injected on Thermo Qexactive Plus 
(Thermo) coupled to an Eksigent nanoLC ultra 2D (see Supplementary 
Protocol S1 for detailed parameters). Peptide identification was per-
formed using Xtandem (piledriver 2015.04.01.1) against the B. napus 
refseq genome (https://www.ncbi.nlm.nih.gov/protein/?term=txid37
08[Organism:exp]) and an in-house protein contaminant database (55 
entries) as described in Balliau et al. (2018). The detailed parameters are 
described in Supplementary Protocol S2.

Protein inference and quantification were performed using i2mass-
chroq software (http://pappso.inrae.fr/bioinfo/i2masschroq/; Valot et al., 
2011; Langella et al., 2017). The protein E-value was set to 0.00001 with 
two distinct peptides with an E-value of 0.01, resulting in a false dis-
covery rate (FDR) of 0.1 at the peptide–spectrum match (PSM) level, 
0.11 at the peptide level, and 0.015 at the protein level. Quantification 
was performed as described in Balliau et al. (2018). For extracted ion 
chromatogram (XIC) quantification, peptides were retained if they were 
present in at least 90% of the samples and if the correlation for all pep-
tides dependent on a protein was higher than 0.5. When the peptides of 
a protein were not present or not reproducibly observed in one or more 
conditions, spectral counting (SC) was used in place of XIC analysis. For 
SC quantification, proteins were retained if they were observed by a min-
imum of five spectra in one sample. The mass spectrometry (MS) prote-
omics data were deposited at the ProteomeXchange Consortium via the 
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PRIDE (Perez-Riverol et al., 2022) partner repository with the dataset 
identifier PXD050894.

Proteomic data: statistics and data mining
Statistical analyses were performed using Perseus software (https://max-
quant.net/perseus/). Global proteomic data were analyzed using ANOVA 
with developmental stage as a variable factor. For quantification of pro-
teins by the XIC and SC method, statistical analyses were carried out on 
log2-transformed protein abundance. Proteins with a Student’s test FDR 
≤0.05 were considered to be significantly differentially accumulated. 
Missing data for the proteins analyzed by the SC method were replaced 
from the normal distribution. No fold change (FC) threshold was applied 
because a small change in protease abundance can have a large impact 
on the proteome due to post-translational regulation and the large spec-
trum of protease substrates. Proteases were identified using the MEROPS 
database (https://www.ebi.ac.uk/merops/) and Gene Ontology (GO). 
The GO and predicted subcellular localization were provided by the 
PANTHER database (pantherdb.org) and SUBA5 site (https://suba.
live/), respectively. The heatmap representation was performed with 
proteases that are differentially abundant over time with a Pearson clus-
tering method using the ComplexHeatmap R package (v2.13.3). GO 
enrichment analyses with the B. napus L. genome as a background were 
performed using Cytoscape (v3.9.1) plug-in ClueGO (v2.5.9; Fischer 
test with FDR correction) (Bindea et al., 2009) or Pantherdb (https://
www.pantherdb.org/; Fischer test with FDR correction) (Mi et al., 2019). 
GO enrichment analyses with the Arabidopsis genome as a background 
were performed using VirtualPlant1.3 (Fischer test with FDR correction) 
(Katari et al., 2010). Results focused on terms identified with a P-value 
<0.05. A meta-analysis of the proteomic data obtained in this study on 
the lateral roots and taproot of LN rapeseed plants was performed using 
the proteomic (Tamary et al., 2019) and the transcriptomic (Breeze et al., 
2011) data obtained on Arabidopsis leaves with aging. The leaf senescent 
proteome from Tamary et al. (2019) was obtained from PRIDE with 
dataset identifier PXD010465; it provides data on protein accumulation 
in Arabidopsis leaves at four time points based on chlorophyll level. The 
transcriptome of leaf senescence published by Breeze et al. (2011) was 
obtained from NCBI’s Gene Expression Omnibus (Edgar et al., 2002) 
with GEO Series accession number GSE22982; it provides gene expres-
sion at 11 time points during the Arabidopsis leaf life span.

Statistical analysis
For all parameters, at least three biological replicates were measured (n≥3). 
All data are presented as the mean ±SE. To compare different data be-
tween different times or treatments, Tukey tests were performed after 
verifying compliance of normality with the Shapiro–Wilk test with R 
software. Data were log transformed if they did not follow a normal dis-
tribution. Statistical significance was postulated at P≤0.05.

Results

Phenotype of plants under high and low nitrate 
conditions

Regardless of the developmental stage (T0, T1, or T2), the LN 
plants developed fewer leaves with smaller size and a reddish 
phenotype compared with the HN plants (Fig. 1). At the flow-
ering stage (T1), the number of flowers was lower in LN plants 
than in HN plants. However, all the HN and LN plants pro-
duced pods (Fig. 1). Both lateral roots and the taproot showed 

an increasing brownish color over time, which was particularly 
noticeable at pod filling stage T2 (Fig. 1). The smaller size of 
LN plants observed in Fig. 1 was in good agreement with the 
5-fold lower biomass of LN plants compared with HN plants 
at T2 (17.58 g versus 95 g; Fig. 2A, B). In LN plants, limitation 
of biomass was observed on all the organs except lateral roots 
(Fig. 2A, B). Nevertheless, the partitioning of biomasses in the 
root was twice as high in LN plants than in HN plants (33.7% 
versus 18.6% at T0; 35% versus 16.8% at T1; and 26.7% versus 
12.8% at T2, respectively; Fig. 2A, B). This shows that under ni-
trogen starvation, shoot growth has been neglected compared 
with root biomass.

Anatomical analysis of taproot and lateral roots

Lateral root tissues were examined by light microscopy after 
Evan blue staining to monitor cell viability (Fig. 3). At T0, 
which corresponds to the end of vernalization, the root cross-
section was a regular circle and the LN and HN lateral roots 
differed mainly in root diameter, cell size, and number of cell 
layers in the cortex (4–5 for HN, 3 for LN). There was no ev-
idence of cell death at T0 (Fig. 3A, D).

At flowering (T1) and pod filling (T2) stages, the shape of 
the cortical and epidermal cells was strongly affected, losing 
roundness especially in the outer layers and in the HN root. 
Their slight blue color at T1 intensified at T2, showing that 
cell death increased with age (Fig. 3B, C, E, F). In contrast, the 
integrity of the stele and vascular tissues was rather well pre-
served with aging in both HN and LN roots.

Observation of taproot tissue by light microscopy did not 
show any change in the cell shape with time but revealed a de-
crease in cell cohesion in both the HN and LN taproots (Fig. 
4A–C, G–I). Both LN and HN taproot cells contain numerous 
organelles, identified as amyloplasts, whose number decreased 
between T0 (Fig. 4A, G) and T1 (Fig. 4B, H). These structures 
were completely absent at the T2 pod-filling stage (Fig. 4C, 
I). Ultrastructural imaging showed that amyloplasts were in-
tact at T0 with a high stromal starch concentration (Fig. 4D, J), 
but decayed at T1 and T2. At T1, they had lost their structural 
integrity and starch, their size was greatly reduced, and they 
contained crystal structures that were not observed at T0. At 
T2, amyloplasts were dramatically shrunken and appeared as 
dislocated bodies that still contain numerous crystal structures 
but no more starch (Fig. 4E, F, K, L). The crystal structures in 
degenerating amyloplasts were identified as crystalloid ferritin 
structures by comparison with previous observations made on 
the chloroplasts of Mesembryanthemum crystallinum (Paramonova 
et al., 2007). In taproot cells, crystalloid ferritin accumulated 
with aging under both LN and HN conditions (Fig. 4E, F, K, 
L). In good accordance we measured the increase in the tap-
root iron concentrations between T1 and T2 under both HN 
and LN conditions (Supplementary Fig. S1).

The decrease in starch observed with aging under micros-
copy paralleled amyloplast decay and was confirmed by starch 
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Fig. 1. Development of rapeseed cultivated under high (HN) and low nitrogen (LN) conditions. The different harvest times T0, T1, and T2 correspond to 
vernalization output (B9), beginning of flowering (F1), and pod development (G4) stages, respectively. AP, aerial parts; LR, lateral roots; T, taproot. The 
scale bars represent 10 cm.
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measurement assays (Fig. 4M, N). At the end of vernalization 
(T0), starch concentrations were similar in HN and LN tap-
roots (21.3% and 22.3% of total taproot biomass, respectively). 
Starch concentrations decreased with aging in both LN and 
HN taproots, and to a greater extent in the HN tissues (Fig. 
4M, N).

Aging effect on nitrogen, proteins, and amino acid 
contents in the taproot and lateral roots

The amounts of total nitrogen, proteins (soluble and insol-
uble), and free amino acids were higher in the lateral roots 
and taproots of HN plants than in LN plants (Fig. 5A–F). In 
lateral roots and taproots of HN plants, the amount of total 

nitrogen increased 2-fold between T0 and T1 (Fig. 5A, B), and 
was reduced by one-third for the taproot and one-quarter for 
the lateral roots between T1 and T2. In LN plants, the amount 
of nitrogen was globally kept constant (~25 mg per organ) 
throughout the entire aging process in both taproot and lateral 
roots (Fig. 5A, B).

At T0, the amounts of soluble and insoluble proteins were 
approximately the same in the taproot and lateral roots of HN 
plants (~150, 95, and 55 mg, respectively; Fig. 5C, D). In the 
taproot of HN plants, the amount of soluble proteins increased 
2-fold and insoluble proteins increased 3-fold between T0 and 
T1. Subsequently, soluble and insoluble proteins decreased 
by 70–75% between T1 and T2 (Fig. 5C). In the lateral roots 
of HN plants, only insoluble proteins increased significantly 

Fig. 2. Biomasses of whole plants and of the different compartments of rapeseeds. Plants were cultivated under high (HN; A) or low nitrogen (LN; B) 
conditions and harvested at T0, T1, and T2 corresponding to vernalization output (B9), beginning of flowering (F1), and pod development (G4) stages, 
respectively. Each color in a histogram bar correspond to the biomass of each plant compartment (means ±SE; n=3). The brackets to the right of 
the histogram bars correspond to the root (lateral roots and taproot), aerial (leaves, stems, flowers), and pod parts, and the associated values are the 
percentage (±SE; n=3) of each part relative to the total biomass. For a given compartment or a given part of the plant and regardless to the nitrogen 
condition, different letters indicate significant differences between developmental stages (P-value ≤0.05).
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between T0 and T1 (Fig. 5C). Under HN, total proteins 
decreased by 48% in lateral roots (Fig. 5D) between T1 and 
T2 and by 74% in taproot (Fig. 5C). Under LN, total protein 
level was maintained in lateral roots; it significantly decreased 
in taproot between T1 and T2 (Fig. 5C, D). Regardless of the 
nitrogen treatment, the decrease in total protein content in lat-
eral roots is related to the decrease in soluble protein, while in 
the taproot both insoluble and soluble protein equally decrease 
with aging (Fig. 5C, D).

Changes in free amino acid content in the taproot (Fig. 5E) 
are quite similar to those of proteins (Fig. 5C). In the taproot of 
HN plants, amino acids increased by 1.8-fold between T0 and 
T1 and then decreased by 2.2-fold between T1 and T2. In the 
LN taproots, amino acid content steadily decreased by 2-fold 
from T0 to T2, while it was maintained at the same level in the 
LN lateral roots (Fig. 5F). There was no significant change in 
amino acid content in HN lateral roots with aging (Fig. 5F).

Protease activities in taproot and lateral roots

Total protease and specific protease activities (cysteine, aspartic, 
and serine proteases) measured at pH 5.5 or 7.5 were lower in 
taproot than in lateral roots (Fig. 6A, F). In taproot, protease 
activities were not different between HN and LN; they were 
very low at T0 and T1 and sharply higher at T2 (Fig. 6A–E). 
In lateral roots, total and specific protease activities increased 
gradually with aging (Fig. 6F–J). This increase was higher 

under LN compared with HN, showing that nitrate limitation 
stimulated an increase in protease activities. In both taproot 
and lateral roots, protease activities were mainly represented by 
the cysteine and aspartic proteases (Fig. 6).

Proteomic analysis on taproot and lateral roots of 
plants grown under LN conditions

To identify root senescence markers and provide a compre-
hensive picture of root aging, shotgun proteomic analyses were 
performed on the taproot and lateral roots of plants grown 
under LN at T0, T1, and T3 (Supplementary Tables S1–S4). 
Analyses were performed on LN roots as they exhibited higher 
changes in protease activities than HN roots and should pro-
vide a good picture of senescence and nutrient remobilization 
processes (Fig. 6).

The shotgun proteomics identified a total of 3028 and 2523 
(Supplementary Tables S5, S6) significantly differentially accu-
mulated proteins (DAPs) depending on the developmental 
stage in the taproot and lateral roots, respectively (ANOVA; 
FDR ≤0.05). GO exploration using Cytoscape (v3.9.1) and 
the plug-in ClueGO (v2.5.9) (Bindea et al., 2009) identified 29 
significant biological processes for the taproot and lateral root 
DAPs. Amongst the most significant that are shown in Fig. 7A 
and B, several (12 and 13 for taproot and lateral root, respec-
tively) are closely related to nitrogen metabolism and common 
to both root organs. Interestingly, four enriched biological 

Fig. 3. Structural changes in the cortex of rapeseed lateral roots over time under high (HN) or low nitrogen (LN) conditions. Pictures of root tissue 
sections, observed after staining with Evans blue using a light microscope, were obtained at vernalization output (T0; A, D), beginning of flowering (T1; 
B, E), and pod development (T2; C, F) under HN (A, B, C) or LN (D, E, F) conditions. The red scale bars represent 100 µm. Representative pictures are 
shown, n=3.
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processes related to catabolism and metabolism of organonitro-
gen compounds include many proteases, some of which have 
been identified in B. napus leaf senescence by Poret et al. (2019) 
(Supplementary Tables S8, S9).

Detoxification processes, which are consistent with senes-
cence and catabolism, are specifically enriched in the tap-
root and in lateral roots, but with lower significance (Fig. 7; 
Supplementary Tables S8, S9). Thus, taproot and lateral roots 

share several biological processes related to organic acid metab-
olism (oxoacid and carboxylic acid metabolism), amino acid bi-
osynthesis, nucleobase biosynthesis, proteolysis, and catabolism.

Clustering was performed to get a better insight into pro-
teomic changes in taproot and lateral root. Heatmaps iden-
tified four main clusters for both taproot and lateral roots 
which had similar patterns (Fig. 8A–C; Supplementary 
Tables S5, S6). Cluster 1 corresponds to proteins whose 

Fig. 4. Structure, ultrastructure, and starch concentration changes in the taproot tissues during the development of rapeseed cultivated under high 
(HN) or low nitrogen (LN) conditions. Taproot structure was obtained after staining with 0.5% toluidine blue (1% sodium borate) using a light microscope 
at vernalization output (T0; A, G), beginning of flowering (T1; B, H), and pod development (T2; C, I) under HN (A–C) or LN (G– I) conditions. Cellular 
ultrastructure was obtained after staining with 1% osmium tetroxide by using a transmission electron microscope at vernalization output (T0; D, J), 
beginning of flowering (T1; E, K), and pod development (T2; F, L) under HN (D– F) or LN (J– L) conditions. Black and red scale bars correspond to 50 
µm and 1 µm, respectively. Am, amyloplast; CW, cell wall; F, ferritin deposits; M, mitochondria; St, starch grain; V, vacuole. Starch concentrations in 
taproots were measured over time under HN (M) or LN (N) conditions. Values are means ±SE (n=3). Significant differences between development stages 
regardless of the nitrogen condition are indicated by different letters (P-value ≤0.05).
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abundance decreases late at T2 (T1≥T0>T2). Cluster 2 cor-
responds to proteins whose abundance decreases early from 
T1 (T0>T1>T2). Cluster 3 includes proteins with sim-
ilar abundance at T0 and T1 and a significant increase in 

abundance at T2 (T0–T1<T2). Cluster 4 corresponds to pro-
teins whose abundance increases early at T1 and continues 
to increase at T2 (T0<T1<T2). Thus, clusters 1 and 2 cor-
respond to proteins significantly depleted with senescence 

Fig. 5. Total nitrogen, protein, and amino acid amounts in the taproot and lateral root tissues during the development of rapeseed cultivated under high 
(HN) or low nitrogen (LN) conditions. The different harvest times T0, T1, and T2 correspond to vernalization output (B9), beginning of flowering (F1), and 
pod development (G4) stages, respectively. Total nitrogen (A, B), soluble and insoluble proteins (C, D), and amino acid (E, F) amounts were measured 
in taproot (A, C, E) and lateral roots (B, D, F) over time under HN or LN conditions. Values are means ±SE (n=3). For a given root tissue, different letters 
indicate significant differences (P-value ≤0.05) regardless of the nitrogen condition and developmental stages.
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(SDP; senescence-depleted protein) and clusters 4 and 5 to 
proteins significantly accumulated with senescence (SAP; 
senescence-associated protein). The proportions of SDP and 
SAP are almost the same regardless of the root organ (Fig. 
8A, B).

UpSet plots of root and lateral root clusters differentiate pro-
teins present in only one cluster (i.e. organ-specific) from pro-
teins present in two different clusters (i.e. in both taproot and 
lateral roots) (Fig. 8C). The majority of the proteins present in 
two different clusters are either SDPs or SAPs in the two root 

Fig. 6. Activities of total and specific proteases in the taproot and lateral root tissues during the development of rapeseed cultivated under high (HN) 
or low nitrogen (LN) conditions. The different harvest times T0, T1, and T2 correspond to vernalization output (B9), beginning of flowering (F1), and pod 
development (G4) stages, respectively. The total protease activities at pH 5.5 (A, F) and pH 7.5 (D, I), the cysteine (B, G) and the aspartic (C, H) protease 
activities at pH 5.5, and the serine protease activities at pH 7.5 (E, J), were measured in taproot (A–E) and lateral roots (F–J) over time under HN and LN 
conditions. Protease activities are expressed in relative fluorescence units (RFU) per µg of protein per minute. Values are means ±SE (n=3). For a given 
root tissue, different letters indicate significant differences (P-value ≤0.05) regardless of the nitrogen condition and developmental stages.
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types. Only a few are SDPs in the taproot and SAPs in the lat-
eral root, or vice versa.

Biological processes enriched in the different situations pre-
sented in Fig. 8C and listed in Supplementary Table S10 reflect 
that the catabolism of amino acids, of cell wall, and of peroxide 
as well as detoxification processes were increased with aging in 
both taproot and lateral roots, while anabolic processes, transla-
tion, and DNA replication were more active in young roots. It 
can be noted that terms related to inorganic nitrate and sulfate 
assimilation were over-represented in the lateral roots, which 
are the site of mineral uptake.

Comparison of our B. napus root senescence 
proteome with transcriptomic and proteomic markers 
of senescing Arabidopsis leaves

To our knowledge, the proteomic and transcriptomic data 
obtained and published for leaf senescence in B. napus are lim-
ited or absent. Therefore, we decided to perform a meta-analysis 
combining the root proteomic data obtained in this study on B. 
napus with proteomic and transcriptomic data from Arabidopsis 
thaliana. Because it provides a rigorous classification and cluster-
ing of both leaf SAGs (leaf_SAG) and leaf senescence-repressed 

genes (SRGs; leaf_SRG), we chose to use the transcriptomic 
data of Breeze et al. (2011) for comparison. In the same spirit, 
we used the leaf proteome analysis of Tamary et al. (2019) to ex-
tract the Arabidopsis leaf senescence-overaccumulated proteins 
(leaf_SAP) and the leaf SDPs (leaf_SDP).

We could identify 157 orthologous Arabidopsis leaf SAGs/
SAPs (leaf_SAPs and leaf_SAGs) for the taproot SAPs (tap-
root_SAPs) (Fig. 9A; Supplementary Table S5) and 117 for the 
lateral roots SAPs (LR_SAPs) (Fig. 9B; Supplementary Table 
S6). Amongst them, 88 are common to taproot, lateral roots, 
and leaf, 29 are common to lateral roots and leaf but not tap-
root, and 69 are common to taproot and leaf but not to lateral 
root (Fig. 9C; Supplementary Table S7). These proteins are the 
common leaf and root senescence markers.

We also identified 60 orthologous Arabidopsis leaf SRGs/
SDPs (leaf_SRGs and leaf_SDPs) for the taproot SDPs (tap-
root_SDPs) (Fig. 9A; Supplementary Table S5) and 47 for the 
lateral root SDPs (LR_SDPs) (Fig. 9B; Supplementary Table 
S6). Amongst them, 29 are common to taproot, lateral roots, 
and leaf, 18 are common to lateral roots and leaf but not to tap-
root, and 31 are common to taproot and leaf but not to lateral 
roots (Fig. 9C; Supplementary Table S7). These proteins are the 
common leaf and root longevity markers.

Fig. 7. Biological processes in the taproot and lateral root tissues during the development of rapeseed cultivated under low nitrogen (LN) conditions. 
Analysis of biological process categories significantly enriched using Cytoscape (v3.9.1) and the plug-in ClueGO (v2.5.9) (Bindea et al., 2009) for the 
taproot (A) and lateral root (B) DAPs was performed and the 29 most significant GO terms are presented. Categories related to nitrogen metabolism 
common or specific to root organs are framed in yellow and green, respectively. Enriched biological processes written in red include many proteases 
known to be involved in leaf senescence.
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In addition, we identified (i) 36 and 21 senescence markers 
specific to the taproot and/or the lateral roots, respectively, that 
belong to the leaf_SDPs and leaf_SRGs of Arabidopsis, and 
(ii) 70 and 90 longevity markers specific to the taproot and/or 
the lateral roots, respectively, that belong to the leaf_SAPs and 
leaf_SAGs of Arabidopsis (Fig. 9A, B; Supplementary Table S7).

GO terms associated with the common leaf and root se-
nescence markers were related to ‘nucleobase catabolism’ and 
‘response to oxidative stress’ in both taproot and lateral roots, 
and to ‘cysteine type endopeptidases’ in taproot. GO of the 
common root and leaf longevity markers are related to ‘C me-
tabolism’. Root-specific senescence markers are associated 
with ‘amino acid metabolism’ and ‘carbon metabolism’, while 
the root-specific longevity markers are related to ‘fatty acid 
degradation’, ‘oxidoreductase activities’, and ‘carboxylic acid 
catabolism’. It is interesting to note that GO terms are almost 
similar for taproot and lateral roots.

Identification of proteases in the proteome of taproot 
and lateral roots

Both the decrease in protein content (Fig. 5) and the in-
crease in protease activities (Fig. 6) prompted us to analyze 
in more detail the SAPs and SDPs related to the proteo-
lytic activities (proteases and proteasome-related proteins). 
A total of 165 and 112 proteases were identified in taproot 
and lateral roots, respectively, using the MEROPS database 
(https://www.ebi.ac.uk/merops/), and the protease list was 
manually curated using GO (Supplementary Tables S11, 
S12). According to the heat maps of the taproot and lateral 
root proteases (Supplementary Fig. S2), we can globally de-
fine two senescence-accumulated (95 for taproot and 46 for 
lateral roots) and senescence-depleted (70 for taproot and 
66 for lateral roots) protease groups (Supplementary Fig. S2; 
Supplementary Tables S11, S12). The UpSet plot shown in 

Fig. 8. Changes in biological processes with taproot and lateral root aging. The different harvest times T0, T1, and T2 correspond to vernalization output 
(C1), beginning of flowering (F1), and pod development (G4) stages, respectively. Heatmaps (A, B) represent the abundance of proteins (transformed 
in Z-score; red and blue for high and low accumulation, respectively) whose variability over time was confirmed by ANOVA in taproot (A) and in lateral 
roots (B). Each column corresponds to a biological replicate and the numbers at the left of the heatmap correspond to a cluster number. (C) UpSet plot 
identifies the time- and organ-specific DAPs (green spots) and those shared by taproot and lateral root (yellow spots). Senescence-related and early 
development (not senescent) common DAPs are identified by red and blue colors, respectively. Biological process enrichment was performed with all 
proteins presented in each UpSet plot group using Panther (https://www.pantherdb.org/). Significant enrichment (Fischer test with FDR correction) is 
presented. According to (A) and (B), subsets used for Upset plots in (C) are: T1, taproot cluster 1; T2, taproot cluster 2; T3, taproot cluster 3; T4, taproot 
cluster 4; L1, lateral roots cluster 1; L2, lateral roots cluster 2; L3, lateral roots cluster 3; L4, lateral roots cluster 4.
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Fig. 10 distinguishes between taproot-specific proteases, lat-
eral root-specific proteases, and proteases common to both 
lateral roots and taproot. Very few common proteases were 
differentially affected by aging in taproot and lateral roots, 
and we will not comment on them. Most of the common 

proteases were either overaccumulated or depleted with se-
nescence in both taproot and lateral roots. The 40 common 
senescence overaccumulated proteases were mainly rep-
resented by cysteine proteases (13) and equal numbers of 
aspartate, serine, and metallo-proteases. The 40 common 

Fig. 9. Longevity and senescence markers in taproot and lateral roots. Arabidopsis orthologous genes of the B. napus taproot (A) and lateral root 
(B) senescence-associated (SAP) and senescence-depleted (SDP) proteins were identified amongst (i) the Arabidopsis senescence-associated (SAG) 
and senescence repressed (SRG) genes from Breeze et al. (2011) and (ii) the Arabidopsis SAPs and SDPs from Tamary et al. (2019). The number of 
orthologous genes corresponding to each category is indicated on the top of each bar. The stars represent the senescence markers (white stars) and 
longevity markers (black stars) in B. napus roots and/or Arabidopsis leaves. Functional categories over-represented in the set accessions are indicated 
next to the arrows (VirtualPlant1.3; FDR correction). (C) Venn diagram of the senescence protein markers (SDP and SAP) in taproot and lateral roots. LR, 
lateral roots; Tp, taproot.
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senescence-depleted proteases were mainly represented by 
the proteasome subunits (16), metallo-proteases (12), and 
serine proteases. These patterns were in good agreement 
with the senescence picture described for leaf senescence 
(Roberts et al., 2012).

A total of 69 taproot-specific proteases (41 overaccumu-
lated and 28 depleted with senescence) were identified, while 
the lateral root contained only 16 (Fig. 10). Among the 41 
taproot senescence-related proteases, half are serine proteases 
and we can note the presence of well-known senescence-
related cysteine proteases such as SAG12, RD21A, and 
RD21B (Roberts et al., 2012). The taproot-depleted pro-
teases are mainly represented by proteasome subunits and 
serine proteases.

Five of the six cysteine protease inhibitors identified in the 
taproot and lateral root DAPs were more abundant in young root 
tissues (Fig. 11). In contrast, Kunitz trypsin inhibitors, which nor-
mally regulate serine protease activities, were more abundant in 

the old root tissues. The opposite effect of senescence on the rel-
ative abundances of the different cysteine proteases and of their 
cognate inhibitors is consistent with a fine-tuned control of pro-
teolytic activities during root development.

Discussion

Anatomical and physiological markers for root 
senescence

Determination of the onset of senescence is a difficult problem 
that has been addressed regarding leaf senescence in nu-
merous studies that aimed to identify the best markers of the 
transition between mature and senescent leaves (Buchanan-
Wollaston, 1997; Masclaux et al., 2000). The stage at which 
the leaf reaches its optimal size was considered as the time of 
transition from the mature stage to the senescent stage. The 
decreases in chlorophyll and Rubisco contents and the increase 

Fig. 10. Senescence- and longevity-associated proteases in taproot and lateral roots. Proteases of taproot and lateral roots were qualified as 
senescence associated (up) or longevity associated (down) depending on if they were up-accumulated or depleted with aging. Proteases specific for or 
common to taproot and lateral roots were identified, and the number of proteases corresponding to each category is indicated on top of each bar. The 
stars represent the senescence-associated proteases (red stars) and the longevity-associated proteases (blue stars). The number of cysteine, serine, 
aspartate, metallo-, and threonine proteases and of proteasome subunits associated with each category is indicated in the table. Red color intensifies 
with increasing numbers.
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in protease activities were used as other measurable physiolog-
ical markers of the leaf senescence stage. As all these indicators 
do not evolve in parallel; leaf senescence has been split into 
three stages: early, intermediate, or late senescence. Our results 
suggest that similar to leaves, there is not a unique senescence 
marker, rather a combination of markers that can define early 
and late senescence status.

The three stages chosen for this study cover the whole de-
velopmental cycle of B. napus. Between T1 and T2, a classical 
decrease in the biomass of vegetative organs was observed (Fig. 
2), as previously described (Malagoli et al., 2005; Girondé et al., 
2015). This decrease coincides with the formation of pods and 
the transfer of nutrients from the remobilization of plant re-
sources to seed development. As such, decreased root biomass 
can be considered as senescence onset in the same way that a de-
crease in leaf area was considered as the onset of leaf senescence.

Browning of lateral roots and taproot that was appearing at T1 
is another phenotype of root senescence that is related to changes 
in secondary metabolites and certainly to oxidation, and which 
has already been described in the literature (Liu et al., 2019). 
Although browning started at T1, it became particularly pro-
nounced at T2, and was thus more likely to be a late senescence 
marker (Fig. 1). Root browning has been reported in several 

studies on grape, peach tree, poplar, and cotton as a trait feature 
of the transition from an active to a senescent root (Comas et al., 
2000; Baldi et al., 2010; Wojciechowska et al., 2020; Zhu et al., 
2021). Our light microscopy observations showed that browning 
of the root structure (Fig. 3) was accompanied by cell deforma-
tion and loss of cortical cell viability in both LN and HN plants. 
The loss of cortical cell integrity has been described in several 
studies on Poaceae as a type of programmed cell death called root 
cortical senescence (RCS) (Schneider et al., 2017; Schneider and 
Lynch, 2018; Liu et al., 2019; Lynch, 2019). RCS has been known 
for a long time, and several authors (Henry and Deacon, 1981; 
MacLeod et al., 1986; Schneider et al., 2017) proposed that RCS 
may be analogous to the senescence of leaves and shoots as they 
share many similarities such as induction upon nutrient deficien-
cies, induction by ethylene, and the fact that RCS induces the 
accumulation of pathogenesis-related proteins as in early stages of 
leaf senescence. RCS described in Poaceae was shown to decrease 
root respiration and nutrient transport, and to affect water use ef-
ficiency. In contrast to lateral roots, no visual change in cell shape 
was observed over time in the taproot, regardless of nitrogen 
treatment (Figs 3, 4). However, changes in intracellular organi-
zation were observed for taproot cells. Indeed, at the end of the 
vernalization period, taproot cells accumulated a large amount of 
starch granules and amyloplasts (Fig. 4). Starch accumulation was 
independent of nitrate status, in good agreement with Rossato 
et al. (2002a). Starch concentration in the vernalized taproot was 
21.3% and 22.3% of the dry biomass in the HN and LN condi-
tions, respectively. The starch concentration was 14 times higher 
than that measured in the lateral roots (Supplementary Fig. S3), 
confirming the importance of the taproot as a carbon storage 
compartment. The degradation of amyloplasts and the reduc-
tion in starch granule size in taproot related to aging is in line 
with the transfer of carbon to reproductive organs (Rossato et al., 
2001, 2002a). A decrease of starch concentration is thus a valuable 
marker of the progress of senescence in rapeseed taproot, which 
coincides with the decrease of root biomass.

Electron microscopy revealed ferritin deposition at T1 
in the amyloplasts of taproot regardless of nitrate condi-
tions. Ferritin deposition was even higher at T2 (Venzhik 
et al., 2019), consistent with the accumulation of iron be-
tween T1 and T2 (Fig. 4; Supplementary Fig. S1). The prote-
omic data presented above confirmed the higher abundance 
of ferritin proteins in the taproot of LN plants [ferritin 1 
(XP_013723422.1), 3 (XP_013648011.1, XP_022547543.1), 
and 4 (XP_013687876.1); Supplementary Table S13]. The 
overaccumulation of iron with taproot aging could explain the 
overproduction of reactive oxygen species leading to taproot 
browning. Iron sequestration by ferritin seems to avoid the 
production of OH· radicals by the Fenton reaction (Deák et al., 
1999). Fe acts as a catalyst and must be avoided to prevent sig-
nificant oxidative stress during senescence. The degradation of 
amyloplasts, which has already been reported in non-greening 
senescent cells (Inada et al., 2000), and the accumulation of 
ferritin, which is considered a senescence marker in animal 

Fig. 11. Evolution of protease inhibitors in taproot and lateral roots. 
Protease inhibitors of taproot (gray bars) and lateral roots (white bars) 
up- or down-accumulated during taproot senescence. The size of 
each bar in the histogram is associated with the number of protease 
inhibitors identified. Three main groups of proteases inhibitors were 
found, proteasome inhibitor, Kunitz trypsin inhibitor, and cysteine protease 
inhibitor.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erae417/7816147 by guest on 19 N

ovem
ber 2024

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae417#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae417#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae417#supplementary-data


Copyedited by: OUP

Page 16 of 19 |  James et al.

(Wiley and Campisi, 2021) and plant (Murgia et al., 2007) cells, 
indicate that the taproot undergoes senescence from T1 and 
that T2 corresponds to the late senescence stage.

Root proteins are nitrogen sources to sustain shoot 
growth and reproduction

Under HN, protein, amino acid, and total nitrogen contents 
fluctuate in parallel with aging in both the taproot and lateral 
roots (Fig. 5). They increase from T0 to T1, reflecting nitrogen 
storage in the root compartments, and decrease from T1 to T2, 
reflecting the remobilization of nitrogen to the shoot. Under 
LN, changes in total nitrogen, proteins, and amino acids with 
aging were different in taproot and lateral roots. Decreases 
in amino acids and proteins between T0 and T2 were only 
observed in taproot, while there was no significant decrease 
in the lateral roots (Rossato et al., 2002b; Tilsner et al., 2005). 
These results highlight the importance of the taproot as a ni-
trogen source. Protein decrease with ageing was consistent 
with the strong increase in protease activities with aging in the 
taproot under both LN and HN, and in the lateral roots when 
remobilization was enhanced by nitrate deficiency under LN.

Proteomic analysis reveals new senescence feature 
and molecular markers specific or common to taproot 
and lateral roots

The proteomic analyses performed in this study highlighted the 
main effects of aging on the physiology of taproot and lateral 
roots, identified new molecular markers for root senescence, and 
allowed us to compare leaf and root senescence markers.

Specific changes in taproot with aging are (i) the disap-
pearance of protein categories related to nucleotide synthesis, 
translation, unfolded protein response (UPR) machinery that 
mitigates endoplasmic reticulum (ER) stress, and response to 
carbohydrates; and (ii) the appearance of protein categories re-
lated to amino acid catabolism, protein quality control, and cell 
wall catabolism.

Specific changes in lateral roots with aging are (i) the disap-
pearance of protein categories related to anabolism, synthesis of 
fatty acids, amino acids and organic acids, and sulfate assimila-
tion; and (ii) the appearance of processes related to the disor-
ganization of protein complexes, cytoskeletons, actin filaments, 
and alternative respiration pentose phosphate-related NADH 
production. The common features exacerbated during the tap-
root and lateral root early development are associated with DNA 
replication, translation, redox control, pyridine metabolism, ri-
bosome assembly, Ehrlich amino acid catabolism for the forma-
tion of aldehydes and alcohol, and flavonoid synthesis. Protein 
categories common to the taproot and lateral root senescence 
include functions related to the degradation of hydrogen per-
oxide, detoxification, respiration, and pentose metabolism. 
Thus, overall, the categories specific or common to the young 
taproot and lateral root organs are mostly related to anabolic 

functions, neosynthesis of metabolites, cell growth, and main-
tenance involving DNA replication and translation. The senes-
cence categories specific or common to taproot and lateral roots 
are mostly related to the catabolism of proteins, amino acids, and 
cell wall, to detoxification, and to alternative energy metabolism. 
This comprehensive picture of root senescence thus shows many 
common features with the leaf senescence events reported by 
many studies (Guo and Gan, 2005; Breeze et al., 2011) with the 
exception of the aspects related to chloroplast degradation.

As is the case during leaf senescence, many proteases were 
modified with root senescence, and several proteases were re-
vealed as good root senescence markers (Fig. 10; Buchanan-
Wollaston and Ainsworth, 1996; Guo et al., 2004; Martínez et al., 
2007; Roberts et al., 2012; Girondé et al., 2016; Poret et al., 2016). 
In taproot and lateral roots, the senescence-induced proteases 
were mainly cysteine, serine, and aspartate proteases, while the 
senescence-repressed proteases belong to the proteasome and 
metallo-protease class (Fig. 10; Supplementary Fig. S4). The in-
crease of cysteine proteases in senescing roots is consistent with 
the decrease of cysteine protease inhibitors (Fig. 11). Cysteine 
proteases have been described as the prominent protease class of 
senescing leaves (Buchanan-Wollaston and Ainsworth, 1996; Guo 
et al., 2004; Martínez et al., 2007; Roberts et al., 2012; Girondé 
et al., 2016; Poret et al., 2016). Papain-like cysteine proteases 
(PLCPs) promote massive protein degradation during leaf senes-
cence (Parrott et al., 2010), and the SAG2 and SAG12 PLCPs are 
well-known leaf senescence markers (Hensel et al., 1993; Noh 
and Amasino, 1999; Gombert et al., 2006). Notably, the RD21A, 
RD21B, RD21C, RD19A, RD19C, Cathepsin B3, and SAG12 
PLCPs are common senescence markers of taproot and leaves in 
both rapeseed and Arabidopsis leaves (Noh and Amasino, 1999; 
Poret et al., 2016; Pružinská et al., 2017).

While the overall protease activities were lower in the tap-
root than in the lateral roots (Fig. 6), it was surprising to see 
that the diversity of the proteases of the taproot was higher 
than in the lateral roots. We hypothesized that the taproot-
specific proteases could be more specific for the degradation 
of the protein reserves and possibly of the cell wall. Indeed, 
senescence-associated proteases in the taproot were mainly 
serine carboxypeptidases such as SCPL7 (XP_013672786.1), 
SCPL28 (XP_013659509.1), SCPL29 (XP_013720411.1), and 
SCPL50 (XP_013674515.1), which are known to be extra-
cellular. Their involvement in senescence-associated cell wall 
modifications could explain the decrease in cell cohesion in 
taproots with aging. An increase in serine carboxypeptidases has 
been reported in senescing leaves by Borniego et al. (2020), and 
probably played a role in programmed cell death in the leaves 
of Avena sativa (Coffeen and Wolpert, 2004). The specific accu-
mulation of several Clp proteases (ClpR1, XP_013735849.1; 
ClpR2, XP_013698293.1; ClpR4, XP_013671352.1; Clp4, 
XP_013670730.1; and Clp6, XP_013657456.1) in taproot was 
also observed. These proteins are involved in chloroplast deg-
radation during leaf senescence (Roberts et al., 2002; Kato and 
Sakamoto, 2010; Diaz-Mendoza et al., 2016). Their increase in 
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taproot with aging suggests that they could be involved in the 
degradation of amyloplasts (Fig. 4).

Common and specific protein markers can be 
identified for leaf, lateral root, and taproot senescence

The exploration of the transcriptomic data from Breeze et al. 
(2011) and transcriptomic data from Tamary et al. (2019) led 
us to shortlist markers that are shared between leaf senescence 
and root senescence in Brassicaceae. These markers, including 
SDPs and SAPs, will facilitate further studies on root senescence 
(Supplementary Table S7). Such a comparison revealed that the 
management of carbohydrate and nucleobase catabolism is a 
common feature of root and leaf senescence. The catabolism of 
nucleobases, and especially of purine, could increase the pool of 
remobilizable nitrogen in both organs. Their degradation prod-
ucts (glyoxylate and ammonia) could indeed be an important 
source of nitrogen for the reproductive parts (Brychkova et al., 
2008a, b; Werner and Witte, 2011). In contrast to nitrogen me-
tabolism, including amino acid catabolism, that has been largely 
studied in senescing leaves, the catabolism of nucleobases and its 
role in nutrient remobilization has been poorly investigated so 
far (Hildebrandt et al., 2015; Havé et al., 2017).

Conclusion

For the first time, this work provides an integrative view of the 
metabolic changes occurring during the senescence of the taproot 
and lateral roots of rapeseed. It has led to the identification of many 
new molecular players (including proteases) involved in this pro-
cess, some of which are specific to roots while others are common 
to leaf senescence. Thus, root senescence requires specific catabolic 
pathways (such as nucleic acid degradation) that have not been 
considered much until now and deserve particular attention to 
better understand nutrient remobilization from roots. Finally, this 
study also provides a novel set of molecular markers available to 
assess more accurately the progression of root senescence.
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