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Excess calorie intake early in life increases
susceptibility to colitis in adulthood

Ziad Al Nabhani
Pascal Campagne3, Marion Berard* and Gérard Eberl|

12* Sophie Dulauroy'?, Emelyne Lécuyer'?, Bernadette Polomack'?,
1,2%

Epidemiological data reveal an association between obesity and inflammatory bowel disease (IBD). Furthermore, animal mod-
els demonstrate that maternal high-fat diet (HFD) and maternal obesity increase susceptibility to IBD in offspring. Here we
report that excess calorie intake by neonatal mice, as a consequence of maternal HFD, forced feeding of neonates or low lit-
ter competition, leads to an increase during weaning in intestinal permeability, expression of pro-inflammatory cytokines and
hydrogen sulfide production by the microbiota. These intestinal changes engage in mutual positive feedback that imprints
increased susceptibility to colitis in adults. The pathological imprinting is prevented by the neutralization of IFN-y and TNF-
or the production of hydrogen sulfide, or by normalization of intestinal permeability during weaning. We propose that excess
calorie intake by neonates leads to multiple causally linked perturbations in the intestine that imprint the individual with long-

term susceptibility to IBD.

development of metabolic disorders and associated pathol-

ogies, such as atherosclerosis, hypertension, type 2 diabe-
tes and fatty liver disease’”. Obesity is also associated with IBD*™,
and animal models demonstrate that maternal HFD and maternal
obesity increase susceptibility to IBD in the offspring’-'". Given the
increase in the prevalence of obesity worldwide, the identification
of the mechanisms by which mother or child obesity favours the
development of inflammatory pathologies may offer new targets
and preventive measures against IBD.

Potential mechanisms that translate maternal obesity or excess
calorie intake early in life into increased susceptibility to obesity,
metabolic disorders and inflammatory pathologies later in life
include transfer of feeding behaviour', transfer and development
of an altered (dysbiotic) microbiota”'® and epigenetic modifica-
tions of genes involved in the control of inflammation'”'*. Mothers
with obesity or IBD transfer a dysbiotic microbiota to offspring and
thereby increase offspring susceptibility to similar pathologies'*'>".
Furthermore, perturbations in the composition of early-life gut
microbiota favours subsequent development of paediatric obesity
and IBD"***?'. In contrast, exposure to complex microbiota before
weaning decreases the susceptibility to allergic inflammation later
in life’*****, Finally, in a murine model of intestinal allergy medi-
ated by invariant natural killer T (iNKT) cells, the gut-colonizing
microbiota modifies the epigenetic code of Cxcl16, a chemokine
that recruits iNKT cells'.

We have recently reported that during weaning, the expanding
microbiota induces a vigorous immune reaction termed the wean-
ing reaction”. The weaning reaction is required for the development
of a ‘healthy’ immune system, as inhibition of this reaction leads to
increased susceptibility to inflammatory pathology, such as colitis,
later in life. However, the impact of early-life diet on the immune
system at weaning, and the consequences for later susceptibility to
inflammatory pathology, remain to be assessed.

O besity, in particular childhood obesity, is a risk factor for the

Here, we use three distinct murine models of excess calorie intake
early in life to decipher how it increases the severity of IBD in adult-
hood. Offspring that were exposed, until weaning, to maternal HFD,
increased access to maternal feeding or direct feeding with coconut oil
developed higher intestinal permeability, expression of pro-inflam-
matory cytokines and bacterial H,S production during weaning.
Such intestinal perturbations promoted long-term susceptibility to
chemically induced colitis, a susceptibility that could be normalized
through inhibition of each perturbation independently. Our results
demonstrate that an intestinal pro-inflammatory feedback loop trig-
gered during weaning by excess calorie intake and microbiota induces
a long-lasting pathological imprinting. These data suggest that there
are early-life preventive measures against inflammatory pathologies
later in life, which are based on diet and microbiota control.

Results

Excess calorie intake early in life increases susceptibility to colitis
in adulthood. In order to assess the impact of excess calorie intake
early in life on the susceptibility to colitis later in life, we used three
distinct models of neonatal overfeeding that lead to overweight dur-
ing weaning. Mothers feeding the pups were given a HFD (Fig. 1a),
neonates were given a gavage of a preparation of coconut oil two
times per day (Fig. 1b) or litters were reduced to three pups (control
litters had seven pups; thus, pups in the smaller litters had more
access to maternal milk) (Fig. 1c). All three conditions led to over-
weight of the male pups (Fig. 1d-f), characterized by increased fat
depots (Extended Data. Fig. 1a—c). The early overweight was tran-
sient, and all groups of mice returned to normal body weight as
early as 6 weeks of age and were undistinguishable before dextran
sodium sulfate (DSS) treatment (Extended Data 1d-f). However,
mice that had experienced neonatal overweight showed increased
susceptibility (or pathological imprinting) to DSS-induced colitis in
adulthood, characterized by increased weight loss, higher disease-
activity index, increased intestinal permeability and inflammation,
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Fig. 1| Excessive calorie intake early in life increases susceptibility to colitis in adulthood. a, Mice exposed to a HFD early in life were weaned to

normal chow (NC) at 4 weeks old, or adult mice fed a HFD (between 6-12 weeks of age) were returned to NC. Colitis was induced when mice were 20
weeks old. b, Mice fed NC or NC supplemented coconut oil between 2 to 4 weeks after birth. Colitis was induced when mice were 12 weeks old. ¢, The
number of mice fed NC was reduced at day 3 following birth to 3 pups (SL, small litter) or maintained at 7 pups per litter (normal litter, NL) and colitis

was induced when mice were 10 weeks old. d-f, Body weight was measured in 4-week-old mice fed NC or a HFD (d; n=30 per group; litters=11), fed

NC supplemented or not with coconut oil (e; n=8 per group; litters=5) and raised in a NL or SL (f; n=8 per group; litters=5). g-i, Percentage of body
weight loss in mice fed NC (n=9; litters=6), a HFD early in life (n=8; litters=6) or a HFD at adult age (n=10; litters=6) (g), fed NC supplemented with
coconut oil (n=9; litters=6) or not (n=8; litters=6) (h), or grown in NL or SL (n=8 per group; litters=5) (i). j-r, Colonic length (j-1), lipocalin-2 level
(m-0) and Tnfa mRNA colonic expression (p-r) measured at day 21, in mice fed NC (n=15; litters=7), a HFD early in life (n=14; litters=5) or a HFD at
adult age (n=11; litters=5) (j,m,p); NC supplemented with coconut oil or vehicle (n=38; litters=5 per group) (k,n,q); or grown in NL (L¥ (n=8§; litters=4),
o (n=6; litters=4)) or SL (I,r (n=8; litters=5), o0 (n=6; litters=5)). No colitis (jm,p (n=10; litters=7), k,n,q (n=5; litters=5), | (n=5; litters=4),

o (n=4; litters=4), r (n=5; litters=4)). Post hoc Tukey-adjusted tests following significant (P< 0.05, after correction) analyses of deviance (mixed-effect
models); all ****P<0.0001; e (***P=0.0002); g **P=0.003),; h (*P=0.03); i (*P=0.01); j *P=0.02); k **P=0.001; **P=0.007); | ***P=0.0007);

m (**P=0.001); n (*P=0.02; ***P=0.0008); q (***P=0.0004), r (***P=0.0002). Data were pooled from at least two independent experiments. Each
dot represents one offspring mouse. Dots of the same colour and symbol represent mice from same litter. Data are shown as mean +s.e.m.

colon shortening and, eventually, decreased survival (Fig. 1g-r and
Extended Data Fig. 1g-s).

Excess calorie intake early in life perturbs intestinal homeostasis
at weaning. We next examined the effect of the three regimens on
the inflammatory status and permeability of the intestine. All three
regimens led to an increased expression, at weaning but not at later
time points, of transcripts coding for the pro-inflammatory cyto-
kines tumour necrosis factor (TNF)-a, interferon (IFN)-y, interleu-
kin (IL)-1p, IL-12, IL-6 and IL-22 (not strictly a pro-inflammatory
cytokine), as well as a decrease in transcripts for the anti-inflamma-
tory cytokine IL-10 (Fig. 2a—c and Extended Data Fig. 2). This was
paralleled by an increase in lipocalin 2 levels in the faeces (Fig. 2d-f),
increased intestinal permeability, as measured by serum levels of
orally fed FITC-dextran (Fig. 2g-i), higher expression of Mylk,
which encodes the myosin light-chain kinase (MLCK) that regu-
lates the gut epithelial tight junctions, and lower expression of Tjp1
and Tjp2, which encode the tight junction proteins zona occludens 1
(Z0O1) and ZO2 (Fig. 2a—c). The expression of other genes, involved
in epithelial repair and mucus, such as trefoil factor 3 (Tff3) and
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mucin 2 (Muc2), were also affected (Extended Data Fig. 2).
Abnormalities observed early in life were dependent on intestinal
microbiota because most effects on the inflammatory reaction and
increased permeability induced by neonatal overweight were pre-
vented by concomitant treatment of the feeding mothers with a
cocktail of antibiotics (Fig. 2 and Extended Data Figs. 2 and 3).

Prevention of pathological imprinting through gut normalization
at weaning. We next addressed whether the increased inflammation
and intestinal permeability in overweight weaning mice induced
increased susceptibility to colitis (or pathological imprinting) in
adults. Offspring of mothers fed a HFD after birth were treated with
neutralizing antibodies against IFN-y and TNF-a from 2 to 4 weeks
after birth. Inhibition of these two pro-inflammatory cytokines
was sufficient to prevent overweight in weaning mice (Fig. 3a),
to prevent the increase in expression of other pro-inflammatory
cytokines (Fig. 3b) and to normalize intestinal permeability (Fig. 3¢
and Extended Data Fig. 4a,b). Most importantly, neutralization
of IFN-y and TNF-a during weaning also prevented increased
susceptibility to DSS-induced colitis in adulthood (Fig. 3d-g and
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indicated genes. d-f, Lipocalin-2 level. g-i, FITC-dextran 4-kDa level. Data in a-

supplemented with coconut oil or vehicle (b,e,h) and grown in NL or SL (¢ f,i).
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Extended Data Fig. 4c—f). Normalization was also achieved by the
induction of RORyt* regulatory T (T,y) cells* during this period of
time, through the administration of short-chain fatty acids (SCFA)
(Extended Data Fig. 5). Finally, similar results were obtained when
MLCK was inhibited from 2-4 weeks after birth by the synthetic
naphthalenesulfonyl derivative ML-7 (Fig. 4 and Extended Data
Fig. 4g-1). Blocking MLCK normalized intestinal permeability as
expected, but also prevented the increase in the expression of pro-
inflammatory cytokines, and, as a consequence, prevented patho-
logical imprinting. In contrast, neutralization of IFN-y and TNF-a,
or blocking MLCK, in adult mice fed a HFD did not impact body
weight, pro-inflammatory responses or gut permeability (Extended
Data Fig. 4m-p).

Bacterial H,S in pathological imprinting by excessive calorie
intake early in life. We next explored the mechanisms by which
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excessive calorie intake in neonates affected the expression of cyto-
kines and gut permeability. Previous work shows that HFD favours
the expansion of sulfide-producing bacteria’**. Hydrogen sulfide
(H,S) leads to destabilization of the mucus layer by reducing S-S
bonds in the protein network formed by essential mucus compo-
nents, such as Muc2 (refs. >*), and is toxic to colonic epithelial
cells’’. In offspring of mothers fed a HFD, in neonates given a coco-
nut-oil gavage and in mice raised in small litters, the expression of
bacterial dsrA coding for the dissimilatory sulfite reductase, a bacte-
rial enzyme essential for the production of sulfide*, was significantly
increased during weaning, but not later, as was the concentration in
faecal H,S (Fig. 5a-c and Extended Data Fig. 6a-h). This increase
in faecal H,S was prevented by the concomitant treatment of feed-
ing mothers with a cocktail of antibiotics (Extended Data Fig. 61,]).
Blocking the production of H,S by bacteria with 5-aminosalicylic
acid (5-ASA)* (Fig. 5d,e) prevented overweight in weaning mice,
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reduced the expression of several pro-inflammatory cytokines and Furthermore, the gavage of germ-free (GF) mice, raised in small

normalized intestinal permeability (Fig. 5~h and Extended Data
Fig. 6k,]). As a consequence, pathological imprinting was prevented,
and the susceptibility of mice to DSS-induced colitis was reduced in
adulthood (Fig. 5f-i and Extended Data Fig. 6m-q).
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litters, from 2 to 4 weeks after birth with sodium hydrogen sul-
fide (NaHS) as an acute donor of H,S, in the presence of microbial
immunogens (administered as heat-killed microbiota), was suffi-
cient to induce overweight, as well as an increase in the expression of
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pro-inflammatory cytokines and an increase in intestinal perme-
ability (Fig. 6a-c and Extended Data 7a-e). Such mice developed
pathological imprinting and increased susceptibility to DSS-induced
colitis in adulthood (Fig. 6d-h and Extended Data Fig. 7f-g).
Similar results were obtained using the slow hydrogen-sulfide-
releasing compound GYY4137 (ref. **) (Extended Data Fig. 8). In
contrast, gavage of 8-week-old adult GF mice, raised in small litters,
until 10 weeks with NaHS in the presence of microbial immunogens
did not impact body weight, the expression of pro-inflammatory
cytokines or intestinal permeability, and also did not impact colitis
severity (Extended Data Fig. 7h-m). Finally, pathological imprint-
ing induced by NaHS gavage at weaning was prevented by the con-
comitant neutralization of TNF-a and IFN-y, or by inhibition of
MLCK (Extended Data Fig. 7n-r).

Discussion
This study shows that neonatal overweight induces long-lasting path-
ological imprinting, assessed here as increased susceptibility to colitis
in adulthood. Such overweight induced by HFD in feeding mothers,
direct gavage of neonates with lipid-rich food or low littermate com-
petition (and thus increased access to maternal milk) led to increased
production of hydrogen sulfide by the microbiota, increased intesti-
nal permeability and increased expression of pro-inflammatory cyto-
kines. These perturbations were causally linked, and even if limited
in time to the weaning period, induced pathological imprinting into
adulthood. Thus, the weaning period appears to be a critical time
period for pathological imprinting, as exposure to a HFD after wean-
ing did not lead to increased susceptibility to colitis (Fig. 1g,j,m,p and
Extended Data Fig. 1g,h,m,n,0). Previous reports point to the notion
that the time period between birth and weaning is a unique time win-
dow of opportunity for the normal development of the immune sys-
tem, with pathological consequences later in life if perturbed!®*2-2+*>3¢,
The intestinal and lung microbiota have an important role dur-
ing this period, as mice not exposed to microbiota before weaning
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develop increased susceptibility to allergies and colitis in adult-
hood'®**=*%>, We have recently reported that the expanding micro-
biota at weaning induces a vigorous immune weaning reaction
that is required to prevent such pathological imprinting of the
immune system”. A similar phenomenon is observed in humans,
as neonates treated with antibiotics develop increased susceptibility
to allergy and paediatric colitis*”’, a phenomenon framed by the
hygiene hypothesis (which states that reduced exposure to microbes
increases susceptibility to inflammatory pathologies)®.

In the context of neonatal overfeeding, we show that microbiota
are a necessary element in the perturbation of intestinal perme-
ability and inflammation, involving the production of hydrogen
sulfide. Several bacterial taxa produce hydrogen sulfide in mice fed
a HFD?* or in patients with IBD*. It remains to be understood
how excessive calorie intake before and during weaning promotes
the expansion of H,S-producing bacteria, and, for preventive mea-
sures, how the expansion of such bacteria can be blocked. Thus,
even though our recent findings show that the expanding micro-
biota at weaning is required to prevent pathological imprinting®,
it now appears that not all bacteria are beneficial during weaning.

The mechanisms by which neonatal perturbations translate into
pathological imprinting remain poorly understood. In a model of
intestinal allergic reaction induced by invariant NKT cells, micro-
biota induces modification, in dendritic cells, of the epigenetic code
of Cxcl16, involved in the recruitment of NKT cells*®. In a transgenic
T cell receptor model of colitis, the induction, during weaning, of
T, cells carrying the transgenic TCR is required to prevent severe
colitis in the adult®. Finally, maternal microbiota shaped by anti-
biotic treatment can transfer increased susceptibility to colitis by
vertical transmission to offspring’. In the context of neonatal over-
weight reported here, epigenetic modifications in genes involved in
immune reactivity later in life, decreased generation of specific T,,
cells and dysbiosis of the microbiota are all credible mechanisms of
pathological imprinting that remain to be assessed.
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Fig. 5 | Involvement of H,S in pathological imprinting by excessive calorie intake early in life. Mice fed NC or a HFD early in life were treated or not with
5-aminosalicylic acid (5-ASA) between 2 and 4 weeks after birth. a-e, The expression of bacterial dsrA, which encodes the bacterial dissimilatory sulfite
reductase (a), and dsrA expression measured at 4 weeks after birth in mice fed NC or a HFD and treated or not with 5-ASA (b,d). Faecal H,S levels in mice
fed HFD or NC at 4 weeks of age treated or not with 5-ASA (c,e). f-h, Body weight (f), transcript profile (g) and intestinal permeability (h) measured at

4 weeks after birth. i-1, Mice fed a HFD early in life were treated with 5-ASA between 2 and 4 weeks after birth and challenged with 2 cycles of DSS at

10 weeks of age. i, Percentage of weight loss during the 3 weeks after initiation of DSS challenge. j, Colonic expression of Tnfa mRNA measured at day 21
after initiation of DSS challenge. For NC (a (n=6; litters=4), b (n=27; litters=9), ¢ (n=12; litters=5), d (n=21; litters=9), e (n=15; litters=6),

f(n=8; litters=4), g (n =14; litters=6), h (n =6; litters=4)); HFD (a (n =6; litters=4), b (n =26; litters=11), ¢ (n =24, litters=9), d (n =21; litters =8),
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litters=6), h (n=8; litters=5)); HFD + 5-ASA (f (n=11; litters=6), g (n=12; litters=6), h (n=9; litters=5), i-1 (n=7, litters=4)); no colitis (j-1 (n=6;
litters=4)). For a-e and i, a Mann-Whitney test was used for statistical analyses. For f-I, post hoc Tukey-adjusted tests following significant (P<0.05,
after correction) analyses of deviance (mixed-effect models), all ****P <0.0007; g (Tnfa **P=0.007, **P=0.004; Ifng **P=0.005, **P=0.003; /10
**P=0.007);i (*P=0.0T; ***P=0.0003). Data were pooled from at least two independent experiments. Each dot represents one offspring. Dots of the
same colour and symbol represent mice from the same litter. Data are shown as mean +s.e.m.

Our study demonstrates that neonatal overweight is a risk factor ~ carbohydrates or proteins, induces pathological imprinting. The
for the development of colitis later in life. In this context, it remainsto  multiple intestinal perturbations induced by excess calorie intake
be assessed whether any type of excess calorie intake, through lipids, ~ early in life, and their causal role in pathological imprinting, offer
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Fig. 6 | Involvement of H.S in pathological imprinting by excessive calorie intake early in life. a-h, A small litter (SL) of germ-free mice was exposed to
heat-killed microbiota (M) and/or to sodium hydrogen sulfide (NaHS) between 2 and 4 weeks after birth, and then colitis was induced at 12 weeks of age.
Body weight (a), transcript profile (b) and intestinal permeability (¢) were measured at 4 weeks after birth. d-h, Survival curves (d), percentage of weight
loss during 3 weeks after initiation of DSS challenge (e), colonic length (f), lipocalin 2 level (g) and Tnfa mRNA colonic expression (h) measured at day

21 after DSS introduction. For SL + vehicle (a,c (n=6; litters=5), b (n=7, litters=6), d,e (n=9; litters=6), f-h (n=4; litters=4)); SL+NaHS (a-¢ (n=6;
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length (I) and colonic transcript profile (m) after colitis induction. For SL (i,j (n=6; litters=5), k (n=6; litters=4); I m (n=6; litters=6)); SL+ M + NaHS
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litters=7), k-m (n=6; litters =6)); no colitis (Im (n=5; litters=4)). For a-c and e-m, post hoc Tukey-adjusted tests following significant (P < 0.05,

after correction) analyses of deviance (mixed-effect models), all ****P < 0.0001; b (Ifng **P=0.008; Tjp2 **P=0.005); e (*P=0.03,***P=0.0002);

h (**P=0.0012); k (*P=0.02, ***P=0.0003). For d, log-rank test (P=0.04). Data were pooled from at least two independent experiments. Each dot
represents one offspring. Dots of the same colour and symbol represent mice from same litter. Data are shown as mean +s.e.m.

preventive measures that must be applied before and during wean-  High-fat diet and coconut oil gavage. Mice were fed a HFD containing 60% of

ing. It is also desirable to identify measures to reverse pathological
imprinting after weaning, once the offspring has been recognized
as having experienced such risk factors. The identification of the
nature of pathological imprinting will offer potential avenues that
lead to the reversal to healthy imprinting.

Methods

Mice. All animal experiments were approved by the committee on animal
experimentation of the Institut Pasteur and by the French Ministry of Research.
SPF females and males C57BL/6 mice were purchased from Charles River and
exposed to the environment of the local animal facility at Institut Pasteur at
least for 2 weeks before mating. Germ-free C57BL/6 mice were generated at the
Gnotobiology Platform of the Institut Pasteur. Foxp3“ X Rorc(gt)" mice were
maintained on a C57BL/6 background. All mice were weaned by 28 d after birth
(D28) and were co-housed for all experiments in order to avoid cage-specific
divergence in the composition of the gut microbiota®, and experimental groups
were both age- and sex-matched. The age of mice at the beginning of each
experiment is indicated in the legend to the figures.
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fat dominantly coconut oil (U8954 version 0140, SAFE, France) or normal chow
diet (801954, SDS Diets) irradiated with 10 kGys. Mice were supplemented with
coconut oil (5mlkg™" day~'; 46949; Sigma; France) or a vehicle (distilled water) via
oral gavage at 14 d until 28 d after birth. Only male pups, and a normal litter size,
were used for these studies.

Control of litter size. Eight-week-old adult female C57BL/6 mice (Charles River)
were individually housed. After 2 weeks of adaptation to the surroundings, they
were mated overnight with males, at a ratio of 2 females to 1 male. The females
were then housed in individual cages 4 d before delivery and during lactation.
Mice were kept on a standard pellet diet (801954, SDS Diets) under a 12-h light-
dark cycle in a room maintained at a controlled temperature of 22 °C and constant
humidity. Litters were normalized to 7 pups per litter on postnatal day 1 (P1),
with 4 male and 3 female pups per litter (NL, normal litter). On P3, some litters
were culled to 3 pups per litter (2 male + 1 female pups; SL, small litter) to

induce postnatal overfeeding. Animals were fed standard chow following
weaning, unless otherwise specified. Only male pups were used for these

studies. Each experimental group in all experiments consisted of offspring from
at least four litters.
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Mouse treatment with antibiotics, chemicals and antibodies. Mice were
treated during the indicated periods of time with a cocktail of antibiotics in

their drinking water, containing 2.5 mg ml™' streptomycin, 1 mg ml™' ampicillin,
0.5mg ml™ vancomycin, 1 mg ml™ ciprofloxacin and 0.5 mg ml™' metronidazole.
The antibiotic-containing drinking water was changed twice a week. Once the
treatment was terminated, treated and untreated mice were co-housed. For
treatment with SCFAs, 50 pl of cocktail containing acetate (2 mg ml™), butyrate
(1.65mg ml™) and priopionate (1.45mg ml™) was administered intraperitoneally
3 times per week between 2 and 4 weeks after birth. Where indicated, mice

were given a gavage 3 times per week with 100 pl of 5-ASA (5-aminosalicylic
acid; 200 pg ml™') to reduce H,S and sulfide-reducing bacteria levels, or with

50 mg kg of GYY4137 (morpholin-4-ium (4-methoxyphenyl)morpholin-4-
ylphosphinodithioate) or 10 pmol kg! NaHS. For MLCK inhibition, mice were
treated by intraperitoneal injection of ML-7 (2mg kg™') 3 times per week between
2 and 4 weeks after birth*. For TNF-a and IFN-y neutralization, mice were treated
simultaneously with a combination of 25 pg of anti-TNF-a monoclonal antibody
(clone MP6-XT22) and 25 pg of anti-IFN-y monoclonal antibody (XMG1.2) via
intraperitoneal injection 3 times per week between 2 and 4 weeks after birth.

Models of colitis. To test susceptibility to DSS-induced colitis, adult mice with
similar body weights were exposed to two cycles of 2.5% DSS (approximately
40,000 g mol™) in their drinking water (except GF mice that received 1% of DSS),
for 7 d, which was interrupted by 7 d of normal water. Control mice received
drinking water without DSS. Weight and survival were monitored daily to
determine progression of disease. Colitis severity was scored by daily observation
of the following parameters: weight loss (0 point, no weight loss or weight gain; 1
point, 5-10% weight loss; 2 points, 11-15% weight loss; 3 points, 16-20% weight
loss; 4 points, >21% weight loss); stool consistency (0 point, normal and well
formed; 2 points, very soft and unformed; 4 points, watery stool); and blood in
stool (0 point, normal colour stool; 2 points, reddish colour stool; 4 points, bloody
stool). The disease activity index (DAI) was calculated as the combined scores of
weight loss, bleeding and stool consistency, with a maximum score of 12. After 21
d, mice were euthanized, the lengths of the colons were measured and organs and
blood were collected for biochemical analysis, and a small piece (0.2 cm) of distal
colon was taken for the analysis of gene expression.

Gut permeability. In vivo permeability assays were performed using fluorescein
isothiocyanate (FITC)-dextran 4kDa as a paracellular permeability tracer. FITC-
dextran was given by gavage to mice 6 d after initiation of the second cycle of DSS
in the DSS-induced colitis model. Mice were gavaged with FITC-dextran (5mg per
200 pl per mouse) 4 h prior to euthanization. The same dose was given to weaned
mice (4 weeks old). Whole-blood FITC-dextran concentration was determined

by spectrometry. FITC-dextran concentrations in serum were calculated from
standard curves generated by serial dilution of FITC-dextran.

ELISA. Myeloperoxidase (MPO) and lipocalin-2 were measured using enzyme-
linked immunosorbent assays (ELISAs) and following the manufacturers’
recommendations (from R&D Systems).

Measure of H,S. Faecal and colonic H,S levels were quantified using the methylene
blue method*'. Colonic contents were collected after animals were euthanized.
Material (0.1 g) was homogenized with 1% zinc acetate trapping solution,

20mM N,N-dimethyl-p-phenylenediamine sulfate prepared in 7.2N HCl and
30mM FeCL, prepared in 1.2N HCI, and incubated for 30 min. Samples were
centrifuged at 12,000g for 3 min, and the clear upper phase was analysed at 670 nm
in comparison with a calibration curve of standard H,S solutions®. H,S levels were
expressed in nM g' of weight.

Quantification of sulfite-reducing bacteria. Faecal genomic DNA was
extracted from the weighed stool samples as previously described®.
Sulfite-reducing bacteria were quantified using specific primers for the
dsrA gene (encoding a dissimilatory sulfite reductase alpha subunit)

as described by Devkota®: F: 5'-CCAACATGCACGGYTCCA-3', R:
5'-CGTCGAACTTGAACTTGAACTTGTAGG-3'.

Quantitative PCR. Frozen tissue samples were dissociated in lysing/binding buffer
of Multi-MACS cDNA kit (Miltenyi) with 0.5% antifoam using the gentleMACS
Octo Dissociator (Miltenyi). RNA isolation, cDNA synthesis and cDNA
purification were performed using the MultiMACS M96thermo Separation Unit,
following the manufacturer’s instructions for the MultiMACS cDNA Synthesis Kit
(Miltenyi). Real-time quantitative PCR on cDNA was performed using SybrGreen
(BioRad) and Qiagen primers. Ct values were normalized to the mean Ct obtained
with the three housekeeping genes, Gapdh, Hsp90 and Hprt, in each sample.

Quantification and statistical analysis. Statistical analysis was performed with
the R software 3.5.1. Quantitative data were analysed using linear mixed-effects
models (R package Ime4), in order to account for statistical dependence among
individuals originating from a same family (each progeny being reared in a single
cage). Depending on the experiment, data could be recorded at several time points;
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two statistical designs were therefore considered. In simple designs (non-repeated
measures) comparisons were made between experimental treatments (fixed effects)
while setting the variable cage as a random term. In designs involving repeated
measures (that is, when variables were repeatedly recorded over 21 d), 2 fixed
effects were included, the experimental treatment as well as the date of record
(analysed as a categorical variable). The latter models included the mouse ID and
the cage label as random factors. The overall statistical significance of experimental
treatments was assessed based on an analysis of deviance (ANODE, R package
car). Given the large number of statistical tests involved in this study, all P values
returned by ANODE (including data displayed in Supplementary Figures) were
adjusted using the Benjamini-Yekutieli (BY) procedure, in order to minimize

the false discovery rate. Any ANODE results that remained significant after BY-
adjustment (P adjusted < 0.05) were followed by post hoc tests. Pairwise testing
among treatments was carried out using a Tukey-adjusted comparison (R package
Ismeans). In the case of disease activity index, data were averaged across three
consecutive days (for example, across days 19, 20 and 21) within individuals

so that the distribution of the averaged index was suited for analysis with
mixed-effect models.

Survival data were analysed by fitting survival curves with the Kaplan-Meier
method and comparison among experimental groups was done using log-rank
tests (R package survival).

All figures were performed in GraphPad Prism statistical software (version 8).

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
The data that support the plots within this paper and other findings of this study
are available from the corresponding authors upon reasonable request.
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of age. (g-i) Levels of lipocalin 2 and (j-I) intestinal permeability measured before colitis induction in adult mice. For a (NC (n=7; litters=5), HFD (n=9;
litters=5); NC+ABX (n=6; litters=5); HFD+ABX (n=7; litters=5)); d (NC (n=9; litters=5), HFD (n=9; litters=5), NC+ABX (n=10; litters=4), HFD+ABX
(n=10; litters=4)); g,j (n=8/group; litters/group=4). For Vehicle (b (n=7; litters=5), e (n=7; litters=4), h (n=8; litters=6), k (n=6; litters=4)); Coconut oil
(b (n=10; litters=6), e (n=7; litters=4), h (n=8; litters=5), k (n=6; litters=4)); Vehicle+ABX (b (n=9; litters=5), e (n=7; litters=4), h (n=8; 6 litters),

k (n=6; litters=4)); Coconut oil4+ABX (b (n=10; litters=6), e (n=7; litters=4), h (n=8; 5 litters), k (n=6; litters=4)). For NL (¢ (n=10-14; litters=5-7),

d (n=6; litters=3), i (n=8; litters=3), | (n=10; litters=4)); SL (¢ (n=9-14; litters=5-7), d (n=6; litters=3), i (n=8; litters=4), | (n=10; litters=6)); NL+ABX
(c (n=10-14; litters=5-7), d (n=6; litters=3), i (n=8; litters=3), | (n=10; litters=5)); SL+ABX (¢ (n=9-13; litters=5-8), d (n=6; litters=3), i (n=8; litters=4),
1 (n=10; litters=6)). (a,g) Post hoc Tukey-adjusted tests following significant (P<0.05, after correction) Analyses of Deviance (mixed-effect models), all
""P<0.00071; a (/6 ***P=0.0002, ***P=0.0003; /133 ***P=0.0009; Reg3b **P=0.005; Reg3g *P=0.01; Tff3 ***P=0.0006, *P=0.01; Fcgbp ***P=0.00071;
Muc2 **P=0.0018, **P=0.0025); b (/6 *P=0.011, *P=0.015; /122 **P=0.0018, *P=0.036; Tff3 ***P=0.0005; Muc2 **P=0.002); ¢ (Reg3b *P=0.025,
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Extended Data Fig. 3 | Excessive calorie intake increases body weight through a microbiota-dependent mechanism. Weight of total body (a,e,i),
epididymal fat (b,f,j), retroperitoneal fat (c,g,k) and liver (d,h,1) at 4 weeks after birth of mice exposed or not to antibiotics (ABX). Mice were (a-d)

fed NC or a HFD early in life, (e-h) supplemented with coconut oil or vehicle during 2 to 4 weeks after birth, (i-I) overfeed by reducing litter size (SL)

or not (NL) at neonatal age in SPF or in GF conditions. Post hoc Tukey-adjusted tests following significant (P<0.05, after correction) analyses of deviance
(mixed-effect models), all “"P<0.0001; b (***P=0.0004, ***P=0.0001); ¢ (***P=0.0002); d (**P=0.009, ***P=0.0004); h (*P=0.049, ***P=0.0008);
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represents 1 offspring mouse. Dots of same color and symbol represent mouse from same litter. Data are shown as mean+s.e.m.
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“P=0.008); b (Fcgbp ""P=0.0002; Muc2 “'P=0.0002, “P=0.006; /122 **"P=0.0008; /133 “P=0.002); e (MPO "'P=0.0007; Permeability ‘P=0.01); f (Ifng
'P=0.01, ""P=0.0007; /l1b 'P=0.01, "P=0.002, ""P=0.0005; ll4 “P=0.002, ""P=0.0005; II5 'P=0.03, "P=0.001, ""P=0.0003); g (""P=0.0003, "'P=0.0001),
h (Reg3b "'P=0.0005; Reg3g ‘P=0.04, "'P=0.0004; Tff3 'P=0.02; lI33 "'P=0.0008). k (MPO "P=0.017; Permeability ‘P=0.012, “P=0.001, “"P=0.004);

I (Ifng "P=0.018, "'P=0.000T7; /I1b "P=0.049, "'P=0.0001, ""P=0.0006; Il4 'P=0.023, “P=0.003; ll4 "P=0.039, ""P=0.0002); o ("P=0.001, ""P=0.0004);
p (Tnfa ""P=0.0008; Ifng “"P=0.005). ns=not significant. Data were pooled from at least two independent experiments. Each dot represents 1 offspring
mouse. Dots of same color and symbol represent mouse from same litter. Data are shown as mean+s.e.m.
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Extended Data Fig. 5 | Exposure to SCFAs in mice fed HFD early in life reduced the severity of colitis in adulthood by mechanism dependent on RORyt-
expressing T,s. (a-i) Mice were exposed to NC or to a HFD early in life and treated with SCFAs or vehicle controls during 2 to 4 weeks of age. (m-q)
Foxp3©™® x Rorc(gt)™ mice and littermate control were fed HFD early in life and exposed to SCFAs or vehicle during weaning. (a,m) Weight of total body,
(b) epididymal fat, (c) retroperitoneal fat, (d) and liver, (e,n) level of intestinal permeability, and (f,g) colonic mRNA expression measured post-weaning.
(h,p) Colonic length, (i) intestinal permeability, (j) level of myeloperoxidase, (k) lipocalin-2, (I,q) colonic transcript profile and (o) loss of body weight
measured after initiation of colitis at 9-10 weeks of age. For NC+Vehicle (a-g (n=6); h-l (n=7); litters=4); HFD+Vehicle (a-g (n=10; litters=6),

h-1 (n=7; litters=4)); NC+SCAFs (a-g (n=5), h-l (n=6); litters=4); HFD+SCFAs (a-g (n=10; litters=6), h-l1 (n=6; litters=4)); Littermate+Vehicle

(m-n (n=6; litters=6), o0 (n=5; litters=5), p-q (n=8; litters=8)); Littermate+SCFAs (m-n (n=10; litters=7), o (n=10; litters=6), p-q (n=6; litters=6));
Foxp3¢*RORyt+Vehicle (m-n (n=6; litters=6), o0 (n=5; litters=5), p-q (n=9; litters=8)); Foxp3-RORyt+SCFAs (m-n (n=6; litters=6), 0 (n=6; litters=5),
p-q (n=5; litters=5)); No colitis (n=5; litters=5). Post hoc Tukey-adjusted tests following significant (P<0.05, after correction) Analyses of Deviance
(mixed-effect models), all ****P<0.0001; a (***P=0.0006); b (***P=0.0004, *P=0.012); ¢ (**P=0.003); d (*P=0.04, *P=0.02); f (/12 ***P=0.0002;
Mylk ***P=0.0004; Tjp1 **P=0.004; Tjp2 ***P=0.0003); g (Reg3g ***P=0.0005; Reg3b ***P=0.0004; Tff3 **P=0.004; Fcgbp **P=0.006; Muc2 *P=0.02,
**P=0.008; Il6 *P=0.03; 1133 **P=0.007); h (**P=0.002, **P=0.008); i (*P=0.02, **P=0.007, ***P=0.0003); j (**P=0.005, **P=0.003); k (*P=0.04,
***P=0.0006); I (Tnfa **P=0.004, **P=0.005; Ifng ***P=0.0003; II1b **P=0.003, **P=0.008; |14 **P=0.008, **P=0.004; 115 **P=0.003, **P=0.007; I3
**P=0.006, **P=0.008); m (***P=0.0003); o (*P=0.01, ***P=0.0008); p (***P=0.0003, ***P=0.0009); q (**P=0.007); ns = not significant. Data were
pooled from at least two independent experiments. Each dot represents 1 offspring mouse. Dots of same color and symbol represent mouse from same
litter. Data are shown as mean+s.e.m.
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Extended Data Fig. 6 | The expression of bacterial dsrA, H,S levels and impact of 5-ASA on colitis susceptibility. (a-b) The expression of bacterial dsrA
coding for the dissimulatory sulfite reductase (a) by weeks and (b) at 4 weeks after birth in mice grown in reduced litters (SL=Small Litter) or normal
litters (NL). For NL (a (n=10; litters=4), b (n=34; litters=15)); SL (a (n=7; litters=5), b (n=34; litters=20)). (c-f) Faecal H,S levels (c) from mice grown

in NL (n=34; litters=15) and SL (n=43; litters=25), (d) from mice gavaged with coconut oil (n=16; litters=10) or Vehicle (n=8; litters=6), or in the colon
of (e) mice fed NC (n=12; litters=5) or HFD early in life (HFDn; n=12; litters=5), or (f) mice grown in NL (n=21; litters=9) or SL (n=21; litters=12). (g)
The expression of dsrA at 12-week-old from mice fed HFD between 6- to 12-week-old (n=23; litters=15) or NC (n=23; litters=10). (h-j) Fecal H,S levels
(h) measured at 12-week-old mice that fed HFD in adulthood (n=15; litters=7) or NC (n=12; litters=5), (i) measured at 4-week-old mice that fed HFDn
and treated with antibiotics (n=10; litters=4) or not (n=10; litters=5), and (j) mice grown in SL and treated or not with antibiotics (n=19/group; litters/
group=13). (k-q) Mice fed NC or HFD early in life treated during weaning with 5-ASA or controls. (k) Weight of epididymal fat, retroperitoneal fat and
liver, (I) colonic mRNA expression at 4-week-old. (m) Percentage of survival, (n) disease activity index, (o) levels of gut permeability, (p) myeloperoxidase
and (q) colonic MRNA expression after colitis initiation in adulthood. HFD and HFD+5-ASA (k (n=11), | (n=12), litters=6); NC+5-ASA (k (n=6; litters=4),
I (n=8; litters=6)). HFD (i (n=15; litters=12), j-I (n=7; litters=4)); HFD+5-ASA (i (n=15; litters=12), j-I (n=7; litters=4)); No colitis (e-f (n=4), k-1

(n=6), litters=4). For m ('P=0.03) Log-rank test; a-I;n-q, Post hoc Tukey-adjusted tests following significant (P<0.05, after correction) Analyses of
Deviance (mixed-effect models), all ""P<0.0001; d (**P=0.002); I (Reg3b "P=0.009; Reg3g ‘P=0.02; /133 "P=0.003); o (""P=0.0001); q (/l4 "P=0.001,

115 "P=0.0001). Data were pooled from at least two independent experiments. Each dot represents 1 offspring mouse. Dots of same color and symbol
represent mouse from same litter. Data are shown as mean+s.e.m.
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Extended Data Fig. 7 | Pathological imprinting through H,S and microbial immunogens early in life. (a-g) Germ-free mice grown in SL are exposed to
sodium hydrogen sulfide (NaHS) and/or heat-killed microbiota (M), or to vehicle during 2- to 4-week-old. Weight of (a) epididymal fat, (b) retroperitoneal
fat, (c) liver and colonic mRNA expression for (d) cytokines and (e) mucins and antimicrobial peptides measured at 4-week-old. (f) Disease activity

index and (g) colonic transcript profile after colitis induction in adulthood. (h-n) Adult germ-free mice grown in SL are exposed to NaHS and/or M, or

to vehicle during 8- to 10-week-old. (h) Body weight, (i) colonic mRNA expression and (j) gut permeability measured at 10-week-old. (k) Loss of body
weight, (I) disease activity index and (m) colonic length after colitis induction at 12 week-old. (n-r) Germ-free mice grown in SL are exposed to NaHS

and M, and treated with ML-7, or with anti-IFNy and anti-TNFa (anti-IT) antibodies (mAb) or with vehicle, during 2- to 4-week-old. (n) epididymal fat,

(o) retroperitoneal fat and (p) liver at 4-week-old. (q) Diseases activity index and (r) colonic transcript profile after colitis induction in adulthood. For
SL+Vehicle (a-c,k-m (n=6; litters=5), d-e (n=7; litters=6), f (n=9; litters=6), g (n=4; litters=4), h-j (n=5; litters=5)); SL+NaHS (a-c,d-e (n=6; litters=5),
f (n=7, litters=4), g (n=6; litters=4)); SL+M (a-c (n=7; litters=6), d-e,g (n=6; litters=5), f (n=8; litters=4)); SL+M+NaHS (a-c (n=7; litters=6),

d-e,g (n=6; litters=5), f (n=6; litters=4), k-m (n=5,; litters=5), n-r (n=6; litters=6)); SL+M+NaHS adult (h (n=8; litters=7), i-j (n=4; litters=4),

k-m (n=5; litters=5)); SL (n-r (n=6; litters=5)); SL+M+NaHS+ML-7 (n-r (n=7; litters=7)); SL+M+NaHS+anti-IT (n-r (n=7; litters=7)); No colitis group
(g (n=6), m (n=4), r (n=5), litters=4); Post hoc Tukey-adjusted tests following significant (P<0.05, after correction) Analyses of Deviance (mixed-effect
models), all ""P<0.0001; a ("P=0.009); b ("P=0.006); ¢ ("P=0.005); d (/I6 ""P=0.0004); 1122 "P=0.002, ***P=0.0005); f (P=0.01, "'P=0.0002);

g (Ifng “"P=0.009, II1b 'P=0.02, 114 'P=0.03, II5 “"P=0.007); k ("P=0.002, ""P=0.0004); I ("P=0.003); m (""P=0.0005); q ("P=0.005). ns=not significant.
Data were pooled from at least two independent experiments. Each dot represents 1 offspring mouse. Each color represent mouse from same litter.

Data are shown as mean+s.e.m.
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Extended Data Fig. 8 | Effect of hydrogen sulfide early in life on colitis susceptibility. Weight of (a) total body, (b) epididymal fat, (c) retroperitoneal fat,
(d) liver, (e) intestinal permeability and (f) colonic expression of mRNA for cytokines and MLCK and epithelial tight junction proteins at 4 weeks of age in
germfree mice grown in small litter (SL) and exposed to slow release of H,S (GYY4137) and/or heat-killed microbiota (M), or to vehicle control during 2
to 4 weeks of age. (g) Percentage of body loss, (h) disease activity index, (i) colonic length and (j) colonic transcript profile after colitis induction in adult
germfree mice exposed to a slow-release H,S donor (GYY4137) and/or heat-killed microbiota (M) or to vehicle control, and grown in SL, during 2 to 4
weeks of age. Post hoc Tukey-adjusted tests following significant (P<0.05, after correction) Analyses of Deviance (mixed-effect models), all “"P<0.0007;
d (""P=0.0005); f (Il6 'P=0.02; 1122 "P=0.03; Tjp1 'P=0.04; Tjp2 "P=0.004); g (P=0.03, ""P=0.0005); h (P=0.04); i (""P=0.0005); j (""P=0.0008).

ns= not significant. For SL+Vehicle (a-e (n=8; litters=7), f (n=7, litters=6), g-j (n=6; litters=6)); SL+GYY4137 (a-e (n=8; litters=6), f (n=5; litters=4),
g-j (n=6; litters=6)); SL+M (a-e (n=8; litters=7), f (n=6; litters=5), g-j (n=6; litters=6)); SL+M+GYY4137 (a-e (n=10; litters=9), f (n=8; litters=7),

g-j (n=8; litters=8)); No colitis (g-j (n=7; litters=7)). Data were pooled from at least two independent experiments. Each dot represents 1 offspring
mouse. Dots of same color and symbol represent mouse from same litter. Data are shown as mean+s.e.m.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X XX X XX

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Graphpad Prism software (version 7.0e) was used for statistical analyses of survival data, disease activity index, weights data, gene
expression data, colonic lenght, and mesurement of lipocalin-2, MPO and FITC-dextran 4kD level. Prism software (Graphpad) was used to
plot Kaplan-Meier survival curves, bar graphs, and scatter dot plots presented throughout the manuscript. Figure of Graphpad Prism was
used in PPT to generate figures in the manuscript.

Data analysis Statistical analysis was performed with the R software 3.5.1. Quantitative data were analysed using linear mixed-effects models (R
package Ime4), in order to account for statistical dependence among individuals originating from a same family (each progeny being
reared in a single cage). Depending on the experiment, data could be recorded at several time points; two statistical designs were
therefore considered. In simple designs (non-repeated measures) comparisons were made between experimental treatments (fixed
effects) while setting the variable cage as a random term. In designs involving repeated measures (i.e., when variables were repeatedly
recorded over 21 days), two fixed effects were included, the experimental treatment as well as the date of record (analysed as a
categorical variable). The latter models included the mouse ID and the cage label as random factors. The overall statistical significance of
experimental treatments was assessed based on an Analysis of Deviance (ANODE, R package car). Given the large number of statistical
tests involved in this study, all p-values returned by ANODE (including data displayed in Supplementary Figures) were adjusted using the
Benjamini—Yekutieli (BY) procedure, in order to minimize the False Discovery Rate. Any ANODE results that remained significant after BY-
adjustement (P-adjusted < 0.05) were followed by post hoc tests. Pairwise testing among treatments was carried out using a Tukey-
adjusted comparison (R package Ismeans). In the case of Disease Activity Index, data were averaged across three consecutive days (e.g.,
across days 19, 20 and 21) within individuals so that the distribution of the averaged index was suited for analysis with mixed-effect
models. Survival data were analysed by fitting survival curves with the Kaplan-Meier method and comparison among experimental
groups was done using log-rank tests (R package survival).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Provide your data availability statement here.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For bacterial load, total protein, cytokine, lipocalin-2 and MPO levels measurements and survival studies, we used animal numbers that are
precised in Figure legends.

Data exclusions  No data were excluded.

Replication All experiments were performed at least twice, and data from individual mice were pooled from all experiments except post-weaning gPCR
data where one of twice experiments was shown. The numbers of mice were used in each experiment are indicated in Figure legends.
Differences between control and treatment groups showed consistent and reproducible results across our study. The exact number of

independent experiments conducted for each experiment are described in Figure legends.

Randomization  All experiments involving mice were carried as described in material and methods. All group were randomly put together after weaning. All
experiments involving treatments (e.g. NaHS vs. vehicle) were performed on equal groups of cagemates or littermates.

Blinding For all experiments in mice, the experimenter measuring body weight, and other parameters was blinded to mouse treatment groups during
weaning and at adult procedures until being unblinded at the analysis stage.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Specific pathogen free (SPF) females and males C57BL/6 mice were purchased from Charles River and offspring were bred and
housed in the environment of the local animal facility at Institut Pasteur. Germ-free C57BL/6 mice were generated at the
Gnotobiology Platform of the Institut Pasteur. All mice were weaned 28 days after birth (D28) and co-housing used in all
experiments, experimental group were both age- and sex-matched. The age of mice at the beginning of each experiment is
indicated in the Figure legends.

Wild animals Provide details on animals observed in or captured in the field, report species, sex and age where possible. Describe how animals




Wild animals were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight All animal experiments were approved by the committee on animal experimentation of the Institut Pasteur and by the French
Ministry of Research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

S
Q
W
(e
=
®
=
@D
wn
D
Q
=
()
>
=
®

©
@)
=
5

Q
wv
c
3
Q
=

2




	Excess calorie intake early in life increases susceptibility to colitis in adulthood

	Results

	Excess calorie intake early in life increases susceptibility to colitis in adulthood. 
	Excess calorie intake early in life perturbs intestinal homeostasis at weaning. 
	Prevention of pathological imprinting through gut normalization at weaning. 
	Bacterial H2S in pathological imprinting by excessive calorie intake early in life. 

	Discussion

	Methods

	Mice
	High-fat diet and coconut oil gavage
	Control of litter size
	Mouse treatment with antibiotics, chemicals and antibodies
	Models of colitis
	Gut permeability
	ELISA
	Measure of H2S
	Quantification of sulfite-reducing bacteria
	Quantitative PCR
	Quantification and statistical analysis
	Reporting Summary

	Acknowledgements

	Fig. 1 Excessive calorie intake early in life increases susceptibility to colitis in adulthood.
	Fig. 2 Excessive calorie intake early in life increases intestinal permeability and inflammation at weaning.
	Fig. 3 Prevention of increased adult susceptibility through normalization of pro-inflammatory responses at weaning.
	Fig. 4 Prevention of increased adult susceptibility through gut permeability normalization at weaning.
	Fig. 5 Involvement of H2S in pathological imprinting by excessive calorie intake early in life.
	Fig. 6 Involvement of H2S in pathological imprinting by excessive calorie intake early in life.
	Extended Data Fig. 1 Excess calorie early in life increased colitis severity in adult mice.
	Extended Data Fig. 2 Excessive calorie intake early in life induces gut dysfunctionality that does not persist later in life.
	Extended Data Fig. 3 Excessive calorie intake increases body weight through a microbiota-dependent mechanism.
	Extended Data Fig. 4 Prevention of pathological imprinting early in life.
	Extended Data Fig. 5 Exposure to SCFAs in mice fed HFD early in life reduced the severity of colitis in adulthood by mechanism dependent on RORγt-expressing Tregs.
	Extended Data Fig. 6 The expression of bacterial dsrA, H2S levels and impact of 5-ASA on colitis susceptibility.
	Extended Data Fig. 7 Pathological imprinting through H2S and microbial immunogens early in life.
	Extended Data Fig. 8 Effect of hydrogen sulfide early in life on colitis susceptibility.




