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ABSTRACT: 

Granular materials belong to the class of complex materials within which rich properties can 

emerge on large scales despite a simple physics operating on the microscopic scale. Most 

notable is the dissipative behaviour of such materials mainly through non-linear frictional 

interactions between the grains which go out of equilibrium. A whole variety of intriguing 

features thus emerges in the form of bifurcation modes in either patterning or un-jamming. 

This complexity of granular materials is mainly due to the geometrical disorder that exists in 

the granular structure. Diverse configurations of grain collections confer to the assembly the 

capacity to deform and adapt itself against different loading conditions. Whereas the 

incidence of frictional properties in the macroscopic plastic behavior has been well described 

for long, the role of topological reorganizations that occur remains much more elusive. This 

paper attempts to shed a new light on this issue by developing ideas following the 

configurational entropy concept within a proper statistical framework. As such, it is shown 

that contact opening and closing mechanisms can give rise to a so-called configurational 

dissipation which can explain the irreversible topological evolutions that granular materials 

undergo in the absence of frictional interactions. 
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1. INTRODUCTION 

 

Granular materials stand as the archetype of materials that offer a variety of remarkable 

features, despite an a priori very simplistic composition of individual particles interacting 

collectively at contacts. The mechanical properties of granular assemblies have attracted 

much interest within many scientific communities, ranging from soil mechanics to statistical 

physics (Duran, 2000; De Gennes et al., 2002; Parisi et al., 2017). As an illustration, it has 

been shown that, when loaded along a given mechanical loading path, granular materials can 

enter bifurcation regimes where the occurrence of various alternate failure modes is possible 

(Wan et al., 2017). In fact, despite granular materials displaying seemingly elementary 

particle configurations at the mesoscopic level, they yet represent an ideal example of 

complex systems where the existence of several, separate scales―from the grain scale to the 

specimen scale through the mesoscale―gives rise to emergent, salient properties at the upper 

scale. On another note, the behavior of granular materials is also closely related to the second 

law of thermodynamics that refers to the notion of entropy with the irreversibility of processes 

necessitating a positive change in entropy. A thermodynamic process will always evolve so 

long the maximum amount of work that can be extracted from it is minimized.  

 

To understand thermodynamics, the concept of microstates versus macrostates has been 

developed within a statistical framework by Boltzmann in the second part of the nineteen’s 

century and extended later by Gibbs through the notion of statistical canonical ensembles. We 

can normally measure the state variables characterizing a microstate, such as pressure as an 

intensive variable, whereas the microstates consisting of kinetic information (position and 

velocity) about all the individual molecules or atoms constituting the system are inaccessible 

except from a statistical viewpoint. This was the basic argument favoring the illuminating 

statistical approach initiated by Maxwell and Boltzmann (Maxwell, 1860; Boltzmann, 1877), 

then extended and formalized in a convenient statistical physics framework by Gibbs (1902).  

 

From a statistical viewpoint, a system will always tend to adopt a macrostate that corresponds 

to the largest number of microstates, which means that the number of microstates is 

maximized. This fundamental idea is embedded within the famous H-theorem demonstrated 

by Boltzmann in 1872, giving way to the statistical interpretation of the second law of 

thermodynamics, reformulated later on through the celebrated Boltzmann’s formula 

lnS k=   that relates entropy S  to the number   of microstates compatible with the 
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macroscopic state. In short, the probability of achieving a macrostate is proportional to the 

number of possible compatible microstates. Referring to the microcanonical ensemble 

statistics for isolated systems, the probability of all compatible microstates is the same. In 

other words, as stated in the ergodicity postulate, an isolated system at equilibrium will 

occupy successively all the accessible microstates for the same duration, assuming that a 

sufficiently large time range is considered. 

 

Recently, this general framework of statistical physics has attracted some attention in granular 

solid mechanics as the system is constituted by a set of individual granules that can interact 

with each other. At a first glance, it could be tempting to apply the above framework to these 

materials by just regarding the granules as the molecules in a liquid or a gas. This pioneering 

idea dates to three decades ago and can be attributed to Edwards’ paper (Edwards and 

Oakeshott, 1989) where the typical case of powders was considered. As powder particles are 

very fine, any macroscopic specimen contains a huge number of constituents so that the 

classical concepts of statistical physics can be applied within a certain degree of confidence.  

 

In the Edward’s paper, it is shown that unlike gas or liquids, the volume could play the role of 

kinetic energy, then proposing the measure of compactness as a convenient notion equivalent 

to the thermodynamic temperature. This was the first attempt paving the road to many 

contributions situated along this line of reasoning (see for example Baule et al, 2018; Jaeger 

et al. 1996; Kadanoff, 1999; Blumenfeld and Edwards, 2003 and 2014). In particular, granular 

gas and fluids (very loose granular matter) were systematically described by applying 

concepts borrowed from statistical mechanics as these materials are first and foremost 

disordered ones whose internal variables such as particle locations or velocities are random 

fields that can be described through a suitable statistics (Liu and Nagel, 1998; Silbert, 2005). 

One key concept was the introduction of granular temperature, constructed in a similar way as 

in statistical physics from the root mean square of the difference between the mean velocity 

and the actual particle velocity field; see for example, a detailed review of this question in 

Goldhirsch, 2008; Serero et al., 2008). 

 

When it comes to investigating the case of granular solids which are dense granular matter, 

several issues arise. In particular, the high compactness of these materials compromises a 

direct application of the above-mentioned particle velocity concepts. It turns out that the 

governing mechanisms within granular solids are totally different from those taking place 
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within granular fluids and gas, mainly governed by the velocity field of particles that collide 

and move along a free path between successive collisions. By contrast, processes that occur 

on the microscopic scale within a granular solid are mainly dictated by the mechanical 

interaction of particles at contacts. All contacts flock together to form a fabric pattern made 

up of small grain clusters involving a few grains. These clusters degenerate into so-called 

grain loops in 2D conditions (Tordesillas et al., 2012; Pucilowski et al., 2020; Walker et al., 

2015). In addition, nearly linear chains, called force chains and carrying the main fraction of 

the internal contact forces, develop within the assembly (Radjai et al., 1998; Peters et al., 

2005). In line with Edwards’ conjecture, it is thus believed that such materials can be couched 

within the above thermodynamic framework. 

 

Restricting henceforth our analysis to two-dimensional specimens and exploring further an 

illuminating idea suggested by Wanjura et al. (2020) and Sun et al. (2020), the number of 

microstates in the assembly can be likened to the myriad of mesoscopic loops the collection of 

particles can form so that their evolution (genesis and breakage) is reminiscent of a chemical 

reaction. Also, the propensity or spontaneity of a change in loops topology is just like what 

happens in the kinetics of a chemical reaction dictated by entropy and rate of reactions, here 

again within the frame of the second law of thermodynamics. 

 

The manuscript will be organized as follows. The basic thermochemistry background will be 

first reviewed in section 2, and the constitutive concepts of a proper configurational granular 

mechanics will be developed in section 3, leading to the introduction of a configurational 

entropy term. Then, section 4 will elaborate an extension of the continuum thermodynamic 

framework to include the concepts of the configurational granular mechanics. Finally, a 

closing discussion will shed light on the potential advances that can be realized in the 

framework of such a proposed approach. 

 

 

2. THERMOCHEMISTRY BACKGROUND 

 

We consider in this section a mixture of m  different chemical species iC  that can react with 

each other so that the number iN  of each compound of a given species ‘i’ can evolve. 

Classically, a chemical reaction involves reactive compounds that can react with each other to 
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form products. Adopting a general formalism, the chemical transformation operating within 

the mixture can be expressed as: 

1 1 2 2 0m mC C C  + + + =  (1) 

 

where i  is the stochiometric coefficient of the species ‘i’ with i  being positive for products, 

and negative for reactive species. 

The effect of a change in the number of compounds 
iN  on the internal energy U  of the 

system is described by Gibbs’ equation which involves the chemical potential 

, , j

i

i S V N

U

N


 
=  

 
 of each species as follows: 

1

m

i i

i

U S P V N 
=

= − +  (2) 

 

where S  is the entropy of the system at a given thermodynamic temperature   and pressure 

P . Eq. (2) can be thus rearranged as: 

1

1 m
i

i

i

P
S U V N



  =

= + −  (3) 

 

where the chemical potential of the species ‘i’ now reads: 

, , j

i

i U V N

S

N
 

 
= −  

 
 (4) 

 

The chemical reaction of species, as expressed in Eq. (4), undergoes the concept of chemical 

affinity A , defined as: 

1

m

i i

i

A  
=

= −  (5) 

 

By invoking the notion of extent of reaction  , with i iN  = , the internal entropy 

production due to the extension of the chemical reaction under constant internal energy and 

volume reads: 

1

m
i

i

i

A
S N

T T



=

= = −  (6) 
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Equation (6) allows the entropy production to be expressed in a standard formalism as the 

product of a thermodynamic force (chemical affinity divided by the thermodynamic 

temperature) and a conjugate flux (rate of extent of reaction). The second law of 

thermodynamics imposes that 0A   . In other words, the system will evolve (i.e., the 

chemical reactions extent) until the affinity vanishes: 0A= . It is worth mentioning that once 

the affinity is zero, the system is in a stationary state where chemical reactions may continue 

progressing in a way that the fraction i
i

N

N
 =  of each species remains constant on average, 

with 
m

i

i

N N=  being the total number of compounds. 

 

It is useful at this stage to draw the parallel with the topology change of loops of different 

orders (i.e., number of particles) that occur within a granular system (Wanjura et al., 2020; 

Sun et al., 2020). The topological evolution of loops can be compared to some extent with a 

chemical reaction in the sense that chemical reactions are governed by chemical bonding 

processes involving the sharing or loss of electrons in the outermost layer, while granular 

materials under an external mechanical loading experience a contact activity by forming or 

losing contacts between adjoining grains, which leads to new loop topologies.  

 

In order to exploit the above-mentioned analogy, it is convenient to describe a two-

dimensional granular assembly as a set of elementary, interconnected grain loops (Fig. 1). 

Grain loops are minimally closed contact chain structures with the number of grains involved 

in a given loop defining the loop order. Thus, a loop containing i grains will be denoted iL . 

Referring to the fundamentals of statistical physics, a granular assembly in a given 

mechanical state (macroscopic state) defined by a set of macroscopic variables (such as the 

stress field), can therefore be associated with a set of microscopic states characterized by the 

topological configuration of the grains through a distribution of loops. By analogy with 

statistical physics, all the loop distributions compatible with the macroscopic state thus 

constitute a statistic ensemble denoted as a canonical ensemble. 

 

The key idea of this manuscript is to borrow the concepts of thermochemistry recalled herein 

to describe the evolution of the topological microstructure within a granular assembly. This is 
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done by drawing a link between the notion of chemical reaction of species and the notion of 

‘topological’ reaction within a collection of elementary loops that can reorganize themselves 

by gaining or losing a contact. 

 

 

Fig. 1. Example of a loop tessellation in a 2D granular assembly. The tessellation is obtained by joining the 

centers of the particles in contact with branch lines, forming polygons. Each polygon corresponds to a specific 

loop, the number of sides giving the order of the loop (after Liu et al., 2020) 

 

 



- 8 - 

3. THE CONCEPT OF CONFIGURATIONAL GRANULAR MECHANICS 

3.1 Preamble 

 

We consider a system consisting of a given two-dimensional granular material, initially in a 

configuration oC  (initial configuration) with a volume oV  (with 
o oV =  ). After a loading 

history, the system is in a strained configuration C  and occupies a volume V  (with V =  ), 

and is supposed to be in mechanical equilibrium under the current prescribed external loading. 

This loading is imposed through either boundary static or kinematic parameters, referred to as 

the control parameters, that make the entropy evolve while energy exchanges develop. The 

entropy production S  (rate of entropy) of the system can be split into the internal entropy 

production intS  (involving the entropy produced within the system) and the external entropy 

production extS  (concerning the entropy exchanged through the boundary of the system with 

the external world), i.e. 

int extS S S= +  (6) 

 

In soft matter physics, granular materials under standard mechanical loading are considered 

athermal, glassy materials (Parisi, 2012; Bi et al., 2015) where thermal fluxes can be omitted 

as a first approximation. The thermodynamic temperature is assumed constant. This 

assumption is reasonable in most situations but can fail when dealing with very large-scale 

problems such as in earthquakes where the mobilized frictional energy under very high 

tectonic pressures induces fast and significant temperature rises. As shown in Nicot et al. 

(2023), the internal entropy production intS  is proportional to the plastic dissipation power 

pl p

ij ij
V

W dv =  : 

int 1 p

ij ij
V

S dv 


=   (7) 

 

where   is the thermodynamic temperature of the system, and σ  (resp. pl
ε ) corresponds to 

the Cauchy stress tensor (resp. the plastic part of the strain tensor rate) field acting within the 

system. Basically, plastic dissipation within athermal granular systems stems from the 

frictional sliding or rotations at contacts between adjoining particles (Nicot and Darve, 2007). 

It is well admitted that the frictional dissipation between two solids in contact along an 

interface plane can be described by Coulomb’s law, which states that sliding occurs whenever 
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the tangential contact force tF  within the tangent plane equals the normal contact force nF  

multiplied by the friction coefficient  . The Coulomb criterion reads therefore: 

t nF F  no sliding occurs (8a) 

t nF F=  the sliding can occur along the interface (8b) 

 

Thus, the system reorganizes itself through microstructural rearrangements stemming from 

the relative motion between the grains. An often-debated question then arises: What happens 

when the friction between the particles is ideally set to zero? In such a case, Eq. (8b) imposes 

that sliding occurs in any contact plane under zero tangential force. It turns out that the 

specimen mainly rearranges in an irreversible way under external loading with no frictional 

dissipation. Whereas the microstructure evolves irreversibility, Eq. (7), as such, leads to the 

counter-intuitive result that no entropy production takes place. This comes to infer that Eq. (7) 

might be incomplete, suggesting the existence of a missing term capable of properly 

accounting for microstructural evolutions alone, irrespective of any frictional dissipation 

contribution. It is thought that this missing term can be identified with the so-called 

configurational entropy.  

 

The concept of configurational entropy introduced in the middle of the last Century (Gibbs 

and Dimarzio, 1958; Adam and Gibbs, 1965) was repeatedly proposed as a way to express the 

entropy of discrete, athermal media by taking inspiration from Boltzmann’s approach 

(Preisler and Dijkstra, 2016), or, equivalently, from Shannon’s information theorem 

(Shannon, 1948). It should be noted that both theories have been demonstrated to be 

equivalent by Jaynes, in 1957; see, for example, a complete overview in (Jaynes, 1957 and 

1983).  

 

The range of eligible materials encompassing configurational entropy goes far beyond 

granular materials, including for example biology components such as proteins (Doig and 

Sternberg, 1995). Basic approaches were essentially developed by advocating the existence of 

a probability density function modeling the randomness of a given topological descriptor such 

as the contact distribution in granular-like assemblies.  

 

In this work, we propose an alternative approach, rooted in a different understanding of 

granular media. Basically, a granular solid is governed by both grain sliding and contact 
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opening or closing. These two mechanisms can be regarded as the core ingredients that 

control the mechanical response of a granular assembly under a given loading. Grain sliding 

causes deformation of loops, and therefore (frictional) plastic dissipation related to a large 

fabric rearrangement. On the other hand, contact losses and gains cause a configurational 

change with no frictional dissipation. Both of them are obviously linked as particles sliding, 

when large enough, can induce contact opening or closing, which in turn leads to 

microstructural rearrangements. Thus, a way to account for these physical ingredients is to 

introduce an additional entropy term that specifically accounts for the contact opening or 

closing, without any plastic effect.  

 

The contact opening and closing mechanism is associated with the concept of configurational 

entropy that will be detailed out in the next section, while frictional plasticity processes are 

associated with the classical internal entropy as given in Eq. (6). We shall emphasize that the 

configurational entropy developed in this work refers to an instantaneous event, consisting of 

contact creation or deletion, excluding any finite grain motion. By the same token, the entropy 

variation related to a chemical reaction refers to the creation or deletion of chemical bonds, in 

exclusion of any diffusion effect involving atomic or molecular motion within the chemical 

mixture.  

 

The purpose of the next sections is to derive the expression of this configurational entropy by 

elaborating a novel framework herein denoted as the configurational granular mechanics. 

 

3.2 Configurational framework for an elementary granular reaction 

 

The granular system introduced in section 3.1 can be described, from a microstructural point 

of view, by a microstate micE  corresponding to a distribution of loops iL  . It is convenient to 

express micE  as follows: 

( ) ( ) ( ) mic

3 3 4 4, , , , , ,m mE L N L N L N=  (9) 

 

where the collection set includes all the loops and orders contained in the assembly at a given 

state.  
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The order of loops ranges from a minimal size (equal to 3) to a maximal size m  (Tordesillas 

et al., 2012; Walker et al., 2015; Zhu et al., 2016a and 2016b; Pucilowski and Tordesillas, 

2020; Deng et al., 2022). For a given macrostate macE  controlled by the boundary conditions 

and described from extensive variables such as the stress state, a very large number 
En  of 

related microstates micE  exists, corresponding to all loop distributions compatible with macE .  

 

As previously mentioned, all these compatible microstates constitute a canonical ensemble. 

Basically, the order of magnitude of 
En  scales with mN , where N  is the number of particles 

contained in the assembly. Under an incremental change in the boundary conditions, the loop 

distribution will evolve from a given microstate mic

1E  to a new microstate mic

2E . Inspired by 

the pioneering ideas presented in Wanjura et al. (2020) to build a rational framework for 

describing the detailed balance of topological changes in a 2D granular assembly, we consider 

that the loop distribution evolves through elementary, instantaneous loop transformations 

referred to as elementary configurational reactions. Ignoring as a first approximation the 

generation of rattlers, these configurational reactions, as exemplified in Fig. 2, can be 

formulated as follows in a very general way: 

, 2( )i j i j i jR L L L + −+  (10) 

for any  4, ,i m , with j i  

 

 

 

 

 

 

 

 

 

Fig. 2. Example of an elementary configurational reaction. A loop with 8 grains transforms reversibly into a loop 

with 7 grains and a loop with 3 grains by contact opening/closing between grains 1 and 2. 

 

Turning to the mesoscopic scale, the configurational reaction ,i jR  transforms reversibly the 

meso-configuration ( ), 0C i  into the meso-configuration ( ), 2C j i j+ − , where the arguments 

7 3L L+  8L  

1 1 

2 2 
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between brackets correspond to the order of loops composing each of the two meso-

configurations. Over an infinitesimal duration dt , let ,i jdN  be the infinitesimal change in the 

amount of loops iL  through the configurational reaction ,i jR  taking place within the 

assembly. We do recall that all reactions are considered instantaneous. Thus, the extent of the 

configurational reaction, by analogy with the thermochemistry formalism, is given by 

, ,i j i jd dN = − . As both reactions ,i jR  and , 2i i jR + −  are identical, it is worth noting that 

, , 2i j i i jdN dN + −= . 

 

It is emphasized here that the configurational approach proposed in this manuscript focuses on 

the contact network, and its evolution over contact gain and loss that entail closed loops 

evolution. This key idea constitutes the basis of the subsequent configurational granular 

mechanics.  

 

Let’s consider an isolated loop iL  containing i  distinguishable particles and i  contacts. If the 

chain of particles was not closed, there would be !i  different possible configurations to 

arrange the i  contacts. A configuration consists of a sequence of the i  contacts (and therefore 

of the i  grains), irrespective of the geometrical shape of the chains. For a closed loop, there 

will be ( )1 !i −  different configurations, as all the i  cyclic permutations should be removed. 

 

By denoting ,0iS  the entropy of the configuration ( ), 0C i , composed of a unique loop of order 

i, and postulating a connection with Boltzmann’s formula, the entropy can be ideally 

expressed as a function of the number of compatible microstates, i.e.,  

( ),0 ln 1 !iS k i= −  (11) 

 

where k is a Boltzmann-like constant, the magnitude of which should depend on the effective 

number of grains under consideration and a large enough number of configurations of grain 

arrangements to define an ensemble average as the state of the system. 

 

It should be recalled that for large systems such as usual (molecular) gases and liquids, the 

number of particles (atoms or molecules) is typically on the order of the Avogadro’s number, 
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i.e. 2310 , which scales with the inverse of the standard Boltzmann constant, 

231.3810Bk − J.K-1. 

In a similar way, the configuration ( ), 2C j i j+ −  is composed of two loops jL  and 2i jL + − , 

that will be assumed to be isolated from any external constraints. Each of the two loops 

constitutes a set of contacts ( j  contacts and 2i j+ −  contacts) that will be all considered 

distinct from each other. As such, the entropy , 2j i jS + −  of the configuration ( ), 2C j i j+ −  can 

therefore be expressed as: 

( ) ( ) ( ) ( )( ), 2 ln 1 ! ln 1 ! ln 1 ! 1 !j i jS k j k i j k j i j+ − = − + + − = − + −  (12) 

 

By analogy with the chemical potential defined in Eq. (4), we introduce the notion of 

configurational potential i  associated with the loop iL , as follows: 

( )ln 1 !i k i = −  (13) 

 

The physical meaning of this potential is that the more contacts a loop has, the higher its 

propensity to split into 2 smaller loops. 

 

Again, by analogy with the chemical affinity previously defined in Eq. (5), the notion of 

configurational affinity ,i jA  associated with the reaction ,i jR , can readily be defined as: 

( ), 2

( 1)!
ln

( 1)!( 1 )!
i j i j i j

i
A k

j i j
   + −

 −
= − − + + =  

− + − 
 (14) 

 

Straightforward algebraic manipulations make it possible to show that ,i jA  is a strictly 

positive quantity (see Appendix A1). Thus, the configurational entropy production ,

conf

i jS  

related to the reactions ,i jR  can be written as: 

, 2

, , ,

i j i j i jconf

i j i j i j

A
S

  
 

 

+ −− −
= =  (15) 

 

that is: 

, ,

( 1)!
ln

( 1)!( 1 )!

conf

i j i j

i
S k N

j i j

 −
= −  

− + − 
 (16) 
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From Eq. (15), it can be inferred that whenever the reaction ,i jR  advances toward the right-

hand side ( , 0i j  ), forming two smaller loops jL  and 2i jL + − , the configurational entropy 

production ,

conf

i jS  is strictly positive. It is negative along the reverse way, when a larger loop 

iL  is formed from two smaller ones. The direction of the configurational reaction is therefore 

governed by the potentials of the different loops under consideration. If the potential of jL  

(left hand loop) is greater than the potential of 2j i jL L + −+  (right hand loops), the reaction 

progresses toward the right, that is from the highest potential toward the lowest potential. This 

clarifies the meaning of the configurational affinity, that characterizes the propensity of the 

reaction to progress toward a particular side. 

 

3.3 Ensemble of configurational granular reactions 

 

A rational framework has been developed in the previous section to describe a single, 

elementary reaction ,i jR . Over an infinitesimal duration dt , a distribution of ,i jdN  reactions 

,i jR  take place within the whole granular assembly, with 3 int( / 2) 1j i  +  and 4 i m  . 

The distribution is limited to int( / 2) 1j i + , as reactions ,i jR  and , 2i i jR + −  are identical. 

According to the additivity property of the entropy, the configurational entropy production for 

the whole assembly can be expressed as: 

int( /2) 1

,int( /2) 1
4 3

, ,

4 3

im

i jim
i jconf conf

i j i j

i j

A

S S N


+

+
= =

= =

= = −

 
   (17) 

 

with 
int( /2) 1

,

4 3

im

i j

i j

A A
+

= =

=   being the mutual affinity between all the configurational species 

composing the whole assembly. 

 

The infinitesimal change idN  in the number of loops iL  over a duration dt  can be related to 

the infinitesimal change ,i jdN  in the amount of loops iL  through the reactions ,i jR . Indeed, a 
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loop iL  can merge with a loop 2j iL + −  to form a larger loop jL  (with 1i j m+   ), or split 

into two smaller loops jL  and 2i jL + −  (with 3 int( / 2) 1j i  + ). Thus, we have:  

( )3 , 1 ,3

4

1
m

i j j

j

dN dN −

=

= − +  when 3i =   (18a) 

( )
int( /2) 1

, , 2 ,

3 1

1
i m

i i j i j i j i

j j i

dN dN dN
+

+ −

= = +

= − +   when 4 1i m  −  (18b) 

int( /2) 1

,

3

m

m m j

j

dN dN
+

=

=   when i m=   (18c) 

 

where ,k l  is the Kronecker symbol, with , 1k l =  if k l= , and , 0k l =  otherwise. It should be 

noted that for the particular situation where 2 2j i= − , the loop jL  splits into two identical 

loops iL . For example, a loop 4L  can split in two loops 3L  when two opposite grains contact. 

 

The configurational entropy of the assembly, as given in Eq. (17), can be rewritten by virtue 

of Eqs. (18). The following expression can readily be obtained (see Appendix A2): 

3

1 1m
conf

i i

i

S N 
 =

= − +  (19) 

 

with ( ) ( )
int( /2) 1 1

2 , , 2 ,

4 3 3 1

1
im m m

j i j i j i i j i j i

i j i j i

N N    
+ −

+ − + −

= = = = +

= + − +   .  

 

Using tensorial manipulations, it can be shown that this last term is always nil with the proof 

of this result given in Appendix A3. This allows us to formally recover the classical Gibbs 

equation which was given in Eqs. (3) and (6) for the entropy of a mixture of m chemical 

reacting species under constant volume and internal energy. Thus, analogously we have the 

configurational entropy as:  

3

1 m
conf

i i

i

S N
 =

= −   (20) 

 

At this point, it should be stressed that the instantaneous contact opening and closing event is 

associated with no volume nor energy changes. As such, ending up with a relation that is 
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formally identical to the Gibbs equation should be regarded as a strong proof of consistency 

of the approach developed in this work. 
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4. EXTENDING THE CONTINUUM THERMODYNAMICS FRAMEWORK 

4.1 Fundamentals of thermodynamics 

 

The fundamentals of the standard continuum thermodynamics are first reviewed in this 

section. The internal energy of any material system is given by the first law of 

thermodynamics, i.e.  

ij ij

V

U Q dv = +   (21) 

 

where the heat power Q  reads as: 

i i

V V

Q r dv q n ds


= −   (22) 

 

The first integral corresponds to the radiated heat within the system body, and the second 

integral accounts for the boundary conduction heat transfer with a heat flux q .  

 

Equation (21) expresses the internal energy U  within the system in an integral form. Noting 

V

U e dv=  , where e  denotes the specific internal energy and   the local density of the 

material, Eq. (21) can be expressed following a local formulation as: 

i
ij ij

i

q
e r

x
   


= + −


 (23) 

 

As we have intextS S S= + , with 

ext i
i

V V

qQ r
S dv n ds

  


= = −   (24) 

and 

int

V

S dv



=   (25) 

 

where   denotes the total dissipation rate within the system, and noting 
V

S dv =  , where 

  is the specific entropy, it can be shown that: 
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i i

i i

q q
r

x x


   



 
 = − + −

 
 (26) 

 

where the term int i

i

q
r

x
   


 = − +


 stands for the intrinsic dissipation rate, whereas the 

term th i

i

q

x






 = −


 represents the conduction heat dissipation rate. Eq. (26) leads to the 

classical Clausius-Duhem inequality. 

 

 

4.2 Entropy as a combination of dissipative and configurational processes 

 

We now introduce the effective specific entropy * , defined as the difference between the 

specific entropy   and the configurational part conf , with conf conf

V

S dv =  . Thus: 

* conf  = −  (27) 

 

It should be emphasized that the configurational entropy accounts only for the topological 

changes induced by instantaneous contact opening and closing events in the absence of any 

other processes such as grain sliding and rotation, or grain deformation. Therefore. the 

effective entropy corresponds to the usual entropy stemming from standard dissipation 

processes, excluding any configurational processes considered in this work. Thus, 
*  can be 

related to the Helmholtz free energy through the classical Legendre transform: 

*e   = −  (28) 

 

Combining Eqs. (23) and (28) yields the following relation: 

( )*th confi
ij ij

i

q
r

x
          


 = − − − − − +


 (29) 

 

which can be rearranged as: 

( )int *th conf

ij ij        + = −  + + +  (30) 
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Restricting the analysis to athermal materials makes it possible to omit the term *  . 

Furthermore, the thermodynamic temperature within the material system is assumed to be 

constant (isothermal conditions), so that 0th = . Then, using the standard additive strain rate 

decomposition 
e p

ij ij ij  = + , with 
e

ij  being the elastic strain part and 
e

ij  being the plastic 

strain counterpart, yields: 

int e p conf

ij ij ij ij        = −  + +  (31) 

 

Noting that the rate of the Helmholtz free energy is 
e

ij ij   = , the internal dissipation 

potential given in Eq. (31) reduces to: 

int p conf

ij ij     = +  (32) 

 

This corresponds to the intrinsic dissipation rate, which is always positive according to the 

second law of thermodynamics. It turns out that the intrinsic dissipation rate is composed of 

two terms. The first one, 
int, p p

ij ij  = , corresponds to the plastic (frictional-based) processes 

induced by grain sliding at contacts, while the second one, int,conf conf   = , pertains to the 

configurational transformation related to contacts opening and closing. 

As 
int

intint

V V

S dv dv 



= =  , where int  corresponds to the specific internal entropy, it can 

also be written that: 

int 1 p conf

ij ij     


= +  (33) 

 

Equation (33) constitutes a local formulation of the internal entropy production written at the 

material point scale. By extending the formulation to the whole granular assembly, it can 

eventually be obtained that: 

int

3

1 1 m
p

ij ij i i

iV

S dv N  
  =

= −   (34) 

 

where the configurational potential i  of each loop iL  is given by Eq. (13). 
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5. CLOSING DISCUSSION 

5.1 Configurational irreversibility 

 

Equation (34) embeds the important physical notion that the internal entropy, and thereby the 

dissipation potential, is composed of a plastic dissipation term due to sliding of particles and a 

complementary term stemming from transformations of the internal configurational topology. 

It should be emphasized that loops deform mainly through plastic sliding at contacts as well 

as rolling motion, inducing changes in the conformation of loops, i.e., their geometry and 

arrangement. If these changes do not give rise to contact opening and closing, the distribution 

of loops stays the same, and the dissipation within the system is entirely captured by the 

plastic term int, 1p p

ij ij

V

S dv 


=  . Otherwise, when the deformation of the loops involves 

contact opening or closing, the mesostructures transform with potential subsequent changes in 

the loop distribution. The dissipation associated with this change in topology is properly 

described by the configurational term int,

3

1 m
conf

i i

i

S N
 =

= −   (for the sake of simplicity, and to 

stay consistent with the notations of section 3.2, this term will be noted 
confS  in the sequel). 

 

When it comes to deal with very low friction materials, such as lubricated assemblies, the 

contribution of the plastic dissipation in the entropy can become negligible. In the limiting 

and ideal case where the friction is ideally zero, the term 
int, pS  disappears so that the entropy 

production is then solely supported by the configurational changes within the specimen. This 

is indeed meaningful as irreversible strains are expected to occur, whereas no plastic 

dissipation develops, and no plastic dissipation-based entropy production takes place.  

 

It is crucial to quantify the direction of variation of 
confS , according to the changes in 

configuration. As mentioned in section 3, the configurational entropy production ,

conf

i jS  is 

strictly positive whenever the reaction ,i jR  advances toward the right-hand side ( , 0i j  ), 

forming smaller loops jL  and 2i jL + − , and is negative along the reverse way, when a larger 

loop iL  is formed. Thus, according to the second law of thermodynamics, it is expected that 

under a given loading, a frictionless granular specimen should evolve in a way that promotes 



- 21 - 

the creation of smaller loops. The largest loops disappear to the benefit of smaller ones, 

making the specimen contract and its specific volume decrease.  

 

The above-mentioned result can indeed be checked from numerical simulations based on a 

discrete element method (Cundall and Strack, 1979). The mechanical response of a two-

dimensional frictionless granular specimen, axially compressed under a constant lateral 

pressure, is simulated. As shown in Fig. 3, the configurational entropy, normalized by the 

Boltzmann-like constant, increases monotonously (from an initial, arbitrary zero value) until 

reaching an asymptotic value on average. The fluctuations observed in Fig. 3 will be 

discussed in section 5.3. 
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Fig. 3. Simulation of the response of a dense, frictionless 2D specimen made up of a polydisperse assembly of 

20,000 spherical particles along a biaxial loading under a constant lateral stress of 100 kPa, by using a discrete 

element method (YADE open-source code, Smilauer et al., 2015). The evolution of both the normalized 

deviatoric stress1 and the configurational entropy is given in terms of the axial strain. 

 

5.2 Critical state regime in the light of the configurational mechanics 

 

As another illustration of the applicability of the configurational granular mechanics 

framework developed in this work, we propose to address and clarify in a general manner the 

issue of the critical state regime that occurs in solid materials under shearing. This intriguing 

feature has been questioning the scientific community for many decades (Roscoe et al., 1958; 

                                                 
1 The normalized deviatoric stress is given by 2/q  , where 1 2q  = − , 1  is the axial stress, and 2  is the 

constant lateral stress.  



- 22 - 

Been et al., 1991; Parisi et al., 2017; Liu et al., 2020; Deng et al., 2022). Granular materials 

experience an ultimate regime (denoted as the critical state regime), bringing the material to a 

unique mechanical state defined by a constant specific volume and a constant stress state, 

irrespective of the initial porosity of the material, while shear deformation processes are being 

maintained. Furthermore, for a sufficiently densely packed specimen, a phase transition is 

observed after a certain level of shearing coinciding with the formation of a strain localization 

pattern with one or multiple shear bands developing (Desrues and Andò, 2015). It was 

recently shown that this phase transition is consistent with the extremal entropy production 

theorems (Nicot et al., 2023), leading to an optimal dissipative structure (namely, the shear 

band pattern) able to dissipate the most part of the external energy put into the system, and 

making the system able to sustain external loading without collapsing (Wang et al., 2023).  

 

It has repeatedly been observed that dense granular specimens under shearing experience a 

spontaneous break in symmetry transitioning to a lower state of energy before reaching the 

critical state regime. This break in symmetry corresponds to a phase transition from a 

statistically homogeneous state to a heterogenous one, giving way to a shear band pattern 

fully developed once the critical state regime is reached. Thus, the specimen is composed of 

different spatial domains, with totally different properties. While the domain located outside 

the shear band pattern remains dense with nearly no dissipation processes occurring, the 

domain inside the shear band undergoes a marked dilatancy associated with an intense plastic 

dissipation.  

 

The above-described transition toward a structured material has recently been investigated 

(Nicot et al., 2023) by invoking the extremal entropy production theorems (Glansdorff and 

Prigogine, 1954, 1963 and 1964; Prigogine and Lefever, 1968; Veveakis and Regenauer-Lieb, 

2015; Dewar, 2005; Ziegler, 1983; Janečka and Pavelka, 2018; Benfenati, and Beretta, 2018; 

Porporato et al., 2020; Lucarini et al., 2020). Such phase transitions can be encountered in 

various situations such as the Rayleigh-Bénard cells (Bénard, 1901; Rayleigh, 1916), the 

chemical clocks (Hudson and Mankin, 1981), or many biological processes based on cellular 

self-organizations. All these transitions might suggest that the second principle of 

thermodynamics is violated, as they give rise to a gain in order. In particular, the formation of 

the shear band is accompanied by a dilatant behavior promoting the formation of larger loops 

to the detriment of smaller ones. Thus, the configurational reactions given in Eq. (10) advance 

toward the left side, which corresponds to a decrease in the configurational entropy.  
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This apparent paradox is in fact resolved by noting that the decrease in configurational 

entropy within the shear band pattern is mitigated by the increased plastic dissipation capacity 

of the shear band. As we have recently shown (Nicot et al., 2023; Wang et al., 2023), the 

shear band is an optimal dissipative structure that allows the specimen to resist the shear 

loading. By the same token, a fluid heated at the bottom should trigger a structuring 

mechanism through Rayleigh-Bénard convective cells, to undergo the external energy 

provided beyond a certain level of heating. In fact, this self-organization process is likely to 

concern any complex systems. This key concept that gathers self-organization, structure, and 

dissipation through logical links was at the core of Prigogine’s developments during the past 

Century (Prigogine and Lefever, 1968 and 1975; Nicolis and Prigogine, 1977). The 

configurational granular mechanics proposed herein clearly provides a rational interpretation 

framework. 

 

As a numerical illustration, Fig. 4 gives the evolution of the normalized configurational 

entropy, together with the deviatoric stress, along an axial compression under a constant 

lateral stress of 100 kPa. The same numerical specimen as in Fig. 3 has been used, with a non-

zero intergranular friction ( 35g =  deg) between the grains. As expected from the above 

theoretical framework, the configurational entropy is decreasing (from an initial, arbitrary, 

zero value), until reaching on average an asymptotic value consistent with the critical state 

regime. 
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Fig. 4. Simulation of the response of a dense, frictional 2D specimen made up of a polydisperse assembly of 

20,000 spherical particles along a biaxial loading under a constant lateral stress of 100 kPa, by using a discrete 

element method (YADE open-source code, Smilauer et al., 2015). The evolution of both the normalized 

deviatoric stress and the configurational entropy is given in terms of the axial strain. 
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5.3 Stationary regime and fluctuations 

 

Once a shear band pattern has formed, its topological structure, basically defined through the 

loop distribution, stays constant on average, which then allows us to describe the critical state 

regime as a proper stationary regime (Tordesillas, 2007; Zhu et al., 2016a; Kuhn, 2016a and 

2016b; Deng et al., 2021). As a matter of fact, this stationary regime corresponds to the 

microstate ( ) ( ) ( ) mic

3 3 4 4, , , , , ,m mE L N L N L N=  staying the same on average with 

fluctuations in the loop distribution occurring continuously (Zhu et al., 2016a and 2016b; Liu 

et al., 2018; Deng et al., 2022). In other words, dissipative rearrangements pull the system to 

a stationary evolution state (Pouragha and Wan, 2021) where configurational changes reach a 

stationary value dominated by instantaneous, reversible contact gains and loss. More 

specifically, loop transformations keep on developing, with no effect on the microstate. The 

configurational reactions ,i jR  are always active, transforming reversibly the meso-

configurations ( ), 0C i  into the meso-configurations ( ), 2C j i i+ − . Locally, the system is 

configurationally reversible, but these reversible reactions give way to macroscopic 

irreversibility on the specimen scale.  

 

These configurational reactions can be regarded as local fluctuations (or configurational 

fluctuations) that develop within the shear band, thereby corresponding to a region 

undergoing very intense configurational activity. This exhumes the famous paradoxical issue 

that crossed the past century without finding a clear answer, challenging the fundamental 

Boltzmann’s principle that results from the statistical conception of the second principle of 

thermodynamics. Any macroscopic system (gas, liquid) brought out of equilibrium 

experiences a macroscopic irreversibility, in accordance with the second principle, even 

though the evolution of each microscopic component, basically governed by the second 

Newton’s law, is theoretically reversible. It is worth noting that this paradox was clarified 

recently through the dissipation theorem (Evans and Searle, 2002). A thorough review 

discussing this paradox can be found in (Dewar, 2005). 

 

The configurational fluctuations occurring at the critical state correlate with stress fluctuations 

developing within the granular assembly loaded until the critical state regime takes place. As 

shown in Fig. 5, where a biaxial loading path is simulated by using a discrete element method, 

stress fluctuations develop after the stress peak is reached, and become well marked in the 
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critical state regime. As pointed out in Zhu et al. (2016b) and Clerc et al. (2021), these stress 

fluctuations stem from continuous microstructural reorganizations occurring within the 

assembly. Considering the evolution of two loop categories (loops with 3 grains, and loops 

with 6 grains), it can be observed in Fig. 6 that the ratios of these two loop categories 

experience the same fluctuation regime, well correlated with the stress fluctuations displayed 

in Fig. 5.  
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Fig. 5. Simulation of the response of a dense, frictional 2D specimen made up of a polydisperse assembly of 

20,000 spherical particles along a biaxial loading under a constant lateral stress 
2  of 100 kPa, by using a 

discrete element method (YADE open-source code, Smilauer et al., 2015). The evolution of the deviatoric stress 

1 2q  = −  is given in terms of the axial strain. 
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Fig. 6. Evolution of the ratio of two grain loop categories (L3, left; L6, right) along a biaxial loading path under 

constant lateral stress. The fluctuations develop after the deviatoric stress peak is reached, simultaneously with 

the stress fluctuations (Fig. 3). 
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The fluctuations in the two loop populations suggest that new loops are continuously created, 

while older ones disappear through configurational reactions ,3jR  and 6,kR  or ,6lR . Thus, 

configurational reactions 6,kR  keep on developing during the critical state regime, even 

though the loop population distribution is constant on average. Such configurational 

transformations, inherent in the critical state regime, can be regarded as configurational 

fluctuations associated with a change in configurational entropy. For example, for a 

fluctuation ,i jN  related to the configurational reactions ,i jR , the corresponding change in 

configurational entropy ,

conf

i jS  is given by (Eqs. (14) and (15)): 

,

, , ,

( 1)!
ln

( 1)!( 1 )!

i jconf

i j i j i j

Ai
S k N N

j i j 

−
 = −  = 

− + −
 (36) 

 

It is worth noting that ,

conf

i jS  can be positive or negative. This is in accordance with the 

Boltzmann’s statistical approach, as the critical state can be regarded as a stationary state 

(thermodynamic equilibrium). The local fluctuations ,

conf

i jS  in the configurational entropy are 

responsible for the global fluctuations that can be observed for the configurational entropy on 

the specimen scale, as depicted in Figs. 3 and 4. 

 

Finally, by invoking the fluctuation-dissipation theorem (Glansdorff and Prigogine, 1971; 

Onsager, 1931; Casimir, 1945; Serdyukov, 2022), it should be emphasized that any local 

increase in entropy will be compensated by a local dissipation involving other configurational 

transformations elsewhere in the specimen, then ensuring the whole system to be brought 

back to the thermodynamic equilibrium on the macroscopic scale (Embacher et al., 2018; 

Ledesma-Durán and Santamaría-Holek, 2022; Das et al., 2022). 

 

5.4 Closing words 

 

To conclude, it has been demonstrated how granular materials as complex systems are able to 

adapt and transform under specific loading conditions. The proposed microscopic 

reinterpretation of granular materials with large numbers of particles as a thermodynamic 

system within which a configurational entropy and an associated dissipation can be derived 

represents a plausible framework that certainly needs further investigation. It goes without 

saying that extending the framework to three-dimensional granular systems should be 
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regarded as an urgent objective. For such materials, the fabric topology is much more difficult 

to describe, requiring the concept of 3D grain clusters to be defined in a clear mathematical 

way. Finally, marrying synergistically complementary subject areas such as statistical physics, 

fundamental thermodynamics and micromechanics will make it possible to shed a new light 

on many intriguing mechanisms occurring within complex systems such as granular materials, 

that have been questioning a broad scientific community since many decades. 
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APPENDIX 1 

Positiveness of the configurational affinity ,i jA  

 

The configurational affinity ,i jA  is defined by the relation ,

( 1)!
ln

( 1)!( 1 )!
i j

i
A k

j i j


−
=

− + −
. The 

combinatory term in the logarithm function can be transformed as follows: 

( 1)! 1 2 ( 2)

( 1)!( 1 )! 1 2 2

i i i i j

j i j j j

   − − − − − 
=      

− + − − −     
 (A1.1) 

 

http://gdrmege.univ-lr.fr/
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As 1i j + , the quotients appearing in Eq. (A1.1) are all strictly greater than 1. Thus: 

( 1)!
1

( 1)!( 1 )!

i

j i j

−


− + −
 (A1.2) 

 

which proves the strict positiveness of all terms ,i jA , for any couple ( ),i j  such that 

 4, ,i m  and j i  

 

 

APPENDIX 2 

Derivation of Eq. (19) 

 

Starting from Eq. (17), and combining with Eq. (14) gives: 

( )
int( /2) 1

2 ,

4 3

1 im
conf

i j i j i j

i j

S N  


+

+ −

= =

= − − −   (A2.1) 

 

which can be rearranged as: 

( )

( ) ( )

( )

int( /2) 11

, , 2 ,

4 3 1

int( /2) 11

2 , , 2 ,

4 3 1

int( /2) 1

2 ,

3

1
1

1
1

1

im m
conf

i i j i j i j i

i j j i

im m

j i j i j i i j i j i

i j j i

m

j m j m m j

j

S N N

N N

N

 


   


  


+−

− +

= = = +

+−

+ − − +

= = = +

+

+ −

=

  
= − − +   

  

  
+ + − +   

  

+ + −

  

  



 (A2.2) 

 

Taking advantage of Eq. (18b), Eq. (A2.2) can be rewritten as: 

( ) ( )

( )

1

4

int( /2) 11

2 , , 2 ,

4 3 1

int( /2) 1

2 ,

3

1

1
1

1

m
conf

i i

i

im m

j i j i j i i j i j i

i j j i

m

j m j m m j

j

S N

N N

N




   


  


−

=

+−

+ − − +

= = = +

+

+ −

=

= −

  
+ + − +   

  

+ + −



  



 (A2.3) 

 

Using Eqs. (18a) and (18c), we get: 
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( ) ( )

( ) ( )

3

int( /2) 11

2 , , 2 ,

4 3 1

int( /2) 1

2 , 3 3, 1 ,3

3 4

1

1
1

1 1
1

m
conf

i i

i

im m

j i j i j i i j i j i

i j j i

m m

j m j m j j j

j j

S N

N N

N N




   


   
 

=

+−

+ − − +

= = = +

+

+ − −

= =

= −

  
+ + − +   

  

+ + − +



  

 

 (A2.4) 

 

which finally gives: 

3

1 1m
conf

i i

i

S N 
 =

= − +  (A2.5) 

 

with ( ) ( )
int( /2) 1 1

2 , , 2 ,

4 3 3 1

1
im m m

j i j i j i i j i j i

i j i j i

N N    
+ −

+ − + −

= = = = +

= + − +    

 

 

APPENDIX 3 

 

The objective of this appendix is to demonstrate the nullity of the term: 

( ) ( )
int( /2) 1 1

2 , , 2 ,

4 3 3 1

1
im m m

j i j i j i i j i j i

i j i j i

N N    
+ −

+ − + −

= = = = +

= + − +    

 

For this purpose, let us introduce the square matrix ,m mM  of general term: 

( ), 2 ,

,

           if 4    and   3 int( / 2) 1

0                                    otherwise

i j j i j i j

i j

M N i m j i

M

  + −= +     +

=
 (A3.1) 

 

Thus, the first term ( )
int( /2) 1

1 2 ,

4 3

im

j i j i j

i j

N  
+

+ −

= =

= +   corresponds to the sum of all the elements 

of the matrix: 1 ,

1 1

m m

i j

i j

M
= =

= . 

Furthermore, M  can be split in two matrixes, 1 2= +M M M , with: 

1

, ,

1

,

           if 4    and   3 int( / 2) 1

0                    otherwise

i j j i j

i j

M N i m j i

M

=     +

=
 (A3.2) 
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and 

2

, 2 ,

2

,

           if 4    and   3 int( / 2) 1

0                         otherwise

i j i j i j

i j

M N i m j i

M

 + −=     +

=
 (A3.3) 

 

Both matrices 1
M  and 2

M  can be transformed by suitable permutation operations into 

matrices 1
T  and 2

T , as follows: 

1 1

, ,            if 1    and   1i j j iT M i m j m=      (A3.4) 

 

and 

2 1

, 2 ,            if 1    and   1i j i j iT M i m j m+ −=      (A3.5) 

 

These permutations will induce no change in the term 1

1 1

m m

ij

i j

M
= =

= , so that we have: 

1 2

1 , ,

1 1 1 1

m m m m

i j i j

i j i j

T T
= = = =

= +   (A3.6) 

 

As an illustration, the case where 10m =  can be considered: 
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 (A3.7) 
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3 4,3

4 5,32

5 6,3 4 6,4

6 7,3 5 7,4

7 8,3 6 8,4 5 8,5

8 9,3 7 9,4 6 9,5

9 10,3 8 10,4 7 10,5 6 10,6

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

N

N

N N

N N

N N N

N N N

N N N N





 

 

  

  

   

=M

0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (A3.8) 

 

And after transformation, we get: 

3 4,3 3 5,3 3 6,3 3 7,3 3 8,3 3 9,3 3 10,3

4 6,4 4 7,4 4 8,4 4 9,4 4 10,4

5 8,5 5 9,5 5 10,51

6 10,6

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

N N N N N N N

N N N N N

N N N

N

      

    

  


=T

0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (A3.9) 

 

and 

3 4,3

4 5,3 4 6,4

5 6,3 5 7,4 5 8,52

6 7,3 6 8,4 6 9,5 6 10,6

7 8,3 7 9,4 7 10,5

8 9,3 8 10,4

9 10,3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

N

N N

N N N

N N N N

N N N

N N

N



 

  

   

  

 



=T

0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (A3.10) 

 

It is worth noting that the matrix 1 2= +T T T  takes the convenient form:  
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3 4,3 3 5,3 3 6,3 3 7,3 3 8,3 3 9,3 3 10,3

4 5,3 4 6,4 4 7,4 4 8,4 4 9,4 4 10,4

5 6,3 5 7,4 5 8,5 5 9,5 5 10,5

6 7,3 6 8,4 6 9,5 6 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 2

0 0 0 0 2

0 0 0 0 0 2

0 0 0 0 0 0 2

N N N N N N N

N N N N N N

N N N N N

N N N N

      

     

    

   
=T

,6

7 8,3 7 9,4 7 10,5

8 9,3 8 10,4

9 10,3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

N N N

N N

N

  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (A3.11) 

 

Generalizing to any order m, it follows that the general term of the two matrices 1
T  and 2

T  

reads: 

1

, ,

1

,

           if 3 int( / 2) 1   and   2( -1)

0                                    otherwise

i j i j i

i j

T N i m i j m

T

=   +  

=
 (A3.12) 

 

Likewise: 

2

, , 2

2

, , 2

2

,

           if 3 int( / 2) 1   and   1 2( 1)

           if int( / 2) 2 1   and   1

0                                    otherwise

i j i j j i

i j i j j i

i j

T N i m i j i

T N m i m i j m

T





+ −

+ −

=   + +   −

= +   − +  

=

 (A3.13) 

 

Thus, the particular form of the matrices 1
T  and 2

T  allows us to write: 

int( /2) 1
1

, ,

1 1 3 2( 1)

mm m m

i j i j i

i j i j i

T N
+

= = = = −

=    (A3.14) 

 

int( /2) 1 2( 1) 1
2

, , 2 , 2

1 1 3 1 nt( /2) 2 1

m im m m m

i j i j j i i j j i

i j i j i i m j i

T N N 
+ − −

+ − + −

= = = = + = + = +

= +      (A3.15) 

 

Recalling now that , 2 ,j j i j iN N+ − = , Eqs. (A3.14) and (A3.15) yield: 

int( /2) 1 int( /2) 1 2( 1) 1

1 , , ,

3 2( 1) 3 1 nt( /2) 2 1

m m im m m

i j i i j i i j i

i j i i j i i m j i

N N N   
+ + − −

= = − = = + = + = +

= + +       (A3.16) 
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The summation 
int( /2) 1 int( /2) 1 2( 1)

, ,

3 2( 1) 3 1

m m im

i j i i j i

i j i i j i

N N 
+ + −

= = − = = +

+     can be merged in one single term, 

after noting that the index 2( 1)j i= −  is counted twice. As this corresponds to 2i j i= + − , it 

is convenient to introduce the Kronecker symbol , 2i j i + − , so that: 

( )
int( /2) 1 int( /2) 1 2( 1) int( /2) 1

, , , 2 ,

3 2( 1) 3 1 3 1

1
m m i mm m

i j i i j i i i j i j i

i j i i j i i j i

N N N   
+ + − +

+ −

= = − = = + = = +

+ = +       (A3.17) 

 

Furthermore, as j m  2( 1)j i= −  requires that int( / 2) 1i m + . Thus, the third term 

1

,

nt( /2) 2 1

m m

i j i

i m j i

N
−

= + = +

   can also be expressed as: 

( )
1 1

, , 2 ,

nt( /2) 2 1 nt( /2) 2 1

1
m m m m

i j i i i j i j i

i m j i i m j i

N N  
− −

+ −

= + = + = + = +

= +     (A3.18) 

 

Finally, combining Eq. (A3.16) with (A3.17) and (A3.18) yields: 

( )
1

1 , 2 ,

3 1

1
m m

i i j i j i

i j i

N  
−

+ −

= = +

= +  (A3.19) 

 

which proves that 0 =  
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