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Abstract 
Soil underpins the entire agricultural ecosystem and plays a major role in both production and in the 
ecosystem services that regulate production. Agroecological transition involves transforming farming 
systems by replacing synthetic inputs with ecosystem services. To support these efforts, assessment 
methods are needed to perform an initial diagnosis and evaluate the changes produced by the transition. 
Generally speaking, soil quality and health cannot be measured directly. Instead, a range of indirect 
environmental assessment indicators must be used. This article reviews the indicators available for 
assessing the impact of agricultural management on soil fertility, quality and health. For these factors, the 
most commonly used indicators are based on field measurements. We also look at the predictive 
indicators used by agronomists striving to improve cropping systems and design innovative systems. 
Deeper investigation is warranted into several areas, such as the reference value and the predictive 
quality of indicators in relation to ecosystem services like pest regulation. 

Keywords: agroecological transition, soil fertility, soil health, ecosystem service, biological activity, 
model, biological index 

1. Introduction 

Soil underpins the entire agricultural ecosystem and plays a major role both in agricultural production and 
in providing the various ecosystem services that regulate production (Obiang Ndong et al., 2020a). Rising 
environmental concerns in terms of sustainability and the agroecological transition have led to a 
proliferation of scientific publications on the links between the state of soil and the coverage of these 
issues. Several key concepts have been successively introduced, with the oldest term ‘fertility’ being the 
most widely used since the 1950s. In the 1990s, the term ‘soil quality’ emerged, followed by ‘soil health’. 
Soil fertility is defined as the set of physical, chemical and biological factors that support crop growth and 
productivity. Other factors have gradually been added, such as crop quality and sustainability (Bünemann 
et al., 2018). This broadening of the criteria to consider has led to the concept of ‘soil quality’, defined as 
‘the capacity of a specific kind of soil to function, within natural or managed ecosystem boundaries, to 
sustain plant and animal productivity, maintain or enhance water and air quality, and support human 
health and habitation’ (Karlen et al., 1997). The concept of soil health emerged following the development 
of the ecosystem services framework, defined as the processes or components from which humans can 
derive benefit (Tibi & Therond, 2017). At the European level, soil is considered to be in good physical, 
chemical and biological health if it is able to provide various ecosystem services, namely biomass 
production, protection of groundwater bodies, biodiversity support and carbon sequestration.1 It should 

be noted, however, that in a human-made system – which is the case for agriculture – a distinction must 
be made between what is truly an ecosystem service and what results from human activity and external 
inputs (Soulé et al., 2023). 

The agroecological transition aims to transform agricultural systems to replace external inputs that 
consume non-renewable resources and are harmful to the environment with ecosystem services (Therond 
et al., 2017). Such a change can only be achieved by acquiring new knowledge about the agroecological 

 
1 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0699  

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0699
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functioning of farming systems. System redesign efforts must go beyond improving efficiency or simply 
replacing inputs. Achieving this level of change requires the support of assessment procedures throughout 
the process, not only to perform a diagnosis of the initial situation but also to monitor the changes brought 
about by the transition, with a view to making possible readjustments to the trajectory. The ‘fertility’, 
‘quality’ and ‘health’ qualifiers attached to soils cannot typically be measured directly, which means using 
indicators which often take various forms in environmental assessments (Bockstaller et al., 2015). This 
article reviews the indicators available to assess the impact of agricultural practices on soil fertility, quality 
and health. To do this, we will draw in large part on the review by Bünemann et al. (2018) and our own 
expertise. 

To organise how we present existing indicators, we will draw on the typology of Bockstaller et al. (2015), 
which distinguishes between: 

- Causal indicators, which are typically easy to implement (provided that data are available) but 
provide information of low predictive quality for a given effect (soil compaction, erosion, etc.). 
These indicators are generally used for causal variables or simple combinations of causal 
variables, which relate to soil and climate practices and variables. 

- Measured effect indicators, based on measurements, counts or observations, are usually much 
more difficult to obtain but offer a more accurate ‘snapshot’ of the effect. 

- Predictive effect indicators, produced by operational models (with few accessible input variables) 
and complex models. These indicators represent a compromise between the two previous 
indicator categories, with the dual advantage of being able to link causes to effects and carry out 
ex ante (a priori) assessments. 

When assessing soil quality, the most commonly used indicators are those based on field measurements. 
We will now look at the predictive indicators used by agronomists seeking to improve cropping systems 
or design innovative systems to address sustainability challenges, especially through efforts to maintain 
or restore soil quality. This article provides an overview of the available indicators, highlighting their 
strengths and weaknesses, and discusses areas for future research. 

2. Measured effect indicators: from chemical and physical indicators to 
biochemical and biological indicators 

o Chemical indicators 

In their review article, Bünemann et al. (2018) identified and classified the soil quality indicators from 65 
sets of indicators, excluding all articles that focused only on biological indicators (Figure 1). The three 
most frequently used indicators are chemical indicators from soil analyses: soil organic matter (90% of 
cases), pH (around 80% of cases) and available phosphorus (just over 70%). Total nitrogen (50%) and 
available potassium (40%), both measured by soil analysis, were also commonly found. Finally, indicators 
based on measuring electrical conductivity and which require special technology and include clay, water 
and ion contents (Busselen, 2018), were used in 30% of cases. Interpreting these indicators can be 
challenging. 

Soil organic matter was also recognised by farmers as the key indicator for assessing soil quality in a 
survey of 28 farmers in Wisconsin (USA), who also ranked this indicator first among 50 soil properties 
(Romig et al., 1995). Soil analysis is the most common method for measuring soil organic carbon (SOC) 
content. A rough estimate can be made by visual observation (McGarry, 2005). The importance of organic 
matter is clear in its central involvement in providing soil-related ecosystem services such as soil 
structuring, erosion control and the supply of water and nitrogen to crops (Therond & Duru, 2019). 
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Figure 1: Frequency of soil quality indicators appearing in publications included in the review by 
Bünemann et al. (2018) that included 65 sets of indicators. Articles dealing solely with biological indicators 
were excluded from the review. 

o A soil quality indicator derived from the characterisation of soil organic matter 

Research by Johannes et al. (2017) on soil samples from 161 sites in Switzerland shows that the ratio of 
SOC content to clay content is more discriminating than measured soil organic matter content in terms of 
soil structure quality (Sq, assessed using the Visual Evaluation of Soil Structure, or VESS method; see 
Table 1). The approach was adapted to soil samples using a qualitative scale ranging from 1 (very good 
structure) to 5 (very poor structure). Two threshold values and a target value were proposed for this ratio: 
an SOC:clay ratio of 1:8 is the limit above which most soils have a very good structure (Sq < 2 in Figure 
2), while most soils at the lower ratio limit of 1:13 have a very poor structure (Sq > 4, Figure 2). This 
indicator has been used by other authors (Misslin et al., 2022). It should be noted that the study by Misslin 
et al. (2022) was carried out on a range of soils with clay contents between 10 and 34%, which excludes 
dense soils such as those observed in Lorraine. The SOC:clay ratio has been the subject of critical 
analysis by several authors, particularly with regard to soil health (Mäkipää et al., 2024). 
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Figure 2: Determination of thresholds for the soil organic carbon (SOC) to clay ratio to discriminate 
between soils based on their structure quality (Sq). Sq visual scores ranged from 1 (very good) to 5 (very 
poor) for 161 sites in Switzerland (Johannes et al., 2017). 

2.1. Physical indicators 

To assess physical soil quality, the three indicators most frequently cited in the review by Bünemann et 
al. (2018) are water storage (60%), bulk density (just over 50%) and texture (45%). Three other indicators 
were cited slightly less often (20–30%): structural stability, soil depth and penetration resistance. 

While texture is easily measured by soil analysis, the other indicators are much less accessible and are 
not routinely measured. So-called pedotransfer functions have been suggested to estimate the soil’s 
available water capacity, one of the soil water content indicators used by agronomists. These pedotransfer 
functions use soil properties that are relatively easy to measure (textural element content, organic matter, 
bulk density, etc.) and take different forms, such as linear regressions, decision trees or neural networks 
(Wösten et al., 2001). Bulk density and penetration resistance are indicators of soil compaction but are 
not so easy to obtain or interpret. To overcome these metrological difficulties, several visual methods 
have been proposed for assessing soil structure using field tools (e.g. a knife, spade) and describing it 
using visual descriptors such as the shape and condition of the soil clods. 

Bünemann et al. (2018) compared 7 methods (Table 1), including the ‘profil cultural’ (cultural profile) 
method developed since the 1980s in France. The French method involves digging a trench, while the 
German method (M-SQR) uses a pit and the others are performed using a spade. In addition to structure, 
a range of other variables are estimated, including texture (based on feel), aggregate size and shape, and 
variables linked to water and biological properties (rooting, earthworms). The VS-Fast method includes a 
soil pH and labile C measurement (in the field) and observations of the surface condition (soil crusting), 
like for the VSA method. The VSA method includes erosion observations, while the M-SQR method 
includes slope observations. 

 

SOC:clay ratio = 1/8 

SOC:clay ratio = 1/13 
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Table 1: Features of 7 field methods to assess soil structure and other properties (adapted from 
Bünemann et al. (2018)). 

METHOD NAME SOILPAK CULTURAL 
PROFILE 

VS-FAST PEERLKAMP* VSA VESS M-SQR 

COUNTRY Australia France Australia UK New Zealand Brazil/UK Germany 

REFERENCE ** 
FOR 

McKenzie 
(2001) 

Roger-
Estrade et 
al. (2004) 

McGarry 
(2006)  

Ball et al. 
(2007) 

Shepherd et 
al. (2008) 

Guimarães 
et al. (2011) 

Mueller et al. 
(2014) 

OBJECTIVE Soil structure 
and 

compatibility 
for cultivation 

Soil 
structure 

Land 
degradation 

Soil structure Soil quality Soil 
structure 

Soil 
properties 
linked to 
potential 

yield 

TYPE OF TEST Spade Trench Spade Spade Spade Spade Pit 

TIME 
REQUIRED 

(MIN) 

25–90 60–180 ? 5–15 25 5–15 10–40 

OBSERVATION 
OTHER THAN 

THE 
STRUCTURE 

              

TEXTURE     X   X   X 

AGGREGATE 
SIZE 

    X X X X X 

AGGREGATE 
SHAPE 

X             

CONSISTENCY X   X         

POROSITY X     X X X   

COLOUR X    X   X     

AVAILABLE 
WATER 

            X 

WATER 
INFILTRATION 

    X         

ROOT 
DEVELOPMENT 

X 
 

X X   X   

POTENTIAL 
ROOTING 

DEPTH 

        X   X 

EARTHWORMS     X   X     

* This method later became the VESS method 
** See Bünemann et al. (2018) for references. The year of publication does not necessarily correspond to the year when the 
method was designed. 

2.2. Biochemical and biological indicators 

A major limitation of the most commonly used chemical indicators (Figure 1) is their lack of susceptibility 
to changes in practices due to their long response times. Practitioners need indicators that alert them 
early of issues so they can implement corrective measures as soon as possible (Christel et al., 2021; Paz-
Ferreiro & Fu, 2016). Although soil structure assessment methods can be used to observe effects on soil 
quality, they are generally limited to physical parameters that do not take overall soil functioning into 
account. These methods are also destructive and require a certain amount of investment and know-how. 
Over the last 40 years, these issues have spurred work on biotic indicators, using measurements of soil 
enzyme activity or the abundance and diversity of living organisms. Bünemann et al. (2018) identified the 
four most commonly used of these indicators, although they lagged behind chemical and physical 



Soil quality indicators 

 

 
327 Innovations agronomiques 94 (2024), 322-336 

indicators (Figure 1): soil respiration (around 30%), microbial biomass, nitrogen mineralisation (both 
around 25%) and earthworm density/diversity (15%).  

Microbial biomass carbon measured using a chloroform fumigation-extraction method was considered in 
the 1990s by Chaussod (1996) as one of the only reliable, operational and interpretable biological 
indicators. This indicator was also expressed relative to the quantity of organic carbon. Thus, the microbial 
quotient is an indication of organic substrate availability with regard to soil microbes (Chaussod, 1996; 
Paz-Ferreiro & Fu, 2016). For soil respiration measured by CO2 emissions per unit of soil, an indicator 
based on the metabolic quotient has also been developed and expresses a rate of renewal of the microbial 
biomass. Activities by various enzymes (e.g. protease, urease, phosphatase) have been used as 
indicators of soil biological quality (Petitjean et al., 2019). Thresholds have been set for these various 
indicators, although they have yet to be specified for enzyme activities. For the microbial quotient, a 
threshold of 2% has been proposed, below which the soil is considered to be in a state of organic matter 
depletion. It is easy to see how this set of measurements, which account for both the biological life of the 
soil and the restitution of mineral nutrients available to plants (through microbial enzyme activity), could 
serve as an objective assessment of the potential for biological activity, which is very much in line with 
agroecological needs.  

Advances in molecular biology techniques, and more specifically the democratisation of PCR techniques, 
make it possible to measure the quantities of a genetic sequence (especially regions of the 16S rRNA 
gene for bacteria). As a result, it is now easier and faster to estimate the sizes of the bacterial and fungal 
compartments than with the fumigation approach. Similarly, pyrosequencing techniques provide access 
to the total diversity of microbial communities. Bioinformatics approaches have also been developed and 
enable very powerful data analyses to be carried out on large data sets, particularly at taxonomic level. 
For example, bacterial communities have been mapped across France using samples from the Soil 
Quality Measurement Network (Réseau de Mesures de la Qualité des Sols – RMQS) and grouped into 
16 habitats based on pH, C:N ratio and land-use type (Karimi et al., 2020). Other studies have taken a 
functional approach to studying bacterial interaction networks via co-occurrence analyses, which have 
made it possible to differentiate network structures according to land use (forest, grassland, arable 
farming, viticulture) (Karimi et al., 2019) and distinguish between organic and conventional cropping 
systems that are ploughed or unploughed (Hartman et al., 2018). In any event, although these increasingly 
advanced molecular approaches are opening up new fields of investigation, their predictive quality is still 
under discussion (Bünemann et al., 2018). 

The review by Bünemann et al. (2018) also shows that other indicators based on counts and identification 
of organisms such as earthworms are also commonly used (see Figure 1). In France, analysis of this 
taxonomic group is used alongside other taxa, namely by the Agricultural Biodiversity Observatory 
(Observatoire Agricole de la Biodiversité – OAB2), the network of 500 field plots under the French 

Ecophyto plan set up to assess the unintended effects of pesticides (500 ENI3), the Noé Association,4 and 

the European BioBio project (Bockstaller et al., 2019). Data on other soil organisms, such as nematodes, 
microarthropods, mesoarthropods (springtails, etc.) and macroarthropods (ground and rove beetles, etc.), 
are also used. A recent meta-analysis comparing the effects of conventional, organic and conservation 
agriculture on soil quality gives a broader view of their use (Christel et al., 2021). These field 
measurements involve fairly sophisticated trapping techniques and time-consuming identification work 
that requires specific skills for identification at species level. Advances in digital technology could 
conceivably reduce these methodological constraints over time. There may be a need to start thinking 
about how extended knowledge of the biodiversity hosted in a soil could be made available to all farmers 
to support their management choices. It is currently possible to show that intensive farming practices 

 
2 https://www.observatoire-agricole-biodiversite.fr/ 
3 https://ecophytopic.fr/pic/exposition-et-impacts/reseau-500-eni-biovigilance 
4 https://noe.org/noe-publie-recueil-indicateurs-biodiversite-agricoles 

https://ecophytopic.fr/pic/exposition-et-impacts/reseau-500-eni-biovigilance
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leave their mark on the living organisms in soil. However, much more must be done to show that the 
biodiversity present in a field can support natural pest regulation and enable agroecological management. 

2.3. Soil quality indices 

The review by Bünemann et al. (2018) focused on studies using a range of chemical, physical and 
biological indicators, while a study by Petitjean et al. (2019) dealt with the measurement of several enzyme 
activities. Another approach is that of Biofunctool®, which is based on 12 indicators linked to three soil 
‘aggregate functions’: soil structure maintenance, nutrient cycling and carbon transformation 
(Thoumazeau et al., 2019). Such multi-indicator approaches always raise the question of how to 
synthesise results that may be contradictory. One possibility is a multivariate approach as implemented 
by Petitjean et al. (2019), but results obtained using this approach will depend on the range of variation 
of the indicators sampled. To overcome this issue, other authors have proposed aggregating several 
indicators into composite indices. Examples taken from the review article by Paz-Ferreiro & Fu (2016) are 
presented in Table 2. This work illustrates the levels of complexity with geometric mean, weighted sum 
and more complex formula calculations. In contrast, two approaches for the visual assessment of soil 
structures described by Bünemann et al. (2018) – VS-Fast and M-SQR – are based on a weighted sum 
of visual criterion ratings. All these approaches succeed in producing a single value to qualify soil quality. 
This facilitates monitoring over time and comparison between situations, but also calls into question the 
scientific validity of the weightings and the degree of accuracy of the predictive value.  

Table 2: Examples of biological indices adapted from Paz-Ferreiro & Fu (2016). See the original article 
for references. 

REFERENCES MATHEMATICAL EXPRESSION UNIT 

HINOJOSA ET 
AL. (2004)  

GMea = (acid phosphatase ⨯ alkaline phosphatase ⨯ β-glucosidase ⨯ 
arylsulphatase ⨯ urease)1/5 

µmol product g−1 h−1. 

BASTIDA ET 
AL. (2006)  

MDI = [0·89(1/(1 + (dehydrogenase/4·87)−2·5 )] + [0·86(1/(1 +  
(WSCh/11·09)−2·5)] + [0·84(1/(1 + (urease/1·79) −2·5)] + [0·75(1/(1 + 
(WSC/95·03)−2·5)] + [0-72 (1/(1 + (respiration/18·01)−2·5)]  

dehydrogenase and 
urease (mg product g−1 
h−1), WSCh and WSC 
(mg kg−1) respiration 
(mg CO2-C kg−1 soil). 

PUGLISI ET 
AL. (2006)  

AI 1 = −21·30 · arylsulphatase + 35·2 · β-glucosidase − 10·20 · 
phosphatase − 0·52 · urease − 4·53 · invertase + 14·3 · dehydrogenase + 
0·003 · phenoloxidase 

µmol product g−1 h−1. 

AI2 = 36·18 · β- 
glucosidase − 8·72 · phosphatase − 0·48 · urease − 4·19 · invertase 

AI3 = 7·87 · β-glucosidase − 8·22 · phosphatase − 0·49 · urease 

GARCÍA-RUIZ 
ET AL. (2008, 
2009) 

GMea = (acid phosphatase ⨯ alkaline phosphatase ⨯ β-glucosidase ⨯ 
arylsulphatase ⨯ dehydrogenase ⨯ PN)1/6 

µmol product g−1 h−1. 

PAZ-
FERREIRO ET 
AL. (2012B)  

GMea = (phosphatase × β-glucosidase × arylsulphatase × dehydrogenase 
)1/4 

µmol product g−1 h−1. 

*GMea: geometric mean for several enzyme activities; MDI: microbiological index of soil degradation; 
WSCh: water soluble carbohydrates; WSC: water soluble carbon; PN: potential rate of soil ammonium 
oxidation; AI: enzymatic activity index 

2.4. Predictive effect indicators 

With regard to assessing changes in soil organic matter, Manzoni & Porporato (2009) listed 74 predictive 
models, including the Hénin–Dupuis model developed in 1945. Similarly, the contribution of erosion to soil 
degradation and soil quality has also been widely covered. A total of 435 models and their various versions 

https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0043
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0043
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0071
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0071
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0064
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0064
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2262?casa_token=Wgcp2JOHgJYAAAAA%3AE97joJenmJfbZYZzdYYFJs34XtGdE90apYW66kmwCt9cfthQPgV7wlYmKI8UxOurFZtwa1aTo1tC9iiv3g#ldr2262-bib-0064
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were reviewed by Borrelli et al. (2021). However, there are far fewer models for modelling changes in soil 
structure (Roger-Estrade et al., 2009). 

In addition to this work carried out by soil quality specialists, agronomists involved in evaluating cropping 
systems have developed predictive indicators based on simplified models to link farming practices to their 
effects on soil quality components, particularly soil biology. Several indicators that are related to a certain 
degree have been developed using the DEXi tool (Bohanec et al., 2008) to assess direct impacts in the 
field in order to aid innovative system design. Other research has been carried out in the area of life cycle 
assessment (LCA), which requires more quantitative approaches. LCA looks at the environmental impacts 
throughout a product’s life cycle; it includes the direct impacts of production as well as indirect impacts, 
both upstream related to input production and downstream linked to product use and waste management. 
LCA can provide comprehensive environmental assessments and identify impact transfers throughout the 
product life cycle. LCA is based on an emissions inventory, the degree of resource consumption and the 
integration of the other effects of (human) activities, all aggregated in an impact indicator. 

2.5. Indicators developed with the DEXi tool  

Figure 3 shows the mechanisms involved in soil functioning that are increasingly taken into account, since 
the approach developed for MASC 2.0 (Craheix et al., 2012) or I-BIO (Soulé et al., 2023) and DEXiSol 
(Thibault et al., 2018). Soil organic matter (with or without inputs), pesticides and crop diversity are 
considered by all three methods. In I-BIO and DEXiSol, the effects of fertilisation and tillage are also taken 
into account. In I-BIO, no distinction is made between bacterial and fungal communities, whereas DEXiSol 
differentiates between them and adapts the monitored variables accordingly. However, I-BIO does 
distinguish between the direct effects on the food web of tillage and inputs, and the indirect effects via soil 
organic matter and the diversity of root substrates of the crops in rotation. A similar or even greater 
gradient can be observed for soil macrofauna. It should be noted that DEXiSol also incorporates organic, 
phosphorus and pH soil fertility indicators, as does MASC 2.0.  
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Figure 3: Structure of three predictive indicators assessing the impacts of agricultural practices on soil 
microorganisms, based on the DEXi tool (decision trees with if/then rules and qualitative classifications 
(e.g. low/medium/high) (Bohanec et al., 2008). 
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2.6. Soil quality indicators for life cycle assessment 

We identified two very different approaches developed within the LCA framework. The SALCA soil quality 
(SALCA-SQ) method developed by Agroscope Zurich includes a variety of practices and a few 
environmental variables that generate impact scores according to simplified decision rules. These 
decision rules are aggregated into nine impact indicators: three physical, three chemical and three 
biological (Oberholzer et al., 2012). In contrast to this simplified approach, Garrigues et al. (2012) at 
INRAE Rennes adapted essentially mechanistic models for three impacts: the Roth-C model for organic 
matter, RUSLE for erosion and COMPSoil for soil structure. In each case, these approaches focus only 
on direct impacts in the field and can be implemented in a non-LCA context. 

2.7. Soil ecosystem service indicators 

As mentioned in the introduction1 ecosystem services are central to the definition of soil health at 
European level. In the review by Obiang Ndong et al. (2020a), agricultural production was mentioned in 
100% of the articles, climate regulation in 83%, water quantity regulation in 65%, recreation and tourism 
in 55%, nutrient regulation in 43%, and erosion regulation in over 30%. In one example of arable farming 
in the central and northern plains of France, Obiang Ndong et al. (2020b) used the STICS model to predict 
agricultural production and calculated 5 soil-related ecosystem service indicators: amount of nitrogen 
supplied to crops, green water provision to crops, blue water provision, the amount of nitrogen not leached 
and the amount of carbon sequestered. Using a multivariate regression tree, they identified 5 ecosystem 
services provided by agricultural systems and established the minimum thresholds to be respected in the 
relevant area, i.e. an area under cover crops of ± 16%, a soil pH > 6.75 and, for situations with > 16% 
cover crops and a pH > 6.75, a frequency of sugar beet of ± 36 % in the rotation 

In the methodological framework combining impact and ecosystem service indicators, Soulé et al. (2023) 
used the AMG model (Clivot et al., 2019) to assess carbon sequestration capacity. They also used semi-
quantitative indicators noting the potential ecosystem services related to crop rotation for soil structure, 
erosion protection, nitrogen provision, water consumption, etc. (Keichinger et al., 2021). Finally, they used 
a newly developed indicator to assess soil and canopy albedo (i.e. the capacity of the soil and canopy to 
reflect radiation), which has a positive effect on greenhouse gas emissions. This last development 
highlights the way soil use and input characteristics are connected to efforts to limit climate change. 

3. Discussion  

This article addresses the question of how to assess soil quality and health using indicators, given that 
direct measurements are impossible due to the complexity of the concept. Until now, little attention has 
been paid to this issue in multicriteria analysis methods for assessing agricultural system sustainability. A 
review of 262 methods used to assess the environmental impact of agricultural systems showed that two 
of the ten most frequently covered themes were related to soil quality, but that soil quality in and of itself 
was not addressed (Soulé et al., 2021). Soil erosion ranked fifth, after biodiversity, greenhouse gases, 
and pesticide and fertiliser management. Soil organic matter came ninth, corroborating the observations 
of Bünemann et al. (2018). Soil quality assessment has mainly been performed by specialists because of 
the complex interactions between soil properties (Garrigues et al., 2012). 

We have based this review on the typology of indicators developed by Bockstaller et al. (2015), which 
differentiates between causal and effect indicators, with the latter category divided into measured effect 
indicators and model-derived predictive effect indicators. We have left out causal indicators, which have 
a low predictive value (see more on this issue below) and are linked to different impacts. Each category 
contains multiple indicators, as detailed at the beginning of the article for the category of indicators that 
can be obtained by direct measurement. Researchers have proposed a number of models to account for 
the physicochemical components of soil quality (mainly understood in terms of organic matter and 
susceptibility to erosion). These models are not always easy to use, although some have been adapted 
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for use by practitioners, such as the AMG model for soil carbon (Bouthier et al., 2014). Very little attention 
has been paid to the biological dimension due to complex processes involved. A few approaches to 
predictive indicators are available and focus on assessing the impact of practices on biological and 
physicochemical factors. 

Faced with so many indicators, potential users must chose which type of indicators as well as the actual 
indicators to use depending on the objectives being pursued. Several articles stress the need to precisely 
determine the usage situation or each user’s prior choices to guide the choice and find a method that 
meets the user’s needs (Bockstaller et al., 2015; Leclerc et al., 2011). The purpose of the assessment 
and the beneficiaries concerned are the two key use descriptors. For example, if the purpose is to report 
on an action aimed at reducing environmental impacts, or to monitor changes in the state of the 
environment, indicators of measured effects are undoubtedly the most appropriate choice. These 
indicators are designed to provide as accurate a picture of reality as possible. At a later stage, other 
questions will help to refine the choice of methods/indicators, such as the scale and number of plots to be 
assessed. Similarly, at the temporal level, it is important to consider the response time of the variable 
behind the indicator used to describe the effects. In this case, biological indicators will be more useful 
than chemical or physical indicators, which are slow to react to changes (Christel et al., 2021; Paz-Ferreiro 
& Fu, 2016). Finally, users will have to make do with the time and resources they have available. If users 
are involved in designing new cropping systems or supporting farmers in making systemic changes, 
predictive indicators that link impacts to causes will be much more useful, particularly in an ex ante or a 
priori assessment phase on virtual systems. Such approaches will enable them to identify practices to be 
improved or to answer questions such as ‘What happens if I change a particular practice’? 

However, for an indicator to be useful, it must be interpretable and have an available reference value 
(Bünemann et al., 2018). For chemical indicators, threshold values have long been established and are 
periodically revised depending on changes in the state of knowledge and objectives set for agricultural 
systems. Thus, given the need to reduce inputs for economic and environmental reasons, the thresholds 
for offsetting exports of P and K have been greatly reduced (Jordan-Meille et al., 2021). For biological 
indicators and indices, the lack of reference values is one of the main limitations. However, it has been 
established that in all cases, these reference values depend on soil and climatic conditions and the 
situation in which they are used. This means that investment in field campaigns is needed to set reference 
values, which are typically statistical (e.g. mean, median, quartile). This begs the question of what these 
reference values signify: better does not always mean sustainable. The work of Johannes et al. (2017) is 
an example of an attempt to establish thresholds on absolute values based on field measurements, 
although this work has since been criticised (Mäkipää et al., 2024). 

Another point raised by Bünemann et al. (2018) deals with the validity or predictive quality of indicators, 
i.e. the link between the indicator value and a state or process measured experimentally. This question is 
especially pertinent regarding approaches based on molecular biology. It is generally rare for this step of 
defining validity parameters to be taken, although there are exceptions. Van Eekeren et al. (2010) 
identified several indicators on 20 permanent production grasslands that could be linked to soil-related 
ecosystem services: soil structure maintenance, water regulation and nutrient supply, and agricultural 
production. For example, earthworm activity was linked to soil structure maintenance, while organic matter 
content and water supply were linked to grass production. For predictive indicators using the DEXi 
method, only Soulé et al. (2023) confirmed the indicator outputs with field measurements. They observed 
a qualitative correlation between the subindicators linking the effect to microorganisms or earthworms and 
counts of these organisms in the field. Similarly, the SALCA-SQ method (Oberholzer et al., 2012) was 
compared with data from a long-term trial in Switzerland and with calculations for typical crop 
management sequences in order to assess the consistency of the indicator’s outputs. A very detailed 
analysis was performed, taking into account the simplicity of the model and the data sets. Overall, the 
indicator can be used to differentiate between situations with organic fertilisation and situations with 
mineral fertilisation or without fertiliser inputs, in line with field measurements.  
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4. Conclusion 

In conclusion, a wide range of indicators based on field measurements exists and includes some 
predictive indicators, which are mainly aimed at agronomists involved in designing new cropping systems. 
Potential users should take care to clarify their needs and usage situation (purpose, scale, resources, 
etc.). The Biofunctool® method offers a description of precise and affordable protocols that fall within the 
R&D field (Thoumazeau et al., 2019). Farmers who do not have the time to implement such measures 
will be more likely to turn to laboratory services, such as those offered by Auréa,5 the result of an R&D 

project conducted with Arvalis and other partners. While these methods are based on a set of operational 
indicators, aggregation issues and the study of synergies and antagonisms between these indicators need 
further attention. Evaluating functions such as the regulation of soil pests is an additional area of research 
to explore, as are the keys to interpreting the enormous masses of data generated by new molecular 
approaches. Finally, developing more knowledge on soil contributions and how to make the ecosystem 
services that are directly linked to soil more reliable is another challenge to address in the absence of 
widespread agroecological practices. 
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