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Abstract: The radar-backscattering coefficient (σ0) depends on surface characteristics and instrumen-
tal parameters (wavelength, polarization, and incidence angle). For Sentinel-1 (S1), with incidence
angles ranging from 25◦ to 45◦, σ0 for similar targets typically differs by a few dB depending on
their localization in the S1 swath. Overcoming this angular dependence is crucial for the operational
applications of radar data. In theory, σ0 follows a cosine function with an exponent “N” that repre-
sents the degree of dependence between σ0 and the incidence angle. In order to reduce the effect of
the incidence angle on σ0, dynamic N normalizations based on vegetation descriptors, NDVI and
SAR Ratio (VV/VH), were applied and then compared to the results obtained with temporally fixed
N normalizations. N was estimated at each S1 date during the period of the study for three main
summer crops: corn, soybean, and sunflower. Analysis shows that the angular dependence of the S1
σ0 is similar for all three crops. N varies from 3.0 for low NDVI values to 2.0 for high NDVI values
(stage of maximal vegetation development) in the VV polarization and from 2.5 to 1.5 for the VH
polarization. Furthermore, N fluctuates strongly during the periods before plant emergence and after
harvesting, due to variations in the soil roughness. Finally, the results demonstrated that the dynamic
normalization of σ0 significantly reduces its angular dependence compared to fixed N (N = 1 and
N = 2), with SAR ratio-based normalization performing similarly to NDVI-based normalization.

Keywords: SAR; Sentinel-1; incidence angle; normalization

1. Introduction

Synthetic aperture radar (SAR) remote sensing has become a cornerstone in Earth
observation, particularly with the advent of advanced satellite systems like those used in the
Copernicus Sentinel-1 (S1) mission. The S1 constellation offers high temporal frequencies,
with an optimal revisit time of 6 days before January 2022 and 12 days from January 2022
onwards, as well as a high temporal resolution with a pixel spacing of 10 m by 10 m,
allowing for earth surface monitoring at very small scales. S1 C-band SAR data operate at
a frequency of 5.405 GHz and interact with surface features on the surface of the Earth. The
data used in this study are the S1 IW (Interferometric Wide-swath), which boast a swath of
around 250 km and an incidence angle ranging approximately from 25◦ to 45◦. A notable
advantage of SAR remote sensing data over optical remote sensing data is that they are
impervious to cloud coverage, as the SAR is not affected by cloud cover [1,2]. This opens
the door for continuous earth observations throughout the year, regardless of atmospheric
conditions. Thanks to these qualities, SAR data are used for a variety of purposes, including
land cover classification, target detection, and the retrieval of land surface parameters such
as soil moisture, snow water equivalent, etc. [3–8].

However, the backscattering coefficient (σ0) of SAR remote sensing data is dependent
on the incidence angle (θ) [9–11]. Thus, analyzing SAR images could be complicated due to
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the fact that S1 satellites observe a given swath of the Earth surface from different incidence
angles (the closest point to the satellite has a smaller incidence angle than the farthest point).
In addition, observations of the Earth are conducted according to many orbits, interacting
with a given point on the Earth’s surface from different incidence angles. In the scientific
literature, the angular dependence over icy surfaces was shown to vary between 0.07
and 0.25 dB/1◦ [12–14] for S1 C-band data and 0.26 dB/1◦ for Radarsat C-band data [15].
Furthermore, angular dependence is related to factors such as land cover, crop type, crop
development, and soil roughness [16–18]. This observed angular dependence could have
a major impact when using S1 data, especially when working over a large swath with a
wide range of incidence angles, where there could be a significant difference between the
backscattering coefficients for the same surface characteristics caused solely by differences
in the incidence angle [13,18]. This could hinder some sensitive applications such as land
cover classification and crop detection over larger areas. For this reason, a normalization
is usually applied to SAR data with the aim of reducing the effect of the incidence angle
on the backscattering coefficient, enabling the use of mapping approaches that are not
hampered by angular dependence, though the transferability generally depends on other
factors as well, such as climatic conditions and agricultural practices.

There are many methods used for incidence angle normalization in the scientific
literature; for example, the semi-empirical model-based approach [19–21], the linear
method [22,23], the histogram method [17], and the cosine method [18,24–26]. The semi-
empirical radiometric correction of the slope effect uses either single-model or multi-model
techniques, with multimodal approaches performing the best. The main inconvenience of
this approach is that it requires calculations that are more rigorous, and more data compared
to other methods. The linear method employs a simple linear equation for backscattering
coefficient normalization. The main disadvantage of this method is that it oversimplifies the
relationship between the backscattering coefficient and the incidence angle and needs a lot
of a priori information before application, leading to a heterogeneous performance across
different surfaces, sites, and climates. The histogram method is based on the construction
of histograms of radar backscatter coefficients across varying incidence angles; a normal-
ization coefficient is then derived and applied to standardize the data. The advantage
of this method is that it requires little a priori information. However, its disadvantage is
that the results can appear discontinuous across the area of the acquisition. Finally, the
cosine method is one of the most widely used normalization methods; it is based on the
principle that the backscattering coefficient follows a cosine-dependent function with the
incidence angle [27]. It is widely used because it requires very little a priori information and
is relatively more user-friendly compared to other methods. The cosine method assumes
that the relationship between σ0 and θ is based on Lambert’s law for optics [24]. Generally,
the cosine exponent (N) used is fixed as either N = 1 (first order) or N = 2 (cosine-squared).
In the case of highly reflective surfaces, N = 2 generally provides good results. However,
the cosine exponent (N) can change depending on the characteristics of the observed land
surface [26,28–30]. For instance, N was found to be equal to 6.3 for VV polarization and 5.5
for HH polarization over fields of olive trees for the C-band [29], and it ranged from 2.1 to
2.8 for VV polarization and from 1.4 to 2.2 for VH polarization in wetland areas [30]. In
flooded forest biomes, N was shown to range from 0.24 to 1.73 and 1.42 to 3.36 in the case of
savannahs for L-band data in HH polarization [26]. Therefore, N was shown to have a wide
range of values depending on the land surface. Furthermore, for stable surfaces that do not
show a major change through time, such as ice sheets, forests, and permanent grasslands,
the degree of dependence between σ0 and θ is generally constant, whereas N is not stable
for surfaces that show high dynamism through time, such as croplands [31]. Over these
surfaces, N varies throughout the growth cycle according to the stage of development
(plowing, sowing, vegetation development, etc. [18,32,33]. Feng et al. showed that, over
corn croplands, N depends mainly on vegetation characteristics (N as a function of NDVI)
and is affected by soil roughness but not by soil moisture [18]. They found that, for corn
croplands, N values ranged from around 1.0 to 9.0 for VV and from around 1.0 to 6.0 for
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VH; N was highest after sowing, when vegetation is low and the soil roughness is at its
lowest values. Therefore, vegetation indices can be used in order to estimate and improve
N. The NDVI (Normalized Difference Vegetation Index) is one of the most widely used
vegetation indices calculated from optical remote sensing. It correlates with vegetation
biomass and photosynthetic activity, where higher values indicate increased vegetation
density and productivity, reflecting more photosynthetically active radiation absorption
and near-infrared reflectance [34,35]. NDVI was used in order to enhance the normalization
of σ0 from the S1 C-band over corn fields in China, outperforming the cosine-squared
method by 53% [18]. However, NDVI relies on optical data; it could be unreliable whenever
there is cloud cover. One way of overcoming this potential issue is by using the SAR Ratio
(VV/VH), which is a widely used vegetation index [36–39] based solely on SAR data. The
SAR Ratio was shown to have a highly significant correlation with corn plant height [36]
and a Pearson’s correlation of 0.65 and 0.41 with dry biomass for canola and soybean,
respectively [37]. Furthermore, the SAR Ratio was shown to correlate well with NDVI over
wheat fields [38].

Given this information, this study investigates how the backscattering coefficient (σ0)
varies with the incidence angle (θ) for different summer crops (sunflower, soybean, and
corn). It also evaluates the effectiveness of using cosine methods for angle normalization
using dynamic N based on NDVI compared to a fixed N normalization (N = 1 and N = 2) in
order to improve the widely used cosine method. To overcome the cloud cover limitations
associated with optical remote sensing and ensure the timely and continuous calculation of
the dynamic N values throughout the year, the study then proposes computing dynamic N
values using the SAR ratio (VV/VH) as an alternative vegetation descriptor to the common
optically derived vegetation indices (NDVI). The results highlighted the effectiveness of
using dynamic N values compared to a fixed N normalization. SAR ratio-based normal-
ization showed comparable results to optical-derived N normalization, which guarantees
operational SAR-based normalization without the need for complementary optical data.

2. Materials and Methods
2.1. Study Area

Our study area is located near the city of Pau and stretches across two French re-
gions, namely Nouvelle-Aquitaine and Occitanie, in the southwest of France. It lies within
the oceanic climate zone that dominates the west of France, receiving 1000 mm of an-
nual rainfall. The temperature generally varies between 2◦ and 26◦ depending on the
seasons. The area is around 6000 km2 (100 km × 60 km), encompassing 2500 km2 of
agricultural lands (croplands), according to the farmer’s declarations of the year 2021
(https://geoservices.ign.fr/rpg, accessed on 1 May 2024). Corn, soybean, and sunflower
(the three main summer crops) occupied around 60% of the total cultivated area, with
43,000, 5200, and 4600 fields, respectively. Figure 1 shows the location of the study site
and the land cover/land use of the area, obtained from Copernicus Global Land Cover
(accessed through https://land.copernicus.eu/en/products/corine-land-cover, accessed
on 1 May 2024).

https://geoservices.ign.fr/rpg
https://land.copernicus.eu/en/products/corine-land-cover
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2.2. Datasets
2.2.1. Sentinel-1 Data

Sentinel-1 (S1) synthetic aperture radar (SAR) data were obtained in the C-band at
a frequency of 5.405 GHz, corresponding to a wavelength of 5.55 cm, and feature a pixel
spacing of 10 m. The S1 constellation originally consisted of two satellites, Sentinel-1A (S1A)
and Sentinel-1B (S1B). The S1 constellation provided data with a 6-day revisit interval, until
the mission ended for S1B in December 2021. Consequently, only S1A has been operational
since then, and the revisit time changed to a 12-day interval from January 2022 onwards.
For this study, S1 data spanning 1 April 2021 to 30 November 2021 were used.

S1 Acquisitions are available in “ascending” (evening at 18:00 UT) and “descending”
(morning at 06:00 UT) modes. The Level 1 ground range-detected (GRD) product, which
includes VV and VH polarizations, was utilized for this research. The S1 data were supplied
by the European Space Agency (ESA) and are freely available on the Copernicus data
distribution platform (https://browser.dataspace.copernicus.eu, accessed on 1 May 2024).
The acquired S1 data were calibrated using the ESA S1 toolbox. Initially, a radiometric
calibration was applied to convert the data from the digital number (DN) format to the
backscattering coefficient σ0 in linear units. Following this, a geometric correction was
executed in order to address the systemic distortions arising from the sensor’s viewing
angle and the distortions that occur due to terrain topography. This was applied using a
digital elevation model with 30 m resolution from the shuttle radar topography mission for
topographic referencing.

For every S1 acquisition, pixel values within each field were averaged to derive a single
value representing the mean backscattering coefficient for that field. Both the VV and VH po-
larizations were used in this study. Additionally, we created a channel derived from the exist-
ing SAR polarizations called the SAR Ratio. In decibel unites, the SAR Ratio is the difference
between the VV (dB) and VH (dB) polarizations (SAR Ratio = σ0

i VV(dB)− σ0
i VH(dB)).

Figure 2 shows the spatial distribution of the orbits used in the study. Three descending
as well as three ascending orbits were used. The intersections between the different
ascending and the three descending orbits are represented as hatched zones, covering the
western and eastern sections of the study area. These intersection zones will be used in
the calculation of the difference in the backscattering coefficient between the orbits (∆σ0

θi)

https://browser.dataspace.copernicus.eu
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in future sections. Within these hatched zones, the number of corn fields was 15,000, the
number of soybean fields was 3000, and the number of sunflower fields was 2000.
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Figure 3 shows the temporal distribution of the S1 acquisitions from the different orbits
used in this study. It shows that there is a time difference of 24 h between the acquisitions
of the descending 81 (D81) and descending (D8) orbits, and 24 h between D8 and D110.
Similarly, we can see that there is a 24 h time difference between the sequential ascending
orbits A103, A30, and A132. Furthermore, when examining the time difference between the
ascending and the descending orbits, we can see a time difference between 1.5 days and
3.5 days.
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Figure 4 shows an S1 acquisition over our study area on 7 July 2021 for orbit D8. The
incidence angle values show a decrease from west to east (Figure 4a), while the backscat-



Remote Sens. 2024, 16, 3838 6 of 24

tering coefficient shows an increase in values from west to east (Figure 4b), reflecting the
angular dependence of the Sentinel-1 data [24,30].
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2.2.2. Sentinel-2 Data

The Sentinel-2 satellite constellation is part of the European Space Agency’s (ESA)
Copernicus program and can be accessed freely on the Copernicus data distribution plat-
form (https://browser.dataspace.copernicus.eu). The constellation comprises two identical
satellites, Sentinel-2A and Sentinel-2B, which capture high-resolution multispectral images
of the Earth’s surface, providing images at a revisit time of 5 days. The Sentinel-2 data cover
13 spectral bands from visible to short-wave infrared, with spatial resolutions of 10 m, 20 m,
and 60 m depending on the specific band. S2 data were sourced from the Theia platform
(https://www.theia-land.fr/), which offers processed Sentinel-2 (S2) data, with corrections
for atmospheric disturbances. Cloud-free images from 1 April 2021 to 30 November 2021
were downloaded over our study area. These optical data (10 m bands) were subsequently
utilized to calculate the Normalized Difference Vegetation Index (NDVI). For every image,
NDVI values were obtained for each field by averaging the pixels within said field.

2.2.3. ERA-5 Land Precipitation Data

This study used precipitation data from the ERA5-Land dataset. The ERA5 dataset,
provided by Copernicus and representing the fifth generation of the atmospheric reanalysis
developed by ECMWF, spans the period from 1950 up to three months before the present.
This reanalysis combines actual weather observations with modeled data worldwide to
create a comprehensive, consistent, and globally accessible climate dataset. ERA5-Land,
a subset of ERA5, focuses on land components and derives its atmospheric forcing from
the near-surface meteorological conditions and flux parameters of ERA5, specifically from
its lowest model level (level 137), which is 10 m above the ground. Key parameters
such as downward shortwave and longwave radiation, along with total precipitation
(both liquid and solid), were used to linearly interpolate ERA5 data to the higher spatial
resolution of ERA5-Land, improving it from approximately 30 km × 30 km (ERA5) to
around 9 km × 9 km (ERA5-Land).

2.3. Normalization Method
2.3.1. Angular Dependence of the S1 Backscattering Coefficient

The most commonly used normalization approaches were derived from Lambert’s
law for optics. The model is based on the assumption that the amount of power that
is re-radiated in the upper hemisphere follows a cosine law [24,30]. The backscattering
coefficient σ0 is dependent on the incidence angle (θ). The relationship between σ0 and θ

https://browser.dataspace.copernicus.eu
https://www.theia-land.fr/
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follows a cosine function; therefore, the measured backscatter σ0
θ is expressed as follows

(in linear unit):
σ0
θ = a cosN(θ) (1)

The coefficient a is related to the target’s backscattering properties, and N depends
on the dominant scattering mechanism and sensor condition [40]. Therefore, over the
agricultural area, N has to be calculated at different stages of development for each crop.
Seeing that the backscattering coefficient σ0

θi follows Equation (1) at every incidence angle
(θ i), the backscattering coefficient can be normalized (σ0

norm) at a given reference angle
(θnorm) as follows:

σ0
norm = σ0

θi

(
cosθnorm

cosθi

)N
(2)

A fixed N (N = 1 and N = 2) throughout the year is the most frequently used in the
literature [25,26]. The first-order cosine method employs N = 1; this is applied over tropical
forest land covers. The cosine squared method (N = 2) performs well for ideal surfaces that
exhibit a high diffusion rate. However, in the case of agricultural fields, the land’s surface
exhibits great temporal variability, caused by three main factors, namely vegetation cover,
soil moisture, and surface roughness. Unfortunately, this variability is not accounted for
when using a fixed N. Therefore, a dynamic N would be more suitable for accommodating
the variations in the surface throughout the growing season. In this paper, N will be
calculated for the main summer crop types present in our study site (sunflower, soybean,
corn). In addition, N will be modeled using one vegetation descriptor derived from optical
images (NDVI) and another calculated from S1 SAR images (SAR ratio).

2.3.2. N Value Estimation

Given that N varies throughout the growth cycle based on the developmental stage of
the crop [18], we will estimate N at each acquisition date with the aim of understanding the
dynamic of N. The most commonly employed method for estimating N assumes that, at
the time of a given SAR acquisition, fields of the same crop exhibit uniform characteristics.
However, this assumption is not always valid, particularly given that a Sentinel-1 image
spans a swath of approximately 250 km. Within such an extensive area, variations in soil
preparation and sowing dates, crop growth rates, and soil moisture are to be expected due
to the differing weather conditions and agricultural practices across the region. In order
to address these limitations, this study proposes the use of two closely timed ascending
or descending orbits at a time (with orbit 1 and orbit 2 never being separated by more
than 24 h) to analyze the angular dependence of the backscatter coefficient (σ0) over the
same field. We only utilized orbit pairs from the same orbital mode (either exclusively
ascending or exclusively descending) because certain crops, such as sunflower, exhibit
distinct behaviors between ascending and descending modes [41]. Specifically, the orbit
couples used were (D81, D8), (D8, D110), (A103, A30), and (A30, A132). Our hypothesis
supposes that soil moisture between the paired images remains relatively consistent if no
rainfall occurs during the 24 h period separating the two images. To ensure similar soil
moisture conditions, ERA-5 Land data were used in order to eliminate the effect of rainfall
events by using only images acquired during rain-free periods between 3 days before the
acquisition date of D81 and the acquisition date of A132. This choice of 3 days before D81
acquisition was made because a rainfall event affects the C-band backscattering for up to
3 days [42,43]. Consequently, the observed differences in σ0 values for a given field between
the two acquisition dates are attributed solely to variations in the incidence angle through
the assumption that soil roughness remains consistent within a 24 h period between two
acquisitions and that vegetation growth is negligible over this short time span.

For a given field, the difference in the backscattering coefficient (∆σ0) between two
orbits (two ascending or two descending orbits), separated by only 24 h, is expressed
as follows:

∆σ0(dB) = σ0
θ1(dB)− σ0

θ2(dB) (3)
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σ0
θ1 is the backscattering coefficient value from the first orbit used at incidence angle

θ1 and σ0
θ2 is the backscattering coefficient value from the second orbit used at incidence

angle θ2, both in decibel units. The first orbit is always the one with the greater θ. As a
result of the previously discussed safeguards that were set in place, the coefficient a over a
given field is assumed to be the same for the two orbits used. Consequently, Equation (3)
can be developed using Equation (1):

∆σ0(dB) = N × [10 × log(cosθ1)− 10 × log(cosθ2)] (4)

Using Equation (4), we calculated the value of N for each crop (sunflower, corn, and
soybean) at each acquisition date (the acquisition date of one of the six orbits was used
as the reference date) and for both polarizations. The cosine-based curve could then be
represented by a linear relationship between ∆σ0 (dB) and 10log(cos θi)− 10log(cos θi),
with a slope equal to N, expressed as follows:

Y = N × X (5)

2.3.3. Construction of the Relationship between N and Vegetation Descriptors

After the estimation of N values for each date, a relationship was constructed between
N and the vegetation descriptors used in this study (NDVI and SAR ratio). These regres-
sion relationships were used to calculate the dynamic N for each field at each date. The
relationship will be based on the following linear regression equation:

N = b × VD + c (6)

with b representing the slope, VD (Vegetation Descriptor) representing the vegetation
descriptor used (either NDVI or SAR ratio), and c representing the intercept.

Three approaches were employed in this study; two examine the relationship between
N and NDVI, called the NDVI single-equation and NDVI dual-equation, while the third
examines the relationship between N and the SAR ratio.

In the first NDVI-based approach, called the NDVI single-equation approach, the
relationship between N and NDVI was constructed using the complete time series (from
1 April 2021 to 30 November 2021).

In addition to the NDVI single-equation approach, a second NDVI-based approach
was also assessed, called the NDVI dual-equation approach, where the time series were
split into two sections based on the date of the maximum NDVI. This second NDVI-based
approach examines the effect of splitting the datasets on the correlation between N and
NDVI (which is expected to be higher than when using the complete series of N and NDVI
values), and the consequent effect on dynamic normalization. For corn and soybean, the
maximum of the average NDVI for these two crops in our area was around 1 September
2021, while for sunflower, the maximum NDVI was around 1 August 2021; therefore, the
time series were split as follows:

• Before the date of maximum NDVI: from 1 April 2021 to the date of the maximum
average NDVI (1 August 2021 and 1 September 2021, respectively, for sunflower
and for the two other crops (corn and soybean)). The regression relationship was
established using only data from this range of dates.

• After the date of maximum NDVI: from 1 August 2021 to 1 September 2021, respec-
tively, for sunflower and for the two other crops (corn and soybean) to 30 November
2021. The regression relationship was established using only data in this range of dates.

In addition to the NDVI-based dynamic N values, we propose the use of the SAR ratio
as a vegetation descriptor given its strong relationship with vegetation development [36–39].
Using the SAR ratio instead of the NDVI guarantees the continuous production of N values
independent of the weather conditions. Thus, in this third approach, called the SAR
ratio-based approach, the relationship between N and VV/VH was constructed using the
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complete time series (from 1 April 2021 to 30 November 2021). All the aforementioned
equations are summarized in Table 1.

Table 1. Formulas used to construct relationships between N and the vegetation descriptors.

Approach Formulas

NDVI single-equation N = b × NDVI + c
Dual-equation NDVI

{
N = b1 × NDVI + c1 for NDVI before peak
N = b2 × NDVI + c2 for NDVI after peak

SAR Ratio N = b′ × SAR_ratio + c′

3. Results
3.1. Estimated Ns

Figure 5 shows how N was estimated at different dates for the corn crop (the two
other crops showed similar behavior), with each representing a certain soil condition
and/or plant development stage. Figure 5a shows the earliest acquisition, taking place on
2 April 2021, exemplifying a date with no plant activity and no soil work, with N = 2.44.
Figure 5b shows N = 4.93 for the date 20 May 2021, in the period before plant emergence.
Figure 5c,d represent the dates 7 July 2021 and 30 August 2021, corresponding to early
and maximum vegetation development for the corn crop, with N = 1.93 and N = 1.33,
respectively. Figure 5e shows an N = 2.76 near the end of plant development (around
harvesting date). Finally, Figure 5f shows N = 2.65 after harvesting.
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Figure 5. Scatter plots showing examples of the regression relationship used to determine N for
the corn crop. (a) 2 April 2021: no activity; (b) 20 May 2021: soil work; (c) 7 July 2021: early
plant development; (d) 5 September 2021: strong plant development; (e) 11 October 2021: harvest;
(f) 4 November 2021: post-harvest. The clustering observed along the x-axis is due to only from the
intersection zones being used to estimate N. This leads to a sharp delimitation when calculating
x-axis values.
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Figure 6 shows the estimated values of N at every acquisition date; it also shows the
dynamic between N and vegetation indices for each of the summer crops in the study area
(corn, soybean, sunflower). The NDVI and the SAR ratio (dB) are the vegetation indices
used as indicators of crop development. The values of N vary greatly throughout the
year: between 1.5 and around 5.0 for the VV polarization and between 1.0 and 5.5 for the
VH polarization. This variation in N is caused by two factors—vegetation cover and soil
roughness [18]—both of which are related to agricultural activity. Figure 6a,b shows that for
our summer crops, as the vegetation develops, the value of N drops until they reach their
lowest, at around 1.5 for VV and around 1.0 for VH, when NDVI is at around its highest.
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Figure 6. Time series of N throughout the growth cycle of the three summer crops in this study (corn,
sunflower, soybean). (a) Time series of N for the VV polarization with mean NDVI (of all fields of
the same crop); (b) time series of N for VV polarization with mean NDVI; (c) time series of N for VV
polarization with mean SAR ratio (VV − VH); (d) time series of N for VV polarization with mean
SAR ratio. soyb. = soybean; sunf. = sunflower; asc. = ascending; Des. = descending. The Y-axis for
the SAR Ratio is inversed for better visualization.

Therefore, N is greater when NDVI is lower for both VV and VH polarizations. Fur-
thermore, we can see that N reaches its maximum value in the month of May, a period that
corresponds to seeded fields where soil roughness is generally very low.

Figure 6c,d show the time series of N according to the SAR Ratio. Since there are
ascending and descending orbits over our study area, these figures show the average SAR
Ratio time series for one ascending orbit (asc.) and one ascending orbit (des.). The N and
SAR Ratio are proportional, with N values being greater when the SAR Ratio is greater.
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3.2. Dynamic N Relationships

As laid out in Section 2.3.3, the relationships between N values and vegetation descrip-
tors (NDVI and SAR ratio) are established between N and the vegetation descriptors based
on the equations found in Table 1. Figure 7a,b show the linear regression for the NDVI
single-equation approach in the VV polarization and VH polarization, respectively. The
linear regression relationship for VV is N = −2.79 NDVI + 3.97, and the relationship for VH
is N = −2.38 NDVI + 2.98.
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Figure 7. Relationships between N values and NDVI in the case of the NDVI single-equation
approach: (a) VV polarization; (b) VH polarization.

The regression relationships in the case of the dual-equation approach are shown
in Figure 8. There are two regression relationships for each polarization (VV and VH):
one before the maximum NDVI and one after the maximum NDVI. The relationships are
as follows:

• Before the date of the maximum NDVI: The linear regression relationships between N
and NDVI for the VV polarization before and after the maximum NDVI, expressed as
N = −2.59 NDVI + 3.96 and N = −3.61 NDVI + 4.24, respectively (Figure 8a,b).

• After the date of maximum NDVI: The relationships between N and NDVI before and
after the maximum NDVI for the VH polarization, expressed as N = −2.30 NDVI + 2.91
and N = −2.65 NDVI + 3.14, respectively (Figure 8c,d).

The lower correlations between N and NDVI during the first half of the crop cycle,
illustrated in Figures 8a and 8c (VV and VH, respectively), are due to the effect of soil
roughness, which strongly influences N; N is low before plowing, then high during sowing,
and finally low again after the sowing period. Generally, the correlation values are higher
for the NDVI dual-equation than for the NDVI single-equation.

The third approach for determining N was based on the SAR Ratio and so the relation-
ship between N and SAR Ratio was also established using the linear regression equation
found in Table 1. The SAR ratio data from all the available orbits were used in the process
of fitting N with the SAR ratio (three ascending and three descending orbits), resulting in
there being six times more points than in the case of NDVI. Figure 9a,b shows the result
of this fitting for VV and for VH, respectively, expressed as N = 0.40 SAR Ratio−0.38 and
N = 0.26 SAR Ratio−0.11.

Table 2 summarizes the regression relationships found for the three approaches used:
N = f(NDVI single-equation), N = f(NDVI dual-equation), and N = f(SAR Ratio).
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Figure 9. Linear regression relationship between N values and SAR Ratio (a) for VV polarization and
(b) for VH polarization.

Table 2. Regression relationship for the determination of the dynamic N applied for the three summer
crops in the area.

Approach VV R2 VH R2

NDVI single equation N = −2.79 NDVI + 3.97 0.41 N = −2.38 NDVI + 2.98 0.28
Dual equation before maximum NDVI N = −2.59 NDVI + 3.96 0.42 N = −2.30 NDVI + 2.91 0.26
Dual equation after maximum NDVI N = −3.61 NDVI + 4.24 0.51 N = −2.65 NDVI + 3.14 0.41

SAR Ratio N = 0.40 SAR_Ratio − 0.38 0.33 N = 0.26 SAR_Ratio − 0.11 0.13
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3.3. Normalization of S1 Data

Thematic applications using the entirety of an S1 image (250 km swath) sometimes
require normalization of the radar backscattering coefficient in order to reduce the effect of
the incidence angle. In fact, the first pixel of the S1 image has an incidence of around 25◦,
while the last pixel has an incidence of around 45◦. Generally, the backscattering coefficients
of the S1 images are normalized according to Equation (2) using a reference incidence angle
(θnorm) corresponding to the center of the S1 swath. To that extent, successful normalization
strongly reduces the dependence of the backscattering coefficient with the incidence angle
and brings the backscattering coefficients acquired at different incidence angles closer to
the backscattering coefficient at θnorm.

In addition to the three dynamic N approaches presented in Section 3.1, we also
examined the two fixed N approaches, N = 1 and N = 2. For all dynamic N approaches,
N was determined for each field using its NDVI value or its SAR Ratio (Table 1) using
the corresponding equations derived in Section 3.1; then, the S1 data were normalized
accordingly. In the case of the NDVI dual-equation approach, the selection of the regression
relationship to be used was based on the date of maximum NDVI for each field. Orbits
D8 and A30 encompass the entirety of the study area; hence, they were normalized to a
reference angle of θnorm = 39◦ and θnorm = 37◦, respectively, the centers of our area for
the D8 and A30 orbits.

In order to illustrate the effect of normalization using the different approaches, three
key dates were examined for the D8 orbit in Figure 10 (the results for the A30 orbit are in
the Appendix A). Figure 10a shows the median σ0 VV of all fields within each range of
incidence angle before and after normalization. Each row represents an approach used for
the determination of N, corresponding to fixed N = 1, fixed N = 2, dynamic N = f(NDVI
single-equation), dynamic N = f(NDVI dual-equation), and dynamic N = f(SAR Ratio),
respectively, results for orbit A30 in Appendix A.

The results show that, for N = 1, the normalized data show a very slight movement
towards the reference value (σ0

VV at the reference normalization angle used (θnorm = 39◦)),
showing a very small reduction in the angular dependence. For N = 2, the normalized
data are closer to the reference value than for N = 1. However, using dynamic N-based
approaches leads to better results from all three dynamic N approaches, with the normalized
data moving closer to the reference value σ0

re f than they did when using fixed N approaches.
The results for VH polarization (Figure 10b) tell a similar story to the VV polarization,

with N = 2, performing better than N = 1, while dynamic N-based normalization approaches
still yield better results than when using fixed N.
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for orbit D8. Each approach used is presented in a different row: fixed N = 1; fixed N = 2; N = f(NDVI
single-equation); N = f(NDVI dual-equation); N = (SAR Ratio). The dotted line corresponds to
σ0(θ=39◦) (called σ0

re f ). (a): VV; (b): VH. Results for orbit A30 in Appendix A.

4. Discussion

Figure 10 shows the effect of normalization when using the different approaches.
After normalization, the backscattering coefficient is closer to the reference value σ0

re f (=σ0

at θ = 39◦) at the different incidence angles. However, even after normalization, there
may still be a difference between the normalized backscattering coefficient (σ0

norm) and the
reference value (σ0

re f ). Subsequently, in order to evaluate the effect of normalization on the
backscattering coefficient, firstly, the mean of the absolute value of the difference between
the two was calculated via the range of incidence angle using all the dates in the period of
our study (from 1 April 2021 to 30 November 2021) for the different N approaches used
(Figure 11). Figure 11 shows the mean difference between σ0

norm and the σ0
re f for orbit D8

in VV polarization. The difference before normalization is shown as N = 0. Comparing
the different normalization approaches shows that N = 1 exhibited the highest difference,
reaching an average difference of 0.77 dB, followed by N = 2 with a difference of 0.68 dB.
On the other hand, the dynamic N approaches consistently outperformed the fixed N.
This is marked by a reduction in the angular dependence of around 40% (for an incidence
delta around 4◦, between the center = 39◦, and the edge = 43◦) in the difference between
σ0

norm and σ0
re f for dynamic N (for N = f(SAR Ratio, for the range [42.5◦, 43.5◦)) over the

non-normalized data (from 0.86 dB to 0.53 dB), making it higher than that of N = 2, at
around 25% (for the range [34.5◦, 35.5◦)). Figure 11b corroborates the findings of Figure 11a
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but for the VH polarization, with the dynamic N showing an improvement of around 40%
over the non-normalized data (N = f(NDVI single equation, for the range [34.5◦, 35.5◦)),
compared to around 25% for N = 2 (for the range [34.5◦, 35.5◦)). This means that the
dynamic N-based normalization is more capable of overcoming the effect of the incidence
angle when compared to the fixed N-based normalization. Comparing the NDVI based
normalization and the SAR based normalization, the findings demonstrate that the SAR
ratio-based normalization performs similarly to the NDVI-based normalizations.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 24 
 

 

reaching an average difference of 0.77 dB, followed by N = 2 with a difference of 0.68 dB. 
On the other hand, the dynamic N approaches consistently outperformed the fixed N. 
This is marked by a reduction in the angular dependence of around 40% (for an incidence 
delta around 4°, between the center = 39°, and the edge = 43°) in the difference between σ௡௢௥௠଴  and σ௥௘௙଴  for dynamic N (for N = f(SAR Ratio, for the range [42.5°, 43.5°)) over the 
non-normalized data (from 0.86 dB to 0.53 dB), making it higher than that of N = 2, at 
around 25% (for the range [34.5°, 35.5°)). Figure 11b corroborates the findings of Figure 
11a but for the VH polarization, with the dynamic N showing an improvement of around 
40% over the non-normalized data (N = f(NDVI single equation, for the range [34.5°, 
35.5°)), compared to around 25% for N = 2 (for the range [34.5°, 35.5°)). This means that 
the dynamic N-based normalization is more capable of overcoming the effect of the inci-
dence angle when compared to the fixed N-based normalization. Comparing the NDVI 
based normalization and the SAR based normalization, the findings demonstrate that the 
SAR ratio-based normalization performs similarly to the NDVI-based normalizations. 

  
(a) (b) 

Figure 11. The mean difference between 𝜎௡௢௥௠଴  and 𝜎௥௘௙଴  by incidence angle range for orbit D8. (a) 
VV polarization; (b) VH polarization. N = 0 corresponds to the backscattering coefficient before nor-
malization. 

Secondly, the change in the backscattering coefficient was analyzed after normaliza-
tion at certain key dates. Figure 12 quantifies the effect of normalization on the orbit D8 
for the VV polarization (A30 in Appendix A) by showing the amount of change (∆σ୬୰ ଴ (dB)) 
in the backscattering coefficient after normalization, with  ∆σ୰୬଴ = |σ଴(𝜃) − σ௥௘௙଴ | −|σ௡௢௥௠଴ − σ௥௘௙଴ |. ∆σ୰୬଴  represents how much the backscattering coefficient became closer to 
the reference value σ௥௘௙଴  after normalization. For example, if σ଴ for θ = 35° before nor-
malization was −8 dB and σ௥௘௙଴  for θnorm = 39° was −10 dB, while σ଴ after normalization 
(σ௡௢௥௠଴ ) was −9.5 dB, then ∆σ୰୬଴  (dB) would be +1.5 dB, meaning that normalization re-
duced angular dependence by 1.5 dB (from 2 dB to 0.5 dB). 

Figure 11. The mean difference between σ0
norm and σ0
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normalization.

Secondly, the change in the backscattering coefficient was analyzed after normalization
at certain key dates. Figure 12 quantifies the effect of normalization on the orbit D8 for the
VV polarization (A30 in Appendix A) by showing the amount of change (∆σ0

nr(dB)) in the
backscattering coefficient after normalization, with ∆σ0

rn =
∣∣∣σ0(θ)−σ0

re f

∣∣∣−∣∣∣σ0
norm − σ0

re f

∣∣∣ .

∆σ0
rn represents how much the backscattering coefficient became closer to the reference

value σ0
re f after normalization. For example, if σ0 for θ = 35◦ before normalization was

−8 dB and σ0
re f for θnorm = 39◦ was −10 dB, while σ0 after normalization (σ0

norm) was

−9.5 dB, then ∆σ0
rn (dB) would be +1.5 dB, meaning that normalization reduced angular

dependence by 1.5 dB (from 2 dB to 0.5 dB).
Figure 12 shows the median change for all fields in each incidence angle range in the

study area for five dates. When using N = 1, Figure 12a shows that normalization leads
to a maximum change of 0.25 dB when the difference in incidence angle (incidence delta)
is around 4◦ (between the center = 39◦ and the western edge = 43◦), meaning that nor-
malization leads to a correction of up to 0.25 dB at most. Comparing Figures 12a and 12b
shows that simple cosine-squared (N = 2) normalization performed better than first-order
normalization, with a maximum improvement of 0.49 dB compared to the original backscat-
tering data. However, all dynamic N normalization methods perform better than fixed
N. Figure 12c shows that when using N = f(NDVI single-equation), the resulting max-
imum change is 0.83 dB, while for N = f(NDVI dual-equation), the maximum change
obtained is 0.80 dB, as shown in Figure 12d. Finally, Figure 12e shows that N = f(SAR
Ratio) had a maximum change of 0.79 dB for an incidence delta of around 4◦. Thus, the
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NDVI-based and SAR ratio-based dynamic normalization approaches deliver a similar
normalization performance.
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The values of ∆σ0
rn (dB) could be underestimated due to (1) N fitting errors, (2) irriga-

tion activity, and (3) the fact that the ERA5-Land data used to eliminate S1 data acquired on
surfaces that have experienced rainfall may be imprecise because of the intrinsic uncertainty
of the ERA5-Land data, as well as their coarser spatial resolution (~9 km × 9 km). For
example, if at a given date, there was local rainfall only on fields located around θ = 43◦,
then σ0 from these fields before normalization would be higher than σ0 from fields located
close to the reference angle (39◦ for D8). By definition, normalizing the data between 40◦

and 43◦ will lead to an increase in σ0 after normalization (for θnorm = 39◦), which is not
correct in theory because σ0 must decrease when the incidence angle increases. If this is
the case, normalization will lead to a further increase in σ0, away from σ0

re f . This does

not mean that normalization has led to errors, but that σ0
norm cannot be compared with

σ0
re f , as the characteristics of the environment are not identical, as in our initial assumption.

Furthermore, data corresponding to periods without vegetation, mainly the earliest dates
(period before plant emergence) and the latest dates (post-harvest), generally have very
heterogeneous soil characteristics, as tillage is not at the same date for all fields and neither
are harvests, and as soil roughness has a strong influence on the N value. Therefore, normal-
ization may have errors during these periods, as sometimes an N that is not adapted to the
roughness of certain fields is used (N is higher for high roughness than for low roughness).

Figure 13 shows the change after normalization for the orbit D8 in VH polarization.
N = 1 results in a maximum change of 0.25 dB (Figure 13) when the difference in inci-
dence angle (incidence delta) is around 4◦ (between the center = 39◦ and the edge = 43◦).
Figure 13b shows that the maximum change using N = 2 is 0.50 dB. The maximum change
was higher when using dynamic N methods, with maximum changes at 0.62, 0.57, and
0.59 for N = f(NDVI single-equation) (Figure 13c), N = f(NDVI dual-equation) (Figure 13d),
and N = f(SAR Ratio) (Figure 13e), respectively. As for the case with the VV polarization
(Figure 12), ∆σ0

rn (dB) could be underestimated in certain sections of the S1 swath that have
different properties to the rest of the extent at the same date, mainly due to precipitation,
irrigation, and soil roughness.

(a) (b) 

Figure 13. Cont.



Remote Sens. 2024, 16, 3838 18 of 24

(c) (d) 

(e)

Figure 13. The change in backscattering for orbit D8 in the VH polarization after normalization
using the different approaches. (a) fixed N = 1; (b) fixed N = 2; (c) N = f(NDVI single-equation);
(d) N = f(NDVI dual-equation); (e) N = (SAR Ratio). Results for orbit A30 in Appendix A.

As shown by the results, as we move from the center of the image towards its edges,
the variation in the incidence angle is greater and ∆σ0

rn is greater, because normalization
depends on the difference between θi and θnorm (Equation (2)). That being said, it is
important to note that our area only covered around a third of the width of an S1 tile. In
fact, the maximum difference in incidence reaches up to around 10◦ (from the center to
the edges) for the entirety of the S1 swath, whereas our biggest difference in incidence is
4◦. Assuming that the relationship between the correction of σ0 and the incidence angle is
linear across the entire width of the S1 tile, we can expect a maximum change of around
2.0 dB for the VV polarization and 1.6 dB for the VH polarization when working over the
entirety of the S1 swath (incidence delta is around 10◦).

Furthermore, the normalization of σ0 is most relevant during the vegetation growth
cycle because the calculation of N only depends on the NDVI or SAR Ratio, which we can
calculate, whereas this normalization before plant emergence or after harvesting could
contain more uncertainty because the calculation of N requires knowledge of roughness
that we cannot readily obtain.
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5. Conclusions

The radar backscattering coefficient (σ0) over a defined agricultural field for a given
SAR (Synthetic Aperture Radar) sensor depends on the incidence angle, soil characteristics
(mainly surface roughness), and the stage of vegetation development. The current revisit
time of Sentinel-1 (S1) is typically 12 days (with one functioning satellite out of two),
sometimes rendering the use of all available data over a given area (all orbits) necessary in
order to improve the density of the S1 time series. Furthermore, the interpretation of S1
data acquired over a wide swath (250 km) requires high vigilance because two fields with
the same crop and the same soil and vegetation characteristics would have very different
σ0 values (a difference that is generally higher than 2 dB for a 20◦ difference in the S1
incidence angle).

This study demonstrates that the angular dependence of the S1 σ0 is similar for the
three analyzed summer crops (sunflower, soybean, and corn), with low angular dependence
during the well-developed vegetation stage. On the other hand, there are significant
fluctuations in the angular dependence during the period prior to plant emergence due to
the variations in soil roughness. Overall, angular dependence was slightly higher for VV
than for VH polarization.

A dynamic normalization approach was applied, based on the vegetation descriptors
NDVI and SAR ratio (VV/VH), leading to a decrease in the angular dependence of σ0. This
dynamic normalization was more effective compared to temporally fixed normalization,
with NDVI single-equation-, NDVI dual-equation- and SAR Ratio-based dynamic normal-
izations yielding a similar performance. The similar performances of the SAR-based and
NDVI-based dynamic normalization highlight the ability to obtain effective dynamic N
normalization using only SAR data.

Furthermore, the results showed that when dynamic normalization is applied to the
entire swath of an S1 acquisition, the expected correction in the backscattering coefficient is
around 2.0 dB for the VV polarization and 1.6 dB for the VH polarization.

This paper shows that our normalization is most appropriate for the period corre-
sponding to vegetation development but may be insufficient for the period corresponding
to soil preparation. In fact, during this period, soil roughness information is necessary
because the most successful normalization approach would require not only vegetation
descriptors but also soil roughness data, whereas the latter is not readily obtainable at the
operational level.
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Figure A1. Comparison of the backscattering coefficient before and after normalization to θnorm = 37◦

for orbit A30. One row is used to represent each approach: fixed N = 1, fixed N = 2, N = f(NDVI
single-equation), N = f(NDVI dual-equation), N = (SAR Ratio). The dotted line corresponds to σ0 at
θ=39◦, called σ0

re f . (a): VV, (b): VH.
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Figure A2. The change in the backscattering for orbit A30 in the VV polarization after normalization
using the different approaches: (a) fixed N = 1; (b) fixed N = 2; (c) N = f(NDVI single-equation);
(d) N = f(NDVI dual-equation); (e) N = (SAR Ratio).
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Figure A3. Cont.
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(c) (d) 

(e)

Figure A3. The change in the backscattering for orbit A30 in the VH polarization after normalization
using the different approaches: (a) fixed N = 1; (b) fixed N = 2; (c) N = f(NDVI single-equation);
(d) N = f(NDVI dual-equation); (e) N = (SAR Ratio).
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