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Abstract 

Guaranteeing consumers that poultry farming respects animal welfare is the heart of the poultry farmer, 
but civil society is demanding greater transparency in farming practices. Meeting society's expectations 
must go hand in hand with the competitiveness of poultry meat production, which is globalised and highly 
competitive. The notion of animal health and welfare can be assessed using a variety of methods, and 
new technologies offer an opportunity to take continuous measurements in real time, without disturbing 
the animals in their living environment. Image and sound processing enables finer and more frequent 
analyses than those carried out by humans. These new technologies are helping to improve monitoring 
and responsiveness to health problems or changes in animal behaviour through predictive analysis. The 
EBroilerTrack project led by ITAVI has produced promising proofs of concept in imaging and acoustics 
under controlled broiler rearing conditions. In the field of imaging, image analysis algorithms have been 
developed to monitor individual broiler chickens on the farm, with the aim of identifying welfare and health 
indicators for each animal observed. The performance of these algorithms is presented in this article. In 
the field of acoustics, the work carried out has demonstrated the benefits of using acoustic analysis to 
monitor the health and well-being of broilers, in the specific case of infectious bronchitis. 

Keywords: welfare, health, poultry, image analysis, acoustics 

1. Introduction 

Growing public awareness of the way in which animals are reared is prompting the poultry industry to 
introduce ways of reporting on the welfare and health of poultry. Methods exist for assessing animal 
welfare on farms. They involve the application of welfare measurement protocols, based on occasional 
observation of the animals by trained personnel. Many researchers are interested in the possibility of 
using new technologies to assess and report on animal welfare on farms. The advantage of these tools 
is that they enable data to be collected more regularly, without causing stress to the animals, more 
objectively, sometimes more accurately (on an individual scale) and less time-consumingly than the 
methods traditionally used by a human observer (Créach et al., 2019). The farmer can then take corrective 
action if necessary during the flock. Using image or sound analysis would also make it possible to identify 
a problem (health or welfare) at an earlier stage so that action can be taken more quickly to limit the 
spread of the pathology to the entire flock of poultry and thus reduce the associated direct and indirect 
costs (e.g. limiting the use of antibiotics, reduced growth and animal mortality).  
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According to Rowe et al. (2019), a majority of papers related to precision farming use image analysis to 
measure welfare in poultry farming (42% out of a total of 264 publications). The use of microphones seems 
to be less widespread in poultry farming (14%, according to Rowe et al., 2019). However, sound signals 
play an important role in animal communication, and certain signals can reflect the state of well-being and 
health of the animals. They are used to alert conspecifics, or to communicate with each other with the 
aim, for example, of maintaining contact or attracting conspecifics (Manteuffel et al, 2004). Certain 
vocalisations can easily be perceived as indicators of the animal's state of well-being (distress, comfort 
or fear vocalisations, for example - Dawkins, 1998; Michaud et al., 2019). These vocalisations, which may 
even be emitted a few hours before hatching, are quite distinct from singing, which appears later in the 
life of the bird (Wood-Gush, 1971). Other types of sound can be emitted by poultry in the event of 
pathology and thus directly reflect the state of health of the animal, such as rales and sneezes. These 
respiratory symptoms can be heard and recognised by the human ear, but only when the disease is 
already well established. Pathogens affecting the respiratory system of chickens can be viruses (e.g. 
Newcastle disease, Infectious Bronchitis: IBV, avian coronavirus), bacteria (e.g. Mycoplasma spp., 
Bordetella spp.) or fungi (e.g. Aspergillus spp.) (Dal Pozzo, 2019). 

It is already possible to use image analysis to monitor changes in poultry activity and their distribution in 
the building, at group or individual level. A first approach is based on the percentage of pixels whose 
colour changes over successive images of a video. This is used to assess the activity of a group of 
chickens (Fraess et al., 2016; Dawkins et al., 2021). The data generated has, for example, been correlated 
with chickens' carriage of Campylobacter bacteria (Colles et al., 2016), the occurrence of pododermatitis 
and tarsal burns (Dawkins et al., 2017; Peña Fernández et al.,2018) and chickens' gait scores (Silvera et 
al.,2017). This list of articles is far from exhaustive. One company has marketed the EyeNamic solution, 
based on this approach (De Montis et al., 2013). The disadvantage of this method is that it is based on 
the analysis of pixel colour change and not on the direct analysis of animal behaviour. A second approach 
to image analysis involves tracking individual birds. Some researchers, such as Collins in 2008, have 
monitored individual birds in groups of 20 for a limited period (10 minutes). A French company has recently 
launched a solution based on this approach (Copeeks), but no publication is available on the methodology 
used or the performance of the proposed solution. The videos available are only of very short duration 
(30 seconds). The approach involving animals wearing RFID (Radio Frequency Identification) chips 
(Siegford et al., 2016; Sales et al.,2015; Feiyang et al.,2016; Li et al.,2020; Oliveira et al., 2019) makes it 
possible to collect individual animal activity, like visual tracking (speed, acceleration, time spent near 
specific equipment, etc.). Although the reliability of this solution is interesting for assessing welfare, it is 
not feasible to use it in commercial farming. Removing the device requires handling the RFID-chipped 
animals, which is time-consuming and laborious for farmers. Developments in image analysis to assess 
poultry activity show that the tools developed can still be perfected and are still at the prototype stage. 
Although systems are being developed, there is currently no system adapted to commercial stocking 
densities that can collect individual data to calculate welfare indicators for chickens.  

Recently, acoustic analysis systems have been developed for the detection of respiratory diseases in pigs 
(Chedad et al., 2001; Chung et al., 2013) and veal calves (Carpentier et al., 2018; Vandermeulen et al., 
2016). In poultry, acoustic analysis for the detection of respiratory symptoms has also been studied 
(Carroll et al., 2014; Rizwan et al., 2017; Banakar et al., 2016). Apart from Carpentier et al. (2019), who 
worked on a group of 500 chickens but only on the detection of sneezing, the articles previously listed 
concern trials conducted on small groups of animals or individual birds.  

The main objective of this article is to summarise the results obtained within the CASDAR (Compte 
d'Affectation Spécial Développement Agricole et Rural) Recherche Technologique EBroilerTrack of 2018, 
led by ITAVI. A first objective of this article is to report on the current performance of a new image-based 
tracking system developed in this project, using artificial intelligence and enabling the individual tracking 
of broilers in commercial rearing. The three other objectives of this article are 1/ to identify differences 
between groups infected and uninfected with Infectious Bronchitis (IB) 2/ to characterise the respiratory 
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symptoms of IB (sneezing and rales) in sick animals from an acoustic point of view and 3/ to develop an 
algorithm for the automatic detection of these symptoms.  

2. Materials and methods 

2.1 Algorithms for detecting and tracking individual chickens using imagery 

2.2.2. General principle and identification of areas of interest 

The tracking method developed consists of two independent parts. The first involves the individual 
detection of each chicken in the camera field. A convolutional neural network is used for this detection. It 
has been trained on a database containing almost 1,000 images, i.e. more than 10,000 chickens. Such a 
detection model is less sensitive to light conditions and contrast variations and separates crowded 
chickens more easily, compared with a traditional computer vision detection method (not based on 
learning) (O'Mahony et al., 2019). At the end of this detection stage, the position and size of each chicken 
is available (see section 1.1.2). The second step consists of following each detected chicken from one 
image to the next (tracking step). To do this, a unique identifier is assigned to each animal as soon as it 
enters the camera field. At each moment and based on the past positions of each chicken, the algorithm 
is then able to predict the position of each animal in the next image. Each chicken detected in this new 
image is then assigned the identifier of the chicken whose estimated position is closest to it.  

Zones of interest are determined in the camera's field of view in order to determine how often each of 
these zones is used (number and duration of passages in the zone). The feeding zone is defined by a 
circle around each feeder and the drinking zone by a rectangle around the pipette lines (see Figure 1). 
The areas of interest are traced manually once. Further development is envisaged to automatically detect 
feeders and water lines in the field of view. It is also possible to define a zone around an enrichment to 
find out how often it is used, in the same way as for other zones. A rectangle is automatically drawn 
around each chicken identified, and the length and width of each rectangle are recorded. The feeding and 
drinking areas are delimited by 75% of the length of this rectangle above each chicken. Thus, when 75% 
of the length of the rectangle is included in the zone, the chicken is counted as frequenting the zone of 
interest.  

Figure 1: Example of feeder and water line zoning (marked in blue) [photo credit ITAVI]. 
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2.2.3. Individual data generated by algorithms 

The data generated by these tracking algorithms is listed in Table 1 below. The area available per animal 
corresponds to the area of the Voronoi cells or the maximum area of the polygon in Figure 2, containing 
a broiler without crossing another cell. An animal that moves or its neighbours modifies its Voronoi cell. 
There is a small imprecision in the detection, which creates a small permanent movement of the animal. 
Thus, an animal is considered active above the threshold set for immobile chickens at the 95ème quantile 
of distances travelled (more imprecision for large chickens). It is considered immobile when its distance 
is less than the 95ème quantile. 

Table 1: List of indicators generated by individual tracking of chickens using imagery 

Figure 2: Example of Voronoi cells, one cell containing a broiler chicken [photo credit ITAVI].  

2.2.4. Support for the development of detection and tracking algorithms 

Different recording contexts and different equipment have enabled image analysis algorithms to be 
developed and trained: 

1/ Under experimental conditions at INRAe Nouzilly: Two flocks of ROSS 308 chickens were reared 
at 2 different densities (10 and 20 chickens per m²) up to 32 days of age. The 2 flocks were in the 
same room and set up on the same day. Images were captured by 3 x 2 MP (megapixel) cameras 
per pen, positioned 2.5 m above the pen. The animals were parked strictly under the camera's 
field of view. These recordings were used to analyse the performance of the detection model at 
different densities.  

INDICATORS GENERATED UNIT 

Distance travelled cm/chicken 

Travel speed cm/chicken 

Duration of period of activity s/chicken 

Time spent in area of interest s/chicken 

Time spent standing still s/chicken 

Surface area of chickens seen from above (= surface area of the rectangle representing each 
chicken) 

cm² (sq. 
in.) 

Area available per animal (Figure 2) 
cm² (sq. 

in.) 
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2/ Commercial conditions in a ROSS 308 chicken farm: Three 3MP cameras were installed at 3 
different heights (2.5 m, representing 8.3 m² of filmed floor area, 3.7 m, representing 28 m² of 
filmed floor area and 5 m, representing 48 m² of filmed floor area) in a 2,060 m² commercial farm 
building, with 39,140 chickens reared to 45 days. The animals were not strictly penned under the 
camera and were kept at a density of 19 chickens/m². These latest recordings were used to 
analyse the performance of the detection model at different animal resolutions (i.e. camera 
heights and chicken sizes).  

2.2.5.  Assessment of detection rate and tracking quality 

The results are analysed firstly in terms of the performance of the detection model and secondly in terms 
of tracking performance. For each particular case (specific camera height, age of chickens, etc.), the 
analysis is carried out on around ten images taken regularly with a maximum time lag within the same 
video, lasting from 8 minutes to 1 hour 43 minutes, in which the chickens were active. The analysis 
therefore covers more than 1,000 chickens. The number of false positives and undetected chickens is 
recorded manually for each image. The sensitivity and False Discovery Rate (FDR) are calculated for 
each video. The tracking analysis is carried out on 100-second videos (i.e. 1,000 images analysed). The 
measure of tracking quality is the number of identification errors (IE). A chicken loses its identifier or swaps 
it with another. The number of true negatives does not exist (no chicken detected where there is none) in 
the field of image analysis for chicken detection. It is therefore not possible to assess the specificity of the 
tests, for example. The aim is to have as few false positives and false negatives as possible, while 
detecting as many animals as possible. The detection tests are calculated using the following formula: 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡é =
𝑉𝑃

𝑉𝑃 + 𝐹𝑁
=

#𝑏𝑜𝑛𝑛𝑒𝑠 𝑑é𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

#𝑝𝑜𝑢𝑙𝑒𝑡𝑠
 

𝐹𝐷𝑅 =
𝐹𝑃

𝑉𝑃 + 𝐹𝑃
=

#𝑓𝑎𝑢𝑠𝑠𝑒𝑠 𝑑é𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

#𝑑é𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
 

TP: true positives, FN: false negatives, FP: false positives, #: number  

2.2 Automated measurement of sound indicators in poultry, the case of Infectious 
Bronchitis 

2.2.6. Experimental design and sound recordings 

The trials were carried out at the Unité Expérimentale UE-1277 Plateforme d'Infectiologie expérimentale 
(PFIE) on Ross 308 chickens reared up to 35 days (Figure 3). Two rooms were set up with 30 chickens 
per room: a control room (T) with uninfected animals and a room BI with animals inoculated with Infectious 
Bronchitis. Infectious Bronchitis (IB) is a coronavirus that causes respiratory problems in hens and 
chickens. It can cause embryonic mortality, deformed shells and a drop in egg-laying in laying hens, and 
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digestive problems and under-performance in broilers. This is why we chose this pathology in the present 
study for the inoculation of chickens under experimental conditions.  The animals in room BI were 
inoculated at D28 via the naso-ocular route, either with sterile 1X saline phosphate buffer (control flock) 
or with 500 µL IBV at 1,105 EID50 (50% Embryo Infective Dose = the titre of virus required to produce 
infection in 50% of inoculated embryos) using a 1 mL syringe (gCoV/chicken/Morocco/I38/ 2014). Both 
rooms were run in the same way. Viremic monitoring confirmed that the inoculation worked well on all the 
animals 4 days post-inoculation (D32) and systemically on the tissues. For each room, 4 omnidirectional 
1/4" T.bone MM1 microphones were installed 46 cm above the floor, to be as close as possible to the 
animals without being accessible to them, and evenly distributed in the space above the chickens (Figure 
3). The signals were recorded continuously from day 26 to the end of the rearing period using a Scarlett 
18i20 Focusrite 8-channel audio interface. Before D26, the birds were kept together before being 
separated into two groups. Recordings were made at 10-minute intervals in .wav format to limit file size. 
The signal was broken down using a spectral subtraction algorithm (Ephraim and Malah, 1984; Cappe, 
1994), in particular to remove ventilation noise. This required prior recording of this isolated ventilation 
noise for approximately 10 to 30 seconds. The relative noise level was calculated over the entire rearing 
period in 10-second increments, in the 2 rooms (day and night) as follows 𝐿 = 20 𝐿𝑜𝑔10 (

𝜎
𝑝𝑟𝑒𝑓⁄ ) with 

𝑝𝑟𝑒𝑓 a reference pressure and 𝜎 the variance of a 10-second sound sample.  

Figure 3. Photos of the installation with the chicks [photo credit INRAe]. 

2.2.7. Characterisation of infectious symptoms 

A database of 400 sound signals was first labelled by 5 experts (veterinarians and zootechnicians) on the 
basis of 10-minute audio tapes. In total, 278 signals were labelled as sneezes and 122 as rales. Table 2 
shows the list of descriptive acoustic indicators generated from the sound signals labelled as sneezes 
and rales. The indicators selected for the study are simple, complementary and commonly used to 
describe acoustic signals (order 0, order 1 and order 2 indicators). The labelled signals were processed 
using R software to perform a Principal Component Analysis (PCA) incorporating the acoustic indicators 
listed in Table 2. This analysis was used to describe the two symptoms. The estimation of these indicators 
was implemented using Python3 software. 

Table 2. List of acoustic indicators calculated 

 

 

 

 

 

 

 

 

 

 

 

2.2.8. Development of a model to predict respiratory symptoms 

Creating a database with only the events of interest (sneezing and moaning) is not enough to set up a 
prediction model. There are a multitude of sound events from chicken farms. For this reason, a second 

INDICATOR DEFINITION 

Maximum amplitude Most important signal value 

Minimum amplitude Lowest value 

Average amplitude Signal average 

Variance Indicator of the dispersion of amplitudes around the mean 

Standard deviation or rms value Standard deviation of the signal 

Crest factor Measuring signal dynamics 

Signal energy Signal strength 
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database was created with the same experts. In addition to sneezing (n = 271) and rale (n = 84), this 
database also contains the chirping (n = 106) and other classes (n = 66). These data show events of 
about 1 s. 60% of these data were used for training and the remaining 40% for testing the prediction 
model.  

The sound signals used in this database were transformed. Each signal is represented by the average of 
its cepstral coefficients of the Mel frequency (Zheng et al., 2001). This frequency (Mel scale) aims to mimic 
the perception of sound by the human ear and is important in establishing the prediction model based on 
machine learning. The learning model used in this case is that of a neural network (Multilayer Perceptron 
MLP). This is an algorithm whose expected result should predict as accurately as possible the 4 classes 
of interest that we want to model (Sneeze, Rale, Peep and Other) as a function of the sound signals 
represented by their cepstral coefficients. This network consists of an input layer (cepstral coefficients), 
three hidden layers and an output layer representing the variable to be predicted (the 4 classes). The 
hidden layers act as intermediaries to model the output as a function of the input parameters. They are of 
major interest because they give more flexibility to the model so that it fits the inputs as closely as possible.  

3.1 Performance of algorithms for detecting and tracking individual chickens using imagery 

2.2.9. 3.1.1. Detection performance as a function of age and camera height 

The videos taken on commercial farms were used to obtain the following results. Table 3 shows the 
detection performance for a given age and camera height. With a camera at 2.5 m, sensitivity varied from 
96.9% at D12 to 100% at D39. When the camera is positioned at 3.7 m, this percentage varies from 84.2% 
at D12 to 99.8% at D39. Finally, a camera positioned 5 m away gave sensitivities ranging from 75.9% at 
D12 to 99.5% at D39. Sensitivity decreased with the height of the camera but increased with the age of 
the chickens. The number of pixels per chicken (the surface area of the chicken in the image) varies with 
the height of the camera. of the camera (image resolution) and with the age of the chickens. This surface 
area varies from around 2,500 pixels/chicken for a camera 5 m high and 12-day-old chickens to 17,500 
pixels for 39-day-old chickens and a camera 2.5 m high. The neural network used to detect chickens is 
sensitive to the surface of each animal in the image. A convolutional neural network works by successively 
reducing the size of the image analysed. An initial image of 1,000 * 1,000 pixels is reduced to a size of 22 
* 22 pixels. For example, a 12-day-old chicken filmed by a 3 MP camera at a height of 5 metres has a 
surface area of less than 1.5 pixels at the end of the neural network analysis. The smaller the initial surface 
area of the animal, the lower the probability of it being detected by the neural network. Increasing the 
height of the camera in order to gain access to a wider field of view then requires an image enlargement 
transformation to be applied so that each animal is large enough to be detected by the neural network. 
On the other hand, analysing a larger image increases the computing time required. Increasing the height 
of the camera by a factor of n not only degrades the image, but also increases its size and the calculation 
time by a factor of n². A compromise must be found between calculation time and the size of the desired 
camera field in order to film a maximum number of animals and process a maximum length of video in a 
minimum amount of time. Table 3 shows the sensitivities on enlarged images as a function of initial median 
area of the chickens (in bold in Table 3value in pixel). There appears to be a limit of between 3,500 and 
4,000 pixels per animal, below which the detection rate falls sharply. 

Table 3. Detection performance of the algorithm as a function of height at 12 days of age (in bold the surface of a 
chicken in pixels).  

Height 
Sensitivity 

J12 

Sensitivity 

J26 

Sensitivity 

J39 

2,5m 
96,9 % 

4940 

99,2 % 

11470 

100 % 

17360 
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3,7m 
84,2 % 

3250 

98,6 % 

5830 

99,8 % 

8240 

5m 
75,9 % 

2800 

98 % 

4090 

99,5 % 

5830 

2.2.10. 3.1.2. Detection performance as a function of animal density at the same age 
(D29) 

The videos collected under experimental conditions were used to obtain the following results. Table 4 
shows the detection performance of the neural network as a function of 2 different densities, 10 and 20 
chickens per m². The percentages of animals detected in the field of vision differed little according to 
density (+1% of animals detected for the low-density floor compared with the high-density floor). However, 
the false discovery rate (i.e. the number of times the system detects an animal when there is none) is 
higher in the low-density floor than in the high-density floor. The higher the concentration of animals, the 
greater the risk of one animal hiding another. The sensitivity is explained by these occlusions. The 
variation in the false discovery rate is due to the fact that a false positive can only appear in an area with 
no chickens. The more animals there are, the fewer empty zones there are, leaving less room for false 
positives.  

Table 4: Detection performance of the algorithm as a function of animal density per m² at D29  

 10 ax/m² (1) 20 ax/m² (1) 

Sensitivity 99,2 % 98,1 % 

False discovery rate 6,6 % 4,8 % 

2.2.11. 3.1.3. Tracking performance 

The videos taken on commercial farms were used to obtain the following results. Animal tracking 
performance was calculated over 1,000 successive images. The number of identification errors is 
presented per animal per minute (10 images/second, i.e. 600 images per minute analysed). This value 
reflects the average frequency of occurrence of an identification error per minute. The results are 
presented both for a capture made with a higher level of activity on 26-day-old chickens and on 39-day-
old chickens at rest. At 39 days of age, there was almost no tracking/animal/minute error (0.03). At 26 
days of age, less than one error per animal per minute was identified (0.67), which is equivalent to one 
error every 1.5 minutes per animal in the field of vision. Tracking performance depends on the model's 
ability to detect all the animals and the tracking algorithm's ability to identify each animal. The greater the 
animal activity, the more difficult it is to track the animals. Errors in identification (an animal losing its 
identifier) occur in areas of very high density (mainly resting areas near walls). It is also in these areas 
that false negatives most often occur. 

3.2 Results of monitoring and acoustic analyses carried out on poultry, case of Infectious 
Bronchitis 

A total of 2,238 10-minute audio tapes were collected from the test room (BI) and 4,263 from the control 
room, i.e. 373 hours of video and 710 hours of video respectively. This difference can be explained by the 
fact that the recordings in the test room (BI) were not made from the start of the flock but began 2 days 
before the animals were inoculated (when they were transferred to their respective rooms). 
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2.2.12. 3.2.1. Monitoring of relative noise levels 

An average difference of 3 dB was detected at night in the BI room compared with the control room over 
the 5 days post-inoculation. This result reflects a noise intensity twice as high in the test room (BI) 
compared with the control room (Figure 4). This also reflects the higher acoustic activity of the chickens 
in this room at night. Symptoms of infectious bronchitis were clearly visible and audible to the animal 
keepers at D+3/D+4, but the study of sound levels showed a clear increase in intensity in the test room 
(BI) from D+2 (Figure 4). A difference of 2 dB or more is considered significant. This corresponds to a 
50% increase in sound intensity (sound intensity equals sound level). According to Figure 4, the noise 
level in the control room was fairly stable throughout the trial. 

  

Figure 4: Changes in relative noise levels (in the control room and the trial-BI) at night as a function of the number 
of days of inoculation. 

Characterisation of sneezes and rales 

Figure 5 shows two spectrograms, (a) of a sneeze and (b) of a rale. This representation is close to human 
perception because the human ear is capable of analysing the temporal evolution of the frequency of a 
signal as well as its sound level. The frequencies allow us to assess whether the event is severe or acute 
as a function of time, and the energy whether the event is perceptible to the ear. The sneeze is short in 
time, 0.25 s, and its energy is distributed over a frequency band of 200 Hz to 5 kHz. The rale is a weaker 
event and is confused with noise. Moreover, the energy of the rale is between 100 kHz and 1 kHz. The 
PCA performed on the 400 labelled sound signals (278 sneezes and 122 rales) revealed 3 separate 
clusters, 2 relating to sneezes (Clusters 2 and 3 in Figure 6, in red and blue respectively) and 1 relating 
to rales (Cluster 3 in Figure 4, in green). The sneeze is characterised by the acoustic parameters: 
skewness, kurtosis, crest factor, mean frequency, frequency spread, maximum amplitude, energy and 
RMS value of the signal (in blue and red in Figure 6). These last acoustic indicators identified show 
significantly different averages (at the 5% significance level) and higher averages for the sneeze than for 
the rale. The rale is characterised by the other acoustic parameters: signal duration, temporal spread, 
maximum amplitude and mean time (Figure 6). All these parameters have a higher mean for the rale and 
are significantly different (at the 5% significance level) from the mean for the sneeze (Table 5). 
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Figure 5. Spectrogram (a) of a sneeze (b) of a rale.  

Figure 6. Biplot of the results of the Principal Component Analysis (PCA) applied to the acoustic descriptors  
 

Table 5. Averages of acoustic indicators calculated for moaning and sneezing (in bold the variables that 
characterise each symptom and are therefore significantly different). 

Indicator Medium rale Average sneeze 

Skewness (without unit) 0,17 0,38 

Kurtosis (without unit) 15,30 36,24 

Crest factor (without unit) 11,33 14.31 

Average frequency (Hz) 1289,48 1783,79 

Frequency spread (Hz) 1212,04 1758,82 

Maximum amplitude (V) 0,02 0,07 

RMS value (V) 0,000026 0,000038 

Energy (V2) 0,12 1,19 

Duration (s) 1,09 0,69 

Time spread (s) 0,27 0,08 
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Minimum amplitude (V) -0,01 -0,06 

Average time (s)  0,56 0,32 

2.2.13. Performance of the algorithm for automatic detection of developed symptoms 

The neural network model implemented in this study showed 82% accuracy for the test data. 4 classes 
were evaluated: Sneezing, Raling, Peeping and Other (Table 6). For the Sneezing class, 104 were 
correctly identified (True Positives: VP) out of 109 and 20 False Positives (FP), 82 True Negatives (VN) 
and 5 False Negatives (FN). This gives a sensitivity (VP/(VP+FN)) of 95% and a specificity (VN/(VN+FP)) 
of 80%. The rale class has a sensitivity of 65% and a specificity of 98%. The peeping class gave a 
sensitivity of 71% and a specificity of 99%. For the other class, 69% sensitivity and 94% specificity were 
obtained (Table 6). These results are quite encouraging, particularly for sneezing, since the accuracy of 
the model for the sneezing class is in line with that obtained by Carpentier et al,(2019). The neural network 
model developed in this study was trained on a fairly small database, especially for rale, chirping and 
other classes. It would be interesting, at a later stage, to feed the database with more data in order to 
improve its performance and robustness.  
 
Table 6. Confusion matrix for the prediction model used 

 Reference 

Prediction Other Sneezing Chirping Rale 

Other 18 3 5 4 

Sneezing 6 104 6 8 

 Chirping 0 2 30 0 

Rale 2 0 1 22 

3. Conclusion 

The quality of detection depends on a number of parameters: the definition of the camera, the size and 
age of the animal, the height of the camera, the density and activity of the animals. The quality of 
monitoring depends very much on the system's ability to detect the animals, but also on their activity. The 
density of animals per square metre does not seem to hinder animal detection when the animals are 
evenly distributed, at the densities of 10 and 20 chickens per square metre tested. The detection 
algorithms developed for monitoring broiler chickens in commercial farms perform very well (> 99% of 
animals detected from D26 with a 2.5 m camera). However, tracking performance is less good in areas 
of higher density (particularly near walls) and could be improved by enriching the image database in these 
specific areas. Publications on similar developments do not allow a strict comparison with the results 
presented in this article, since the trials are only carried out on small groups of birds, where 100% of the 
birds are detected, and the objectives and methods for evaluating the quality of detection and tracking 
are not the same. The next step is to determine alert thresholds for the early detection of animal health 
and welfare disorders. Work is also being carried out to predict the expression of specific behaviours, 
such as exploration and grooming, using activity data from tracking. 

This study shows that sneezing is a short sound (0.25 s) that is clearly distinguishable by ear. The rale, 
on the other hand, is a longer (1.09 s), less frequent event that can be confused with background noise. 
The prediction model was developed for events with a duration of 1 second. It gives better results for 
automatic detection of sneezes: 95% sensitivity, compared with 65% for rales. The database used will 
soon be populated with more labelled signals to improve the model's detection performance. The noise 
level emitted by the animals during the nocturnal phase seems to be an interesting indicator for the early 
detection of a pathology associated with the expression of symptoms, in this case respiratory symptoms 
for BI. These preliminary results under experimental conditions are promising for future trials. This trial 
will have to be repeated under the same experimental conditions to check whether the 3 decibel difference 
between the 2 rooms is systematic and therefore linked to inoculation. 
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