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Abstract
Introduction A better understanding of the physiological response of silage maize to a mild reduction in nitrogen (N) fer-
tilization and the identification of predictive biochemical markers of N utilization efficiency could contribute to limit the 
detrimental effect of the overuse of N inputs.
Objectives We integrated phenotypic and biochemical data to interpret the physiology of maize in response to a mild reduc-
tion in N fertilization under agronomic conditions and identify predictive leaf metabolic and proteic markers that could be 
used to pilot and rationalize N fertilization.
Methods Eco-physiological, developmental and yield-related traits were measured and complemented with metabolomic and 
proteomic approaches performed on young leaves of a core panel of 29 European genetically diverse dent hybrids cultivated 
in the field under non-limiting and reduced N fertilization conditions.
Results Metabolome and proteome data were analyzed either individually or in an integrated manner together with eco-
physiological, developmental, phenotypic and yield-related traits. They allowed to identify (i) common N-responsive metabo-
lites and proteins that could be used as predictive markers to monitor N fertilization, (ii) silage maize hybrids that exhibit 
improved agronomic performance when N fertilization is reduced.
Conclusions Among the N-responsive metabolites and proteins identified, a cytosolic NADP-dependent malic enzyme and 
four metabolite signatures stand out as promising markers that could be used for both breeding and agronomic purposes.
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Abbreviations
ANOVA  Analysis of variance
1H-NMR  Proton nuclear magnetic resonance 

spectroscopy
GS  Glutamine synthetase
LC–QTOF–MS  Liquid chromatography quadrupole 

time-of-flight mass spectrometry
HCA  Hierarchical clustering analysis
HN  Non-limiting fertilization treatment
LN  Reduced N fertilization treatment
LSmeans  Least square means
LV  Latent variable
PLS-DA  Partial least-squares discriminant 

analysis
PC  Principal component
PCA  Principal component analysis
UHPLC  Ultra-high-performance liquid 

chromatography

1 Introduction

Maize (Zea mays L., also called corn) is cultivated world-
wide in both temperate and tropical areas and is currently 
ranked first among cereals, representing more than 40% of 
the total world cereal production (http:// www. world agric 
ultur alpro ducti on. com/ crops/ corn. aspx). It is one of the 
major sources of food and feed for both animal and human 
consumption. Breeding strategies and sustainable agro-
nomic practices have thus been developed to improve maize 
agronomic performance, either for silage or kernel produc-
tion and to produce derived commercial products, such as 
bioethanol (Ranum et al., 2014). The challenge is to select 
new varieties adapted to a wide range of environmental con-
straints, including climate change, biotic and abiotic stresses 
while preserving the environment (Carena, 2021; Voss-Fels 
et al., 2019). An efficient use of nitrogen (N) fertilizers is 
required to attain maximal yield in most crops cultivated 
worldwide (Hirel & Krapp, 2020). However, owing to the 
detrimental effect of the overuse of N fertilizers on both 
marine and terrestrial ecosystems and on the release of 
greenhouse gases, several complementary actions have been 
conducted. They combine whole plant physiology, molecular 
genetics and breeding to identify the limiting steps of crop 
nitrogen use efficiency (NUE) (Sutton et al., 2020). Nitrogen 
use efficiency corresponds to the yield obtained per unit of 
N supplied by the soil in the form of mineral or organic N 
fertilizers (Beatty & Good, 2018).

Only nitrate transporters and the enzyme glutamine syn-
thetase (GS) have proved to be involved in the control of 
crop productivity in general and maize in particular (Fortu-
nato et al., 2023; Hirel & Krapp, 2020). Other studies have 
also shown that the undesirable side-effects of fertilization 

can be significantly decreased by improving agricultural 
practices (Giordano et al., 2021; Hirel et al., 2011), and by 
benefiting from the microbial rhizosphere (Dellagi et al., 
2020; Porter et al., 2020). Until now, most diagnostic tools 
used in precision agriculture were sensors or chlorophyll-
meters, measuring specific spectral indices that respond to 
variations in leaf area index or leaf chlorophyll concentra-
tion, either at plant or canopy level (Sahu et al., 2019). The 
information derived from these sensors can then be used to 
estimate fertilization requirements in a wide range of envi-
ronments (Kumar & Ilango, 2018). The use of a core set of 
molecular and biochemical marker traits representative of 
the plant nutritional status has also been proposed both to 
monitor and pilot N fertilization (Sinha et al., 2020).

Importantly, our understanding of the complex control 
of NUE of maize has been greatly improved by the devel-
opment of holistic approaches based on the use of these 
biological markers (Chowdhury et al., 2022; Simons et al., 
2014a, 2014b). Although omics data collected from plants 
grown in the field and their integration remain scarce, espe-
cially in commercial maize hybrids, interesting perspectives 
have opened up concerning the use of metabolome-assisted 
breeding techniques for narrowing the genotype/phenotype 
gap of complex traits, such as yield and biomass production 
(Zhang et al., 2015).

Maize is a strategic species for the production of meat and 
milk, which are increasingly demanded worldwide (Hen-
chion et al., 2017). It is one of the most high-yielding forage 
crops and it is generally cheaper to produce than other forage 
crops (Heuzé et al., 2017). Silage conservation guarantees 
an excellent feed and source of proteins for ruminants. This 
has led to the implementation of N management practices to 
significantly decrease pollutant emissions from maize culti-
vation (Piccini et al., 2016). However, further improvements 
in the nutrient management of silage maize are still required 
to adjust both the amount and timing of N fertilization and 
mitigate its potentially detrimental environmental effects 
(Adegbeye et al., 2020).

Therefore, to decipher the biochemical bases of N uti-
lization and metabolism in relation to growth and produc-
tivity in silage maize, we combined a metabolomic and a 
proteomic approach exploiting the genetic diversity of 29 
hybrids issued from the crossing of a core panel of 29 Euro-
pean dent lines with a flint tester.

2  Methods

2.1  Plant material, growth conditions and sampling

Twenty-nine genetically diverse Dent and Stiff Stalk maize 
inbred-lines (Zea mays ssp. mays, Table S1) structured 
into four admixture groups including European, Iodent, 

http://www.worldagriculturalproduction.com/crops/corn.aspx
http://www.worldagriculturalproduction.com/crops/corn.aspx


Identification of metabolic and protein markers representative of the impact of mild nitrogen… Page 3 of 16 128

Lancaster and Stiff Stalk genotypes (Ganal et al., 2011; Rin-
cent et al., 2014) were selected according to their diversity 
based on pedigree, genotyping and a narrow range of female 
flowering dates not exceeding two equivalent days at 20 °C. 
A dendrogram showing the genetic distances between the 
parental lines could be built as genotyping data of 26 of the 
29 inbred-lines are open (Nicolas et al., 2020). SNP data, 
containing 978,134 genetic markers, were downloaded from 
Nicolas et al. (2020) and the 26 lines corresponding to the 
present study were selected. The dendrogram was created 
using R (version 4.3.3, R Core Team, 2022). A distance 
matrix was computed using the dist function with the Euclid-
ean method. Then, clustering was performed with Ward’s 
method (ward.D) using the hclust function (Figure S1A). 
The inbred-lines were crossed with flint inbred-line UH007 
(Univ. Hohenheim, Germany) developed to improve com-
bining ability with Iodent and Stiff-Stalk lines for earliness, 
yield of kernel and stover, and sown as hybrids in a field 
located in Estrées-Mons (Northern France, 49°52′44″ N, 
3°0′27″ E).

The soil was deep loam. N:P:K fertilizer and irrigation 
were applied. Plants were subjected to non-limiting and 
reduced N fertilization treatments (HN and LN, respec-
tively). Before sowing, N fertilization was adjusted accord-
ing to the amount of residual N already present in the soil 
(110 kgN.ha−1) to obtain a final yield of 100 quintals (q) 
for HN and 80 q for LN (147 kgN.ha−1 and 58 kgN.ha−1 
for HN and LN plots, respectively). Air temperature, rain-
fall, air vapor pressure deficit and global radiation were 
recorded by a meteorological station located approxi-
mately 600 m from the field. Thermal times starting from 
emergence (equivalent to the number of equivalent days 
(EqD) at 20 °C) were calculated from air temperature 
(Parent et al., 2010) for each condition. The experimental 
design for each condition consisted in four individual rows 
of 40 plants per genotype, planted in three randomized 
blocks. Plants were sown on May  19th, 2014, and leaf 
samples were harvested on July  11th (20.1 EqD at 20 °C 
after emergence,  d20°C). For each hybrid and block, the 
youngest ligulated leaf (usually from the third to the fifth 
leaf depending on the genotype) at the 8-visible-leaf plant 
stage was harvested between 10:00 am and 1:00 pm from 
8 plants in each block. In each of the 8 leaves, a single 
central 5-cm section without the main vein was selected. 
The 8 leaf sections were pooled and immediately frozen 
in liquid nitrogen. The resulting powder was separated 
into two aliquots and stored at − 80 °C until further use. 
One of the two aliquots was lyophilized and stored in a 
dry environment at − 20 °C for metabolome analyses and 
targeted analyses of free amino acids, as well as total C 
and N analyses. The second aliquot was stored at − 80 °C 
for enzymatic activity measurements and proteomics. The 
youngest ligulated leaf was also harvested at flowering and 

ground as described above for total C and N analyses. The 
three biological replicates used for the different biochemi-
cal analyses corresponded to each block.

2.2  Measurement of eco‑physiological, 
developmental and yield‑related traits

In the 29 hybrids grown under HN and LN, eco-physio-
logical, developmental and agronomic traits were meas-
ured at various developmental stages spanning from the 
four ligulated leaf (4LL) stage to maturity (kernel harvest) 
(Additional text, Annex 1, raw and Least Square Means 
[LSmeans] data in Table S2a,c).

2.3  Metabolome analyses

Metabolomic profiling based on proton nuclear magnetic 
resonance spectroscopy (1H-NMR) was performed on polar 
extracts obtained from 20 mg of lyophilized leaf powder, 
using hot ethanol–water extraction as described previously 
(Biais et al., 2009). The resulting extracts were prepared and 
analyzed according to Lamari et al. (Lamari et al., 2018) 
using a 500 MHz spectrometer. Metabolites were identi-
fied and quantified as described previously (Lamari et al., 
2018). This resulted in the quantification of 28 metabolites 
expressed in μg  gDW−1. The corresponding NMR data and 
metadata were deposited in the recherche.data.gouv.fr data-
verse repository (https:// doi. org/ 10. 57745/ NZNMZH).

Liquid Chromatography Quadrupole Time-of-Flight 
Mass Spectrometry (LC–QTOF–MS) fingerprinting of semi-
polar extracts was performed as in Lamari et al. (Lamari 
et al., 2018) with the modifications described in Additional 
text, Annex 2. This resulted in 2808 variables, or metabolite 
signatures, named using their nominal masses in Da and 
retention time in s (for instance M180T746 for a signature 
with a 180-Da nominal mass and a 746-s retention time). 
Annotation of 29 intense ions was based on previous studies 
(Lamari et al., 2018; Urrutia et al., 2021). Annotation with 
putative name assignments of the LC–QTOF–MS-based bio-
markers highlighted by statistical analyses was performed 
by calculating chemical formulae using SmartFormula 
software (Bruker, Bremen, Germany) and comparing them 
with those available in the Dictionary of Natural Products 
(https:// dnp. chemn etbase. com/). The LC–QTOF–MS data 
and metadata were deposited in the recherche.data.gouv.fr 
dataverse repository (https:// doi. org/ 10. 57745/ UPAO0X). 
Raw data and LSmeans for the identified metabolites and 
metabolite signatures in HN and LN fertilization conditions 
are presented in Table S3a and c, respectively. Annotations 
of the LC–MS–QTOF metabolite signatures are presented 
in Table S3d.

https://doi.org/10.57745/NZNMZH
https://dnp.chemnetbase.com/
https://doi.org/10.57745/UPAO0X
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2.4  Starch, total protein and free amino acid 
quantification

After robotized ethanolic extraction, starch and total pro-
tein contents of the leaf samples were determined enzy-
matically or colorimetrically in the pellets, as previously 
described (Lamari et al., 2018). Starch and total proteins 
were expressed on a  gDW−1 basis. Amino acids were quan-
tified by Ultra High-Performance Liquid Chromatography 
(UHPLC) fluorimetry after derivatization with the AccQ-
Tag method (Waters, Milford, MA), from a fourfold water 
dilution of the extraction performed for 1H-NMR analyses, 
following the supplier’s recommendations (Additional text, 
Annex 3). Final quantification was expressed in  gDW−1.

2.5  Enzyme activity measurements

Soluble enzymes were extracted from fresh weight samples 
(20 ± 0.5 mg). Enzymatic activities for phosphoglucose 
isomerase (PGI), triose phosphate isomerase (TPI), NAD-
glutamate dehydrogenase (GDH), glutamine synthetase 
(GS), alanine aminotransferase (AlaAT) and aspartate ami-
notransferase (AspAT) (Gibon et al., 2004; O'Neal & Joy, 
1973) were measured following the procedure recommended 
by Bénard and Gibon (Bénard & Gibon, 2016) in a robotized 
Starlet platform (Hamilton, Villebon-sur-Yvette, France). 
Raw data and LSmeans for enzyme activities in HN and 
LN fertilization conditions are presented in Table S4a and 
c, respectively.

2.6  LC–MS/MS shotgun proteomics

Proteins were extracted from 50 mg of fresh material of leaf 
samples. Protein extraction and digestion were performed as 
described previously (Blein-Nicolas et al., 2020). LC–MS/
MS analyses of protein digests (400 ng of peptides) were 
performed using an Ultimate 3000 RSLCnano System cou-
pled with an Orbitrap Fusion™ Lumos™ Tribrid™ mass 
spectrometer (Thermo Electron, Waltham, MA) as described 
in Bednarz et al. (Bednarz et al., 2021) with minor modifica-
tions described in Additional text, Annex 4. Proteins repre-
sented by at least two reproducible and consistent peptides 
were quantified by summing their intensities, as in Balliau 
et al. (2018), in order to measure their relative abundance. 
Protein annotations and GO terms were extracted from 
maizegdb (https:// www. maize gdb. org/, RRID:SCR_006600, 
(Portwood et al., 2018)) and complemented using Mercator 
V4.0 (https:// www. plabi pd. de/ portal/ merca tor4) and enzy-
matic data included in CornCyc v8.0 (https:// www. plant 
cyc. org/ datab ases/ cornc yc/8.0). The mass spectrometry 
proteomics data were deposited in the ProteomeXchange 
Consortium via the PRIDE (Perez-Riverol et al., 2021) part-
ner repository with dataset identifier PXD034145. Raw data 

and LSmeans for the identified proteins in HN and LN are 
presented in Table S5a and c, respectively.

2.7  Data analyses

Univariate and multivariate data analyses (ANOVA, prin-
cipal component analysis [PCA], hierarchical clustering 
analysis [HCA]) were conducted as described in Annex 5. 
Eco-physiological, developmental and yield-related traits 
were combined with the metabolite and proteome data, using 
multiblock sparse partial least-squares discriminant analysis 
(PLS-DA) on LSmeans data (calculated for each N fertiliza-
tion treatment) and correlation networks. For each variable 
affected by the N treatment according to a two-way ANOVA, 
the “susceptibility” value per genotype was calculated as 
follows: susceptibility = (LSmeans (HN) − LSmeans (LN))/
LSmeans (HN), to search for the less-susceptible hybrids.

3  Results

3.1  Reduced N fertilization had a significant 
impact on eco‑physiological, developmental 
and agronomic traits

In the 29 hybrids, a two-way ANOVA analysis (P < 0.05 
after FDR correction) showed that in the LN condition, a 
significant decrease was observed in 17 out of the 25 eco-
physiological traits (Table 1). An increase was observed 
in only one of them (Sen80) under reduced N fertiliza-
tion. A greater impact of reduced N fertilization tended to 
be observed at flowering. On average, at flowering, a 35% 
and 30% decrease were observed for QN_Flo and NNI, 
respectively. In addition, the rate of leaf senescence (Sen80) 
increased by 6% at the latest stages of plant development. 
When N fertilization was reduced, there was a lower than the 
20% expected yet significant decrease in kernel production 
(KW) at maturity (6%) and in total plant biomass production 
(8% to 10%), both at the vegetative stage (TDW_4DL) and 
at maturity (TDW), (Figure S1B).

When the LS-means of all these traits were used, we 
found that most of the correlations were significant (P < 0.05 
after FDR correction), irrespective of the level of N fertili-
zation. The correlation coefficients are shown for the HN 
and LN conditions in Fig. 1A and B, respectively, and their 
values are presented in Table S2d. All the traits exhibiting a 
positive or negative correlation could be grouped into three 
main clusters, irrespective of the level of N fertilization. One 
of these three clusters contained most of the measured traits, 
including the kernel and shoot-biomass yield components 
measured at harvest (KN, KW, TDW, K%N) together with 
the traits related to the leaf surface (Surf_o and Surf_tot) and 
to status of plant C and N at flowering (QN_Flo, NNI_Flo, 

https://www.maizegdb.org/
https://www.plabipd.de/portal/mercator4
https://www.plantcyc.org/databases/corncyc/8.0
https://www.plantcyc.org/databases/corncyc/8.0
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QC_Flo). All these traits were the most strongly and posi-
tively correlated. In this cluster, only the kernel N content 
(K%N) was negatively correlated to KW in both HN and 
LN conditions.

Two other small clusters of traits were also identified, 
including those related to the plant physiological status 
during vegetative growth at 4DL and to leaf senescence. 
Within these two clusters, negative correlations were 
observed between Rgr_Veg and the other traits measured 
at the vegetative stage of plant development (TDW_4FDL, 
QN_4FDL, GC_4FDL), and a positive correlation was 
observed between the latter three traits. In both HN and LN 
conditions, the second minor cluster encompassed the two 
traits used to monitor leaf senescence (Sen40 and Sen80) 
and Surf_i, which were negatively correlated.

For the key marker enzymes involved in primary C and 
N metabolism (Table S4), the most interesting result was a 
positive correlation between total leaf glutamine synthetase 
(GS) activity and the two main yield components repre-
sented by KW and TDW when N fertilization was reduced 
(Table S4d). For this enzyme, both the level of N fertiliza-
tion and its interaction with the genotypic effect were highly 
significant, with 65% variation for the former (two-way 
ANOVA, corrected P < 0.05, Table S4c).

3.2  Strong genotypic variability for tolerance 
to N‑limiting conditions

A PCA was conducted using as variables the different phe-
notypic and physiological traits measured in the 29 hybrids 
that were significantly different between the HN and LN 
conditions (Fig. 2). Along the first two components of the 
PCA (PC1 and PC2), which accounted for 27% and 19% of 
the variance respectively, a clear separation between HN 
and LN could be observed for most hybrids along PC1. The 
Euclidian distance (Ed) between the two N fertilization con-
ditions in the PC1 x PC2 plan depended on the hybrids and 
roughly defined their responsiveness to N fertilization. For 
example, B84 (Ed = 6.5) exhibited the greatest difference 
between HN and LN. This difference was the lowest for 
F618 (Ed = 1.3), whereas an intermediate N responsiveness 
(Ed spanning from 2 to 5) was obtained for FR19 (Ed = 4.1).

3.3  Identification of N‑responsive metabolite 
and protein markers

PCAs were performed to obtain an overview of the metabo-
lite (Figure S2) and protein (Figure S3) composition in the 
29 hybrids, together with a visual representation of their dis-
tribution in the HN and LN conditions. The score plots show 
that the two levels of N fertilization were clearly separated 
along the first principal component (PC1), accounting for 
13 and 18% of total variability for metabolites and proteins, 
respectively. The 29 hybrids were separated along the PC2 
axis, which reflects the genetic variability for their metabo-
lite and protein contents. Moreover, the distribution of the 29 
hybrids along the PC2 axis was not always similar in the HN 
and LN conditions, thus indicating that a genotype/level of N 
fertilization interaction probably occurred in some of them.

For the metabolites (Figure S2), several carbohydrates, 
an organic acid and amino acid glutamate were more abun-
dant in the LN condition. Several other amino acids and 
choline were more abundant in the HN condition. Higher 
amounts of precursors of lignin biosynthesis such as quinic 
acids and derivates, flavonoids, coumaric acid ester and sev-
eral benzoxazinoids were detected in the HN condition. A 
two-way ANOVA (N fertilization and genotype, corrected 
p-value < 0.05, Table S3b) confirmed the trends observed 

Table 1  Variability of eco-physiological, developmental and yield-
related traits measured in a panel of 29 maize hybrids under two N 
treatments

Variations were calculated using the mean of 3 replicates correspond-
ing to three different blocks. Each replicate is composed of a pool of 
8 individual plants. Details of the analysis and statistics are presented 
in Table S2
ns not significant

Trait Trait abbreviation Variation (%)

Foliar surface (1 to 8 FDL) Surf_i  − 9.67
Foliar surface (12 to 14 FDL) Surf_o  − 9.69
Total foliar surface (FDL) Surf_tot  − 10.05
Leaf emergence vigour at 10 EqD EV  − 2.99
Leaf emergence rate (VL) LER_V ns
Leaf emergence rate (FDL) LER_D ns
Senescence at 40 EqD Sen40  − 5.99
Senescence at 80 EqD Sen80 6.27
Ear leaf rank Rk ns
Male flowering date FloM ns
Female flowering date FloF ns
Total nitrogen at 4FDL QN_4FDL  − 13.45
Total carbon at 4FDL QC_4FDL  − 8.77
Nitrogen nutrition index at 4FDL NNI_4FDL  − 4.09
Total nitrogen at flowering QN_Flo  − 34.72
Total carbon at flowering QC_Flo  − 8.74
Nitrogen Nutrition Index at 

flowering
NNI_Flo  − 30.52

Relative growth rate (until 11 VL) Rgr_Veg ns
Relative growth rate (until flower-

ing)
Rgr_Flo ns

Thousand kernel weight TKW  − 1.87
Kernel number per ear KN  − 4.42
Total kernel dry weight KW  − 6.33
Total dry weight at 4FDL TDW_4FDL  − 9.73
Total dry weight at harvest TDW  − 8.49
Kernel nitrogen percent K%N  − 12.95
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in the PCA presented in Figure S2. In the LN condition, 
among the 1800 metabolites or metabolic signatures exhib-
iting changes in their level of accumulation (both accord-
ing to the genotype and to the level of N fertilization), 658 
were significantly up-regulated and 1142 were significantly 
down-regulated. Higher amounts of starch, sucrose, inosi-
tol, malate, trans-aconitate, glutamate, HBOA-glucoside, 
DIM2BOA-glucoside and three flavonoids were detected in 
LN, whereas eight free amino acids, trigonelline, choline, 

HMBOA-glucoside, DIMBOA-glucoside and 13 flavonoids 
including three caffeoyl-quinates and two N-acyl amines 
were less abundant. Among the 40 metabolites exhibiting a 
change in their level of accumulation according to the level 
of N fertilization yet not affected by genotype, 20 were pre-
sent in higher amounts (including rhamnose) and 20 in lower 
amounts (including tyrosine).

The proteome PCA loadings plot (Figure S3) showed that 
most of the proteins involved in the control of biosynthesis 

Fig. 1  Network diagram 
showing the main correlations 
between the different eco-
physiological, developmental 
and yield-related traits. Traits 
were measured in the panel of 
29 maize hybrids grown under 
reduced (LN) and non-limiting 
(HN) fertilization conditions. 
Network diagrams show sig-
nificant correlations with FDR 
correction (P < 0.05) between 
trait LSmeans (n = 29) based on 
positive and negative Pearson 
coefficients in HN A and LN 
B. Traits with a larger number 
of significant correlations are 
represented by larger dots. 
Traits with a smaller number 
of significant correlations are 
represented by smaller dots. 
Green dots correspond to the 
vegetative stage, yellow dots to 
the flowering stage and orange 
dots to plant maturity at harvest. 
Lines represent a significant 
correlation between two traits. 
Full red lines represent positive 
correlations. Dashed green lines 
represent negative correlations. 
See Table 1 for definitions of 
abbreviations and Table S2d for 
Pearson coefficients and corre-
sponding statistical analyses
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and homeostasis were more abundant in the LN condi-
tion. In contrast, proteins involved in the control of cellu-
lar respiration were more abundant in the HN condition. 
The two-way ANOVA confirmed the results of the PCA 
(corrected p-value < 0.05, Table S5b). Among the 2846 
identified proteins, 873 exhibited differences in their level 
of accumulation, according to both the genotype and the 
level of N fertilization. The level of accumulation of 140 
proteins was modified only according to the N fertilization 
regime. Among these 140 N-responsive proteins, the two 
predominant functional categories up-regulated in LN were 
proteins involved in the control of their biosynthesis and 
in photosynthesis, and those down-regulated in LN were 
proteins involved in photosynthesis and in solute transport 
(Table S5d).

3.4  Identification of coregulations 
between metabolites, proteins, 
eco‑physiological and agronomic traits

A multiblock sparse Partial-Least-Squares Discrimi-
nant Analysis (sPLS-DA) was first performed using their 
LSmeans values (Tables S2c, S3c and S5c). This analy-
sis helped to select 100 metabolites and proteins that 

discriminated the two fertilization regimes and covaried 
across the three sets of traits (Fig. 3A–F). The first latent 
variable (LV1) separated the two N fertilization regimes 
as expected (Fig. 3A, C and E). The loading values of 
the variables selected on LV1 are presented in Table S6. 
On the positive side of LV1, NNI_Flo, QN_Flo, Surf_tot, 
NNI_4FDL, Surf_o and QN_4FDL were higher in HN, 
covaried positively with choline, with four LC–QTOF–MS 
metabolic signatures (M391T738, M390T739, M389T739, 
M389T949), and for proteins with a glycerophosphodiester 
phosphodiesterase, a phosphocholine phosphatase, a nucle-
oside diphosphate kinase, a putative glucose-6-phosphate 
1-epimerase, a peptidyl-prolyl isomerase, a copper/zinc 
superoxide dismutase, a chloroplastic zeaxanthin epoxi-
dase and a phosphosugar phosphatase. On the negative 
side of LV1, Sen80 was higher in LN, covaried positively 
with M347T265, M174T271, rhamnose, M279T237 and 
M511T963, and with a component eIF-iso4G of eIF-iso4F 
unwinding complex, a component eIF3b of eIF3 mRNA-
to-PIC binding complex and a glycine-rich RNA-binding 
ABA-inducible protein. A separation of genotypes could be 
observed along LV2. On the positive side of LV2, FloF and 
FloM, were delayed in several hybrids, including B97, B84, 
B104, B73 and F618. These two developmental traits cova-
ried positively with a peroxidase 70, AC210204.3_FGP002 
and a component PsaD of PS-I complex. On the negative 
side of LV2, Sen40 occurred later in hybrids D09, FV252 
and D06. This marker of leaf senescence covaried positively 
with a range of LC–QTOF–MS metabolic signatures, includ-
ing M191T338, M370T342, M371T337 and M210T343, 
and for proteins with a lipoamide-containing component 
H-protein of glycine cleavage system, an uncharacterized 
chloroplastic methyltransferase and a 2,3-bisphosphoglyc-
erate-independent phosphoglycerate mutase.

A correlation network between the variables exhibiting 
an absolute loading value higher than 0.1 on LV1 was then 
constructed if the Spearman correlation values between the 
variables were above 0.75 or below − 0.75. Before recon-
structing the network, redundancies within the selected 
LC–QTOF–MS signatures of the metabolite data set were 
discarded. The selected LC–QTOF–MS variables were clus-
tered manually according to their chromatographic profiles 
and putative chemical formulas. For each cluster, only the 
predominant metabolic signatures were selected. A tentative 
annotation of these metabolite signatures led to the puta-
tive annotation of three metabolites: dehydroascorbate, a 
caffeoyl-glucose and a UDP-hexose (Table S3e). The result-
ing network presented in Fig. 4 contained two phenotypic 
traits NNI_Flo and QN_Flo, 16 metabolites and 31 proteins. 
Metabolite signatures and proteins directly correlated with 
NNI_Flo and QN_Flo are listed in Table S7. To illustrate the 
effect of environmental conditions (here the two fertilization 
regimes) on the correlations between phenotypic traits and 

Fig. 2  Ordination diagram of the PCA analysis for the 29 maize 
hybrids based on the different eco-physiological, developmental and 
yield-related traits. Traits were measured in the panel of 29 maize 
hybrids grown under reduced (LN) and non-limiting (HN) fertiliza-
tion conditions. Diagrams are defined by the first two PCs of the PCA 
of the different variables using their LSmeans: PC1 (27% of vari-
ance explained) and PC2 (19% of variance explained). LN: reduced 
N fertilization (blue circles). HN: non-limiting N fertilization (red 
squares). Black lines between LN and HN represent the Euclidian dis-
tance between the three hybrids (B84, FR19 and F618) exhibiting the 
most contrasted difference with respect to their morphological and 
physiological responsiveness to N fertilization
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metabolites or proteins, the plots of the relationships with 
NNI_Flo and QN_Flo listed in Table S7 are presented in 
Figure S4.

Within this network, five proteins were involved in carbo-
hydrate metabolism, three in lipid metabolism, three in pro-
tein biosynthesis and three in redox homeostasis. NNI_Flo 
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was negatively correlated to M347T265_dehydroascorbate, 
a glycine-rich RNA-binding ABA-inducible protein, and 
component eIF-iso4G of eIF-iso4F unwinding complex. 
NNI_Flo was positively correlated to M398T711. NNI_Flo 
and QN_Flo were both positively correlated to chloroplastic 
glycerophosphodiester phosphodiesterase GDPD1. QN_Flo 
was also positively correlated to a nucleoside diphosphate 
kinase and a 4-hydroxy-4-methyl-2-oxoglutarate aldolase. 
The three metabolite nodes exhibiting the highest number 
of connections were M347T265_dehydroascorbate, choline 
and M389T739 (an unidentified N-containing compound), 
with at least 12 connections each. The three protein nodes 
exhibiting the highest number of connections were chloro-
plastic glycerophosphodiester phosphodiesterase GDPD1, 
the glycine-rich RNA-binding ABA-inducible protein and a 
peptidyl-prolyl isomerase, with at least 26 connections each.

3.5  Metabolites and proteins linked 
to N‑susceptibility

When the susceptibility to LN was calculated using 
QN_4FDL, QC_4FDL, QN_Flo, QC_Flo, TKW, KN, KW, 
TDW_4FDL and TDW LS-means data, an HCA identified 
four distinct groups of hybrids (Fig. 5). The first group (clus-
ter C1) was characterized by low susceptibility to reduced N 
fertilization at the early stage of plant development (4DL), 
including shoot biomass production (TDW_4FDL). All 
these hybrids were less susceptible to the LN condition, not 
only in terms of their C and N contents at flowering but also 
for all yield-related traits, especially TDW at maturity. In 
contrast, the fourth group (cluster C4) contained hybrids that 
were more susceptible to reduced N fertilization at 4DL and 
less susceptible at maturity, especially regarding the traits 
related to kernel and total biomass production. The other 
two clusters C2 and C3 were mostly characterized by low 
susceptibility in the LN condition, mostly for their C and N 
contents at flowering. N-susceptibility for all other traits was 
high, except for the yield-related traits in C3.

A one-way ANOVA was then performed to determine 
which metabolites and proteins differentiated the hybrids 
grouped in cluster C4, compared to all other hybrids (Fig-
ure S5). For metabolites in this cluster, susceptibility to the 
LN condition was characterized by an increase in meta-
bolic signatures M519T1858, M385T279 and M468T733 
and a decrease in M343T742 (P < 0.01). M519T1858 was 
tentatively identified as hypatulin B, and M343T742 as a 
dimethoxybenzoic acid glucoside. All these metabolite 
signatures had a mean signal-over-noise ratio above 60. 
Among these metabolite signatures, M468T733 had the 
highest peak intensity (Table S3). For proteins, susceptibil-
ity to the LN condition was characterized by an increase in 
GRMZM2G018074, a regulatory protein (GCN4) of RIN4, 
and a decrease in GRMZM5G886257, a cytosolic NADP-
dependent malic enzyme. The later was an abundant protein, 
whereas the former was present in a much lower amount 
(Table S5).

4  Discussion

4.1  Predictive value of eco‑physiological markers 
for yield and its components

Across the 29 hybrids and irrespective of the N fertilization 
regime, there was a high positive correlation between KW 
and KN, as expected (Bertin & Gallais, 2000). Total plant 
dry matter production at harvest (TDW) was also strongly 
correlated with kernel yield-related traits, thus indicating 
that the hybrids producing more vegetative biomass are also 
the most productive in terms of kernel yield. Consequently, 
in these hybrids, it was logical to find that the leaf surface 
and the plant C and N contents at flowering were also corre-
lated with their ability to produce more harvestable material 
for silage production. This is likely because they absorbed 
more N and had higher photosynthetic capacity at the same 
time. In line with these findings, the flowering time (FloM 
and FloF) was also correlated with TDW, thus indicating that 
before kernel filling, the most productive hybrids were also 
able to accumulate more C and N assimilates. In contrast, 
although correlated together, the various traits measured at 
the very early stage of plant development (e.g. QN_4FDL, 
QC_4FDL, TDW_4FDL) were not correlated with yield-
related traits. It is therefore unlikely that they can be used as 
predictors for plant agronomic performance.

Irrespective of the level of N fertilization, a negative rela-
tionship was observed between KN and KW. Such a result 
agrees with the negative relationship previously observed 
between kernel yield and the amount of proteins present in 
the kernels (Caballero-Rothar et al., 2019). As previously 
proposed by Cañas et al., (Cañas et al., 2017), most agro-
nomic traits measured at flowering and at harvest, can be 

Fig. 3  Multiblock sparse PLS-DA of the LSmeans per condition and 
hybrid combining the eco-physiological, developmental and yield-
related traits with metabolome data and proteome data measured in 
the panel of 29 maize hybrids grown under reduced (LN, blue circles) 
and non-limiting (HN, red squares) fertilization conditions. A model 
with two latent variables (LV) was chosen. A Scores plot for the eco-
physiological, developmental and yield-related data block. B Scores 
plot for the metabolome data block. C Scores plot for the proteome 
data block. Hybrid codes are indicated on each scores plot. D Load-
ings plot for the eco-physiological, developmental and yield-related 
traits. E Loadings plot for the metabolome. F Loadings plot for the 
proteome. On each loadings plot, variables with a loading value 
higher than 0.15 on at least one latent variable are annotated. See 
Table S3 for details on metabolite annotations and Table S6 for the 
highest loading values on LV1

◂
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used to identify predictive biochemical traits related to ker-
nel and shoot biomass production.

Correlation studies performed between eco-physiological, 
developmental and yield-related traits and the activity of 
several key enzymes involved in primary C and N assimila-
tion revealed that leaf GS activity was positively correlated 
(> 0.5) with TDW and KW only with reduced N fertilization. 
Under this N feeding condition, leaf GS activity was 65% 
higher on average. Although we did not identify which GS 
isoform was involved at this stage of the study, this result 
confirms that the enzyme plays a key role in the control of 
kernel production both in lines (Martin et al., 2006) and in 
hybrids (Amiour et al., 2021).

4.2  N‑responsive metabolite and protein markers

As already observed (Amiour et al., 2012; Schlüter et al., 
2013), an accumulation of starch and sucrose occurred in 
plants grown under N-limiting conditions. The accumula-
tion of several organic acids involved in the TCA cycle, such 
as trans-aconitate and malate, was characteristic in N-defi-
cient conditions (Amiour et al., 2012), as observed in the 
present study. In addition, rhamnose and glutamate levels 
were higher. These two molecules are known to be markers 

of stress conditions (Jiang et al., 2021; Qiu et al., 2020). 
However, a decrease in glutamate was generally observed 
in other studies, which could be explained by the fact that 
only a single genotype was examined (line B73) and that the 
level of the N-stress was much higher (Amiour et al., 2012; 
Schlüter et al., 2013). In these two studies, a decrease in the 
most abundant amino acids was also a characteristic of plant 
N deficiency. In the present investigation, higher amounts 
of several other amino acids e.g. methionine and phenylala-
nine in the HN condition suggest that in silage hybrids they 
could be markers representative of non-limiting N feeding 
conditions.

Several other molecules represented mostly by metabo-
lites belonging to the phenylpropanoid or benzoxazinoid 
families were found to accumulate when N fertilization was 
not reduced. The accumulation of phenolics in plant tissues 
is considered as an adaptive response of plants to adverse 
environmental conditions (Akhi et al., 2021). Under N-lim-
iting conditions, a low chlorogenate content in the leaves 
alters lignin biosynthesis (Amiour et al., 2012). These spe-
cialized metabolites also appear to be important markers that 
can be used to select maize lines producing larger kernels 
(Cañas et al., 2017). In the present study, the level of fer-
ruloylhydroxycitrate and caffeoylhydroxycitrate was higher 

Fig. 4  Correlation network between the variables contributing to sep-
arate the two N treatments selected based on the multiblock sparse 
PLS-DA presented in Fig.  3 and having an absolute loading value 
higher than 0.1 on LV1. Spearman correlations with an absolute 
value higher than 0.75 are shown in a network built with Cytoscape. 
Only the subnetwork comprising variables of the three datasets is 

shown. Node size is proportional to the number of connections. For 
edges, a solid line means a positive correlation and a dashed line 
means a negative correlation. Node symbols are represented by green 
octagons for eco-physiological, developmental and yield-related traits 
and red hexagons for metabolites. For proteins, different symbols and 
colors are used according to Mercator categories



Identification of metabolic and protein markers representative of the impact of mild nitrogen… Page 11 of 16 128

under N-limiting conditions, while under non-limiting N 
feeding conditions, the level of several quinate derivatives 
and rutin was higher. In addition to biotic stresses induced 
by pathogen infection, benzoxazinoid accumulation can also 
be regulated by abiotic stresses (Niemeyer, 2009). However, 
the molecular mechanisms underlying the physiological 
function of these metabolites synthesized only by grasses 
(Medeiros et al., 2021) needs to be further investigated, as 
we observed that their N-dependent level of accumulation 
also seems to be compound-dependent. This, exclude the 
possibility of using them as markers for NUE.

The classes of proteins involved in the control of their 
biosynthesis were relatively more abundant in the LN con-
dition. This result is surprising at first, as their amount 
was found to increase (mostly ribosomal proteins) when N 
was provided to the plant (Prinsi & Espen, 2018). How-
ever, protein synthesis is a crucial multi-faceted process in 
plant adaptation to N availability (Prinsi & Espen, 2018). In 
maize hybrids subjected to a mild N deficit, a reprogram-
ming of protein synthesis may thus occur, irrespective of the 
genetic background. Such reprogramming has been observed 
in Arabidopsis upon N starvation, leading to an increased 

amount of proteins involved in the translation machinery and 
amino acid degradation (Zhu et al., 2018). In HN, most other 
classes of proteins involved in amino acid biosynthesis, lipid 
metabolism and nutrient uptake were more abundant. This 
is in line with previously reported results in maize (Simons 
et al., 2014a) and other crop species (Zhu et al., 2018). Pro-
teins involved in respiration were down-regulated in the LN 
condition, fitting with the hypothesis that mitochondrial 
metabolism is tightly linked to NUE and its improvement 
(Foyer et al., 2011).

Choline was identified among the various metabolites 
covarying positively with most of the agronomic traits and 
present in higher amounts in HN only. Choline is known 
to protect plants against oxidative damage and it is also a 
marker when the phosphorus (P) supply is optimal (Sali-
nas et al., 2013). Our results suggest that choline could also 
be a marker of non-limiting N fertilization. The possibil-
ity of such a relationship between P and N metabolisms is 
strengthened by the finding that among the proteins covary-
ing positively with the increase in most agronomic traits in 
HN, a number of them (glycerophosphodiester phosphodi-
esterase, glucose-6-phosphate-1-epimerase, phosphosugar 

Fig. 5  Hierarchical classifica-
tion of the 29 maize hybrids 
based on the susceptibility of 
key physiological and yield-
related traits to reduced N 
fertilization (LN). The level of 
susceptibility to LN for each 
trait was calculated using its 
LSmean value as follows: [(LS-
means (HN)−LS-means (LN)]/
LS-means (HN). The different 
clusters identified for the 29 
hybrids were named C1, C2, C3 
and C4
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phosphatase, phosphocholine phosphatase) are known to be 
involved in optimizing P use efficiency (Nakamura, 2021; 
Wang & Lambers, 2020). The other identified proteins 
(nucleoside diphosphate kinase, peptidyl-prolyl isomerase, 
copper/zinc superoxide dismutase, chloroplastic zeaxanthin 
epoxidase) were related to a general stress response of the 
plant (Eskling et al., 2001; Li et al., 2019), thus suggesting 
that these proteins are up-regulated in maize hybrids under 
non-limiting N fertilization. Although the exact nature of the 
four LC–QTOF–MS metabolic signatures covarying posi-
tively with the agronomic traits remains unknown, we were 
able to determine that they are all N-containing compounds. 
They could represent predictive markers of the agronomic 
performance of the plant.

When N fertilization was reduced, rhamnose was the only 
identified metabolic marker covarying with only one pheno-
typic trait related to leaf senescence at a late stage of plant 
development (Sen80). This is in line with the finding that 
an increase in several carbohydrates originating from cell 
wall degradation occurs during leaf aging (Quirino et al., 
2001) and when N fertilization is reduced (Amiour et al., 
2012; Bassi et al., 2018). It may therefore be suggested that 
rhamnose is a possible marker for N deficiency in maize 
hybrids, at least from the flowering period.

Among the proteins covarying with leaf senescence, a 
component eIF3b of eIF3 mRNA-to-PIC binding complex, 
a component eIF-iso4G of eIF-iso4F unwinding complex, 
scaffold component VCS of mRNA decapping complex 
and a stromal processing peptidase were identified. One 
may hypothesize that three of these proteins are involved in 
the regulation of translation, probably involving a decay in 
mRNA during certain phases of plant development (Belos-
totsky & Sieburth, 2009), including leaf protein degradation. 
The role of the stroma processing peptidase is more difficult 
to interpret in the context of leaf senescence as it is involved 
in the import of proteins into the chloroplast (Day & Theg, 
2018). However, such peptidase could be involved in chlo-
roplast remodeling during certain phases of leaf senescence 
during which chloroplast degradation occurs (Nishimura 
et al., 2017).

The susceptibility of the hybrids to reduced N fertilization 
helped to propose a maize ideotype mainly characterized by 
a high GS activity, an accumulation of amino acids and a 
low content in phenolics. At least the latter first two mark-
ers could be used for monitoring N fertilization and for the 
selection of productive hybrids. In the group of hybrids that 
were less susceptible to N deficiency with respect to yield, 
the most interesting result was to find a cytosolic NADP-
dependent malic enzyme and a GCN4 regulatory protein, 
which are both known to be involved in a variety of biotic 
and abiotic stresses (Chen et al., 2019; Toruño et al., 2019). 
Both proteins thus appear to be putative markers for the 
selection of the most productive silage hybrids under mild 

N stress. Although the use of protein markers to pilot N 
fertilization remains to be developed, their use for breeding 
purposes appears to be feasible if we consider that fast and 
efficient throughput techniques have been recently devel-
oped for proteomics in medical research (Ivanov et al., 2020; 
Messner et al., 2020). As the two proteins were also detected 
in maize plants grown in a controlled-environment cham-
ber (Balliau & Zivy, 2020; Urrutia et al., 2021), it seems 
therefore possible to test genotypes under various growth 
conditions.

Four metabolite signatures were also observed in this 
group of hybrids, two of which were tentatively identified. 
Among these four metabolite signatures, only M519T1858 
was also quantified in the controlled-environment experi-
ment using an untargeted approach (Urrutia et al., 2020, 
2021). Thus, a targeted LC–HRMS or LC–MS/MS strategy 
should be prefered to screen a larger quantity of genotypes 
for these markers under various environmental conditions. 
Better agronomic performance in LN seems to be linked to 
higher susceptibility of hypatulin terpene, and lower sus-
ceptibility of dimethoxybenzoic acid glucoside. The role 
of these two specialized metabolites in maize needs to be 
further assessed, although as natural products present in 
certain plant species (Tanaka & Kashiwada, 2021) and in 
cereals (Van Hung, 2016), they have an antioxidant function 
in human nutrition.

5  Conclusions

Predictive leaf metabolic and proteic markers that could be 
used to pilot and rationalize N fertilization at the very early 
stage of plant development to match the plant demand were 
identified, e.g. higher amounts in LN of starch, sucrose, ino-
sitol, malate, trans-aconitate, glutamate, HBOA-glucoside, 
DIM2BOA-glucoside and three flavonoids and of most of 
the proteins involved in the control of their biosynthesis and 
homeostasis. Susceptibility to the LN condition was char-
acterized by an increase in several LC–MS based metabolic 
signatures including a tentatively identified hypatulin B 
and a dimethoxybenzoic acid glucoside and in a regulatory 
protein of RIN4, and by a decrease in a cytosolic NADP-
dependent malic enzyme. These markers could be used to 
select high-yielding commercial maize hybrids for silage 
production requiring less N fertilizer inputs.
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