
HAL Id: hal-04800707
https://hal.inrae.fr/hal-04800707v1

Submitted on 24 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the ability of the LR method to detect bias when
there is pedigree misspecification and lack of

connectedness
Alan M Pardo, Andres Legarra, Zulma G Vitezica, Natalia S Forneris, Daniel

O Maizon, Sebastián Munilla

To cite this version:
Alan M Pardo, Andres Legarra, Zulma G Vitezica, Natalia S Forneris, Daniel O Maizon, et al..
On the ability of the LR method to detect bias when there is pedigree misspecification and lack
of connectedness. Genetics Selection Evolution, 2024, 56 (1), pp.74. �10.1186/s12711-024-00943-1�.
�hal-04800707�

https://hal.inrae.fr/hal-04800707v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Pardo et al. Genetics Selection Evolution           (2024) 56:74  
https://doi.org/10.1186/s12711-024-00943-1

RESEARCH ARTICLE Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

On the ability of the LR method to detect 
bias when there is pedigree misspecification 
and lack of connectedness
Alan M. Pardo1,2*   , Andres Legarra3, Zulma G. Vitezica4, Natalia S. Forneris5,6, Daniel O. Maizon7 and 
Sebastián Munilla5,6 

Abstract 

Background  Cross-validation techniques in genetic evaluations encounter limitations due to the unobservable 
nature of breeding values and the challenge of validating estimated breeding values (EBVs) against pre-corrected 
phenotypes, challenges which the Linear Regression (LR) method addresses as an alternative. Furthermore, beef cattle 
genetic evaluation programs confront challenges with connectedness among herds and pedigree errors. The objec-
tive of this work was to evaluate the LR method’s performance under pedigree errors and weak connectedness typical 
in beef cattle genetic evaluations, through simulation.

Methods  We simulated a beef cattle population resembling the Argentinean Brangus, including a quantitative trait 
selected over six pseudo-generations with a heritability of 0.4. This study considered various scenarios, including: 25% 
and 40% pedigree errors (PE-25 and PE-40), weak and strong connectedness among herds (WCO and SCO, respec-
tively), and a benchmark scenario (BEN) with complete pedigree and optimal herd connections.

Results  Over six pseudo-generations of selection, genetic gain was simulated to be under- and over-estimated 
in PE-40 and WCO, respectively, contrary to the BEN scenario which was unbiased. In genetic evaluations with PE-25 
and PE-40, true biases of − 0.13 and − 0.18 genetic standard deviations were simulated, respectively. In the BEN 
scenario, the LR method accurately estimated bias, however, in PE-25 and PE-40 scenarios, it overestimated biases 
by 0.17 and 0.25 genetic standard deviations, respectively. In herds facing WCO, significant true bias due to confound-
ing environmental and genetic effects was simulated, and the corresponding LR statistic failed to accurately estimate 
the magnitude and direction of this bias. On average, true dispersion values were close to one for BEN, PE-40, SCO 
and WCO, showing no significant inflation or deflation, and the values were accurately estimated by LR. However, 
PE-25 exhibited inflation of EBVs and was slightly underestimated by LR. Accuracies and reliabilities showed good 
agreement between true and LR estimated values for the scenarios evaluated.

Conclusions  The LR method demonstrated limitations in identifying biases induced by incomplete pedigrees, 
including scenarios with as much as 40% pedigree errors, or lack of connectedness, but it was effective in assessing 
dispersion, and population accuracies and reliabilities even in the challenging scenarios addressed.
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Background
The main objective of a genetic evaluation program is 
to estimate the genetic merit of the selection candi-
dates and, ultimately, to predict the future performance 
of their progeny. Accordingly, checking the quality of 
these predictions is an important way to validate them. 
Results of a genetic evaluation program (i.e. estimated 
breeding values, EBVs) can be verified by cross-vali-
dation techniques, which have become more relevant 
in recent years due to the availability of genome-wide 
markers in animals and plants [1–3].

Common validation methods involve assessing the 
model’s predictive performance (e.g. predictive abil-
ity) using cross-validation approaches, which entail 
dividing the whole data into training set(s) (data on 
which the model is fitted) and validation set(s) (data 
against which the model predictions are tested), often 
at random. However, there are some important issues 
regarding cross-validations in animal breeding as the 
prediction target, the breeding value, is not observ-
able and consequently EBVs must be validated against 
pre-corrected phenotypes. Legarra and Reverter [4] 
pointed out that cross-validation techniques based on 
pre-corrected phenotypes can be difficult to implement 
in genetic evaluation programs due to several reasons: 
(1) limited number of parents and families in the pedi-
grees; (2) incorrect estimates of the pre-corrected data 
using fixed effects solutions; (3) not feasible for indi-
rectly observed traits (e.g. maternal) or traits that are 
complex to model (e.g. scores). Additionally, data trun-
cation should be time-based (e.g., based on a cut-off 
date) to align with common practices in breeding pro-
grams for predicting and using EBVs.

Legarra and Reverter [5] developed a validation 
method called LR method (acronym for Linear Regres-
sion method). LR method compares the EBVs of a same 
group of focal (or target) individuals estimated from two 
datasets: a reduced or partial dataset ( EBVp ) and a whole 
dataset ( EBVw ) which contains all “partial” records plus 
more recent ones. More specifically, the validation pro-
cedure is carried out by comparing the estimated values 
of a series of statistics calculated from the two sets of 
EBVs against their expected values. These expected val-
ues were derived assuming that Best Linear Unbiased 
Prediction (BLUP) theory assumptions are fulfilled (see 
Legarra and Reverter [5] and Macedo et al. [6] for further 
methodological details). Recently, the applicability of the 
LR method has been successfully extended to predic-
tions based on conditional means [7, 8]. Similar methods 
in which “early” and “late” evaluations are compared are 
used or proposed ([9, 10], respectively) in the Interbull 
validation tests, although these methods are more tai-
lored to dairy cattle scenarios.

Beef cattle genetic evaluation programs face significant 
challenges in controlling inconsistencies in their results 
due to the sometimes-poor quality of both phenotypic 
and pedigree records. Typically, these undesirable effects 
occur due to two main factors: incorrect or unknown 
pedigree information, resulting in the use of an inaccu-
rate relationship matrix [11], and weak connectedness 
among herds [12, 13]. Incorrect or incomplete pedigree 
recording, especially in scenarios involving multiple-
sire mating, can potentially lead to biased EBVs [14, 15]. 
Meanwhile, lack of connectedness is particularly impor-
tant in beef cattle where the level of AI adoption is much 
lower than in dairy cattle [16].

It is unclear whether the undesirable effects of pedigree 
misspecification and lack of connections can be detected 
with the Linear Regression method, which assumes and 
has been tested under the hypothesis, that the correct 
pedigree is known (e.g. [6, 17]). In this study, we evalu-
ated by simulation the performance of the LR method 
under scenarios of weak connectedness and pedigree 
errors.

Methods
Simulation
We simulated a beef cattle population mimicking an 
established composite breed inspired by the Argentinean 
Brangus (37.5% B. taurus indicus and 62.5% B. taurus 
taurus). The simulation involved three steps (Fig.  1). 
First, we created a historical population based on the 
genomic architecture parameters for a composite breed. 
Next, we took individuals from this historical popula-
tion as founders of a gene-dropping procedure using the 
pedigree of the Argentinean Brangus population to simu-
late new generations of individuals. Finally, we simulated 
a quantitative trait and applied selection on it along six 
more generations. The whole simulation process was rep-
licated 20 times for each scenario. We describe hereafter 
the simulation in more detail.

Historical population
Founder breeds  We initiated the simulation with demo-
graphic parameters of cattle [18] via the Markovian Coa-
lescent Simulator MaCS [19] implemented in AlphaSimR 
[20]. A divergence event was included 50,000 generations 
ago to produce two breeds that are genetically sufficiently 
different (i.e., mirroring the subspecies B. taurus taurus 
and B. taurus indicus). Next, a population expansion was 
simulated over six generations through random matings 
conducted independently within each subpopulation. 
At the end of the sixth generation of expansion, 24,000 
animals were available in each subpopulation and these 
animals were then used for the subsequent crossbreed-
ing scheme. The simulated genomes in each breed had 29 
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autosomal chromosomes, each with 108 base pairs. The 
mutation rate was set to 2.5e−8 per base pair per genera-
tion. We kept 3500 randomly chosen segregating sites per 
chromosome, summing up to a total 101,500 polymorphic 
loci.

Creation of the composite breed  Using individuals from 
the previously generated breeds, a crossbreeding scheme 
of four generations was simulated to establish a com-
posite breed with breed proportions typical of Brangus 
cattle ( 3/8 Brahman and 5/8 Angus). The F1 population 
was originated from the random mating of 50 randomly 
sampled males from breed 1 with 50 randomly sampled 
females from breed 2. The 50 F1 females thus created were 

next randomly mated with 50 randomly sampled males 
from breed 2 to generate 50 backcross individuals. Then, 
these 50 backcross individuals were used as males and 
mated with 1000 females from breed 1. After this mating 
scheme, 1000 individuals were obtained with breed pro-
portions of 3/8 from breed 2 and 5/8 from breed 1. These 
individuals constituted the pool of founders for the gene-
dropping procedure on the real pedigree that is described 
below.

Gene dropping
A real pedigree of 530,363 animals was obtained from the 
Brangus Genetic Evaluation Program in Argentina (www.​
brang​us.​org.​ar/​progr​ama-​erbra/; accessed 20 August 

Fig. 1  An overview of the whole simulation process. We show a flowchart of the simulation steps: create historical haplotype sequences for two 
founder breeds, recombine and crossbreed to achieve a composite population, allocate haplotypes to real Brangus pedigree founders, perform 
gene dropping, select base population and simulate TBV, explore three scenarios (benchmark, pedigree errors, lack of connectedness) over six years 
of selection, and summarize LR method metrics

http://www.brangus.org.ar/programa-erbra/
http://www.brangus.org.ar/programa-erbra/
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2022). This pedigree was pruned to include the last two 
cohorts of calves and all their ancestors using the prune 
“Pedigree” option of RelaX2 software [21]. The final pedi-
gree comprised a total of 33,372 animals, born between 
1920 and 2022.

The gene-dropping procedure started by randomly 
assigning haplotypes from the simulated pool of com-
posite individuals to each of the founders of the real 
pedigree. Then, the genomes of all descendants were gen-
erated by randomly dropping these founder haplotypes 
through the real Brangus pedigree. The gene dropping 
step was used to replicate the complex patterns of link-
age disequilibrium (LD) observed in the current Argen-
tinean Brangus population pedigree. Statistics of LD 
showed good agreement between simulated genomes 
and observed LD patterns in the actual Brangus breed 
(not shown).

Population under selection
The composite breed population was next subjected to 
a selection process along six overlapping pseudo-gener-
ations (loosely called “years” in what follows). To do so, 
we started by randomly choosing 4300 individuals (300 
males and 4000 females) from the last generation of the 
gene-dropping stage as the base population (year 0) and 
simulated their true breeding values (TBV) for a purely 
additive trait of moderate heritability (0.4). Breeding val-
ues were based on randomly taking 10,000 segregating 
sites as quantitative trait loci (QTL) and sampling their 
allele substitution effects from a Gamma distribution 
(shape parameter equal to 0.4), resulting in an additive 
genetic variance of 0.4.

Phenotypes, yij , in any year were simulated as follows:

where µ is an overall mean, Hi is the effect for herd i , 
TBVj ∼ N (0, σ 2

a ) is the true breeding value of animal j 
with σ 2

a = 0.4 and eij ∼ N (0, σ 2
e ) is a random error effect 

with σ 2
e = 0.6 . In addition, each individual was assigned 

to one out of three herds; specifically, it was assigned to 
the herd of its dam. As it is explained in the next section, 
the assignments to the herds in the base population were 
carried out either at random or in an oriented manner, 
depending on the scenario.

Each year, a pedigree-based BLUP model was fitted on 
the available data and selection was practiced based on 
the estimated breeding values (EBVs). Depending on the 
simulated scenario, the model included either a general 
mean (for pedigree-error comparisons) or both, a general 
mean and a herd-year effect (for connectedness compari-
sons). EBVs were obtained using the BLUPF90 family of 
programs [22]. Forty percent of the cows with the lowest 
EBVs were replaced by the top newborn females, selected 

yij = µ+Hi + TBVj + eij ,

within the herd (N ≈ 533 females). In addition, 60% of 
the bulls with the lowest EBVs were replaced by new-
born males, while replacements were chosen according 
to the scenario evaluated, ranging from a common pool 
to within herd (N = 180 to N = 60 bulls, respectively). On 
average there were approximately 1333 cows per herd per 
year. After the last generation, the pedigree had 28,300 
animals with records (4300 from the base or year 0, plus 
4000 progenies born in each of the six years) for each of 
the scenarios and replicates evaluated. The final number 
of sires and dams in the pedigree depended on the simu-
lated scenarios and replicates, ranging from 1199 to 1200 
sires and from 10,673 to 12,000 dams.

Scenarios evaluated
We explored three different scenarios: (1) a benchmark 
scenario with an ‘ideal’ population structure for a genetic 
evaluation program, including strong connections 
between herds and a complete pedigree; (2) a scenario 
with typical errors in pedigree specification commonly 
found in beef cattle populations; and (3) a scenario with 
a population structure that exhibits severe connectedness 
problems.

Benchmark
In the “ideal” or benchmark scenario (BEN), male 
replacements were randomly chosen from a common 
pool of bulls, mimicking an AI stud. According to Selle 
et al. [23] and Powell et al. [24] this strategy guarantees 
good connectedness between herds and years by using 
these bulls as reference sires and helps in achieving 
equally related animals within and between herds. The 
pool was refreshed every year with newborn males from 
the top 60% EBVs across herds, replacing the bottom 60% 
of bulls. Males and females of the base population were 
allocated at random to the herds. After six years of selec-
tion, there were 1200 sires and 12,000 dams in the pedi-
gree file. In this scenario, simulated herd effects were set 
to zero and not included in the evaluation model.

Pedigree misspecification
The population structure and breeding strategy (both for 
males and females) were the same as in the BEN scenario. 
However, each year we generated errors in the pedigree 
at two levels. At first, we chose at random a percentage 
of animals (25% and 40%; PE-25 and PE-40, respectively), 
and we assigned to half of them parents unknown in the 
pedigree file used for running the genetic evaluation. Sec-
ond, for the other half of the animals chosen, we assigned 
a wrong sire, which was selected from the same genera-
tion as the true one. Although estimates of error rates in 
real pedigrees vary widely by country and breed [25], we 
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consider PE-25 and PE-40 to represent high and extreme 
rates, respectively.

In this scenario, simulated herd effects were set to zero 
as in BEN and not included in the model. This strategy 
ensured that the observed effects of pedigree errors were 
not affected by issues related to estimation of the herd 
effects.

Lack of connectedness
To simulate problems due to lack of connectedness, 
males and females of the base population were arbitrarily 
allocated to each herd according to their TBV: the best 
1/3 of the animals were assigned to herd 1, the following 
1/3 to herd 2, and the worst 1/3 to herd 3 (Fig. 2). This 
situation can be found e.g. when one country is produc-
ing the genetic improvement and the other are importers, 
which introduce genetic material without the informa-
tion on which selection was based. Additionally, when 
simulating the phenotypes, we set herd effects to the val-
ues H1 = 2, H2 = 1, and H3 = 0, respectively, starting from 
the base population and in subsequent years. Therefore, 
by design, genetic level and herd effects were confounded 
in the base population, and herds with best management 
had best genetics too. This setup was chosen to induce 
true bias due to weak connectedness. A simpler design 
based on randomly assigning the founders into different 
herds and then creating different connectedness levels 
will produce no true bias [13].

Then, two different levels of connectedness were 
generated. First, and in order to achieve a scenario 
with very weak connectedness (WCO), in subsequent 
years, males’ replacements were selected from within 
herd, which resulted, after six years, in animals that 
were strongly related within herd but genetically dis-
tant between herds. Second, to achieve a scenario with 
stronger connectedness (SCO), a small modification 
was introduced in the way males were replaced. After 
an initial service in the herd to which they were origi-
nally assigned, the bulls were brought together into a 
common pool, and from that point on, replacements 
were selected in the same way as in the BEN scenario.

One important concern regarding the strategy we 
used to simulate the connectedness scenarios was 
whether strong and weak connections between herds 
were indeed achieved. We address this issue in a sup-
plementary material section (see Additional file  1), 
where we describe in detail the measures we used 
to verify that our scenarios were truly contrasting in 
terms of connectedness. The results of these analyses 
are further visualized in Additional file 2 Figures S1 to 
S5. Overall, the results indicate that the SCO scenario 
achieved a significantly higher level of connectedness 
than WCO, particularly between herds in the final 
years of selection. Furthermore, the patterns observed 
in genomic relationships among animals were con-
sistent with the expected outcomes of each scenario, 

Fig. 2  True breeding values and phenotypic values across herds in the base population under weak connectedness. Red dots denote means
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highlighting the impact of the different connectedness 
strategies on genetic distance.

In both the WCO and SCO scenarios, true simulated 
effects for the three herds were compared to their esti-
mated effects ( ̂H1 , Ĥ2 and Ĥ3 , respectively) using the 
herd-year effects solutions (best linear unbiased esti-
mates; BLUE). For comparison, we compute averages 
and 95% confidence intervals (%CI) for the BLUEs gener-
ated in the last genetic evaluation executed, across the 20 
replicates, with the 95%CI calculated using the standard 
error of the mean across replicates.

Validation by means of the LR method
Linear regression (LR) method
The LR method is based on statistics that compare the 
EBVs of a target group, called focal individuals, estimated 
from a partial dataset and a whole dataset. The latter con-
tains all partial records plus more recent ones. These sta-
tistics are estimators of the population measures of bias 
and dispersion of EBV, or they estimate functions of the 
population accuracies (see Legarra and Reverter [5], for 
details). Let âp and âw represent the estimated breeding 
values of the focal individuals obtained from the partial 
and the whole datasets, respectively. Then, the statistics 
proposed by Legarra and Reverter [5] are:

•	 �̂p = âp − âw  , which estimates the population bias 
and has an expected value of zero if the evaluation is 
unbiased.

•	 b̂p = cov(âw , âp)/var(âp) , which estimates the popu-
lation dispersion of EBV and has an expectation equal 
to one if there is no over/under dispersion;

•	 ρ̂w,p = cor(âp, âw) , which estimates the ratio of pop-
ulation accuracies, and it is a direct estimator of rela-
tive increase of accuracy from partial ( accp ) to whole 
( accw ). This statistic has expected value accp/accw;

•	 ρ̂2
w,p = cov(âw , âp)/var(âw) , which estimates the 

ratio of population reliabilities. It has expected value 
of acc2p/acc2w and is proportional to the relative gain 
in average reliabilities as new information is added. 
As in the ρ̂w,p estimator, a high value of ρ̂2

w,p means a 
small increase in population reliability, whereas a low 
value means a large increase in population reliability, 
when we move from partial to whole dataset.

•	 âcc2p = cov(âp, âw)/σ
2
a∗ , which estimates the absolute 

selected reliability. The term in the denominator of 
this metric ( σ 2

a∗ ) refers to the additive genetic vari-
ance of the focal individuals (that we knew from sim-
ulations). This metric gives the “selected” reliability, 
i.e., it does not estimate model-based reliability from 
the mixed-model equations (MME) [26];

•	 r̂elp = 1− σ 2
a∗/σ

2
a (1− âcc

2

p) , which estimates the 
absolute unselected reliability as if there was no 
selection and the result matches with theoretical reli-
abilities from the inverse of the MME [27]. The term 
in the denominator of this metric ( σ 2

a  ) refers to the 
additive genetic variance of the base population (that 
we knew from simulations).

Of the last two statistics related to “absolute” reli-
abilities, we only report results from the last one ( ̂relp ). 
Notice that both measures are linearly related and thus 
proportional to each other. Of both, r̂elp estimates val-
ues within the range of classical reliabilities from MME, 
providing a comprehensive metric for evaluating genetic 
evaluation methods under varying conditions of pedigree 
accuracy and connectedness.

Defining whole and partial data sets for focal individuals
In this study, we defined the focal individuals to be the 
selected sires. We compared their “partial” EBVs, âp , 
based on a dataset where only their own record was 
available, with their “whole” EBVs, âw , where now the 
dataset included also their offspring records. We car-
ried out several comparisons, each taking âp from bulls 
born either in year np(np = {3, 4, 5}) and âw from years 
nw = np + 1(nw = {4, 5, 6}) : âp3 vs âw4 , âp3 vs âw5 , âp3 vs 
âw6 , âp4 vs âw5 , âp4 vs âw6 , and âp5 vs âw6 . From each of 
these comparisons, we obtained an estimate of each of 
the LR metrics and then averaged them out following the 
procedure described by Macedo et al. [27] to account for 
the overrepresentation of some of the years. For example, 
breeding values of bulls born in year np = 3 contribute to 
three out of six comparisons, whereas breeding values of 
bulls from year np = 5 contribute only to one comparison. 
Consequently, raw averages are inappropriate. As Mac-
edo et  al. [27] state, their procedure produces an esti-
mate “as if the design was balanced”. In the Appendix we 
describe the procedure in more detail.

The “true” LR method metrics were obtained by com-
paring the EBVs in genetic evaluation at year n ( ̂ap ) 
with the corresponding TBV ( a ). For example, to com-
pute the true bias and dispersion: �p = âp − a and 
bp = cov(a, âp)/var(âp) , respectively.

For comparisons involving connectedness scenarios, 
the focal bulls were grouped according to the herd where 
they were born. Thus, we obtained three estimates (one 
for each herd) for each evaluated statistic. Instead, the 
focal individuals for BEN, PE-25 and PE-40 scenarios 
were selected bulls indistinctly across the three herds. 
Importantly, to compute all statistics we always referred 
EBVs and TBVs to the same base generation. To do so, 
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we subtracted the mean EBV of animals from the founder 
population (i.e., animals with both parents unknown and 
born in year “0”) from the EBV. Notice that in the PE-25 
and PE-40 scenarios there are non-founder animals with 
both parents unknown.

When evaluating the performance of the LR method 
statistics, we report the mean and the standard deviation 
(SD) of true and estimated values, along with the Pearson 
correlations between them. Mean and SD values evaluate 
the LR method as a reliable estimator, while correlations 
evaluate the agreement between the estimated and true 
values.

Results
In this section, we first briefly present the genetic gains 
obtained over the six years of selection, and then we 
address the results obtained regarding the performance 
of the LR method in the different scenarios tested.

Genetic gains
We specifically focus on reporting the genetic gains for 
contrasting scenarios, as shown in Fig. 3 (BEN, PE-40 and 
WCO; left, center and right panel, respectively). After six 
years of selection based on EBVs, the means of the TBVs 
were 2.73, 2.55 and 2.10 genetic standard deviations ( σg ) 
for BEN, PE-40 and WCO, respectively, while those of the 
EBVs were 2.73, 1.59 and 2.47 σg . The breeding scheme 

under the benchmark scenario was the one that achieved 
the highest genetic gain, as we expected. Changes in the 
TBVs in this scenario perfectly matched those of EBVs. 
In contrast, for the PE-40 and WCO scenarios the true 
breeding values were systematically under- and over-
estimated, respectively, which resulted in differences 
in the genetic gains. As expected, the genetic gains for 
the PE-25 and SCO scenarios were between the values 
obtained for the extreme scenarios (PE-40 and WCO, 
respectively) and BEN.

Pedigree errors
There was no bias in the estimation of breeding values 
with complete pedigree, as expected. In contrast, errors 
in the pedigree induced bias (Table  1). The PE-25 sce-
nario generated a true bias close to −  0.13 σg . When 
errors in the pedigree increased to 40% per year (PE-40), 
the bias further increased although not proportionally.

Table 1 shows the estimates of bias ( ̂�p ) and dispersion 
(b̂w,p) in the different pedigree errors scenarios tested. For 
the BEN scenario, the true bias was correctly estimated 
in magnitude and direction. Conversely, the magnitude 
and direction of the bias induced by pedigree errors 
was on average not correctly estimated for the PE-25 
and PE-40 scenarios. A strong positive correlation was 
observed between the true and estimated biases for the 

Fig. 3  Genetic gains for the extreme simulated scenarios. The plots illustrate the changes in true (solid line) and estimated (dotted line) breeding 
values averaged over each of the six years of selection for the benchmark (BEN), 40% pedigree error (PE-40) and weak connectedness (WCO) 
scenarios. Different colors represent different scenarios
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BEN scenario (corr(�p , �̂p ) ≈ 0.8; Fig. 4, left panel). This 
correlation decreased as errors in the pedigree increased, 
which also led to an increase in the magnitude of bias 
(Fig. 4, center and right panels).

Concerning the bw,p , the true value was on average 
close to one, although it showed large deviations across 
replicates (based on its SD). In this case, the estimate 
performed reasonably well across the different scenar-
ios, with a slight under and over-estimation for PE-25 
and PE-40, respectively (Table 1). In general, there was a 

good agreement between the true and estimated values 
of this metric across years and replicates (corr(bw,p , b̂w,p
) =  ~ 0.7) for BEN and PE-40.

With respect to the estimates of accuracies and relia-
bilities ratios ( ̂ρw,p and ρ̂2

w,p ), they were on average closely 
aligned with their corresponding true values across all 
different scenarios (Table 2). In addition, we found good 
agreement between estimates and true values from dif-
ferent years and replicates, with correlations > 0.7 in both 
metrics, except for ρ̂2

w,p in the PE-40 scenario. A similar 
behavior was found between estimated and true values of 
the unselected reliability of EBVp metric for BEN, PE-25, 
and PE-40 scenarios (Table 2). It is noticeable that r̂elp is 
more accurately estimated (based on its estimated-true 
correlations) than ρ̂w,p or ρ̂2

w,p.

Connectedness
Comparisons between the estimated and true herd 
effects in the SCO and WCO scenarios revealed insights 
into the precision of these estimates relative to the true 
values set in the simulation (H1 = 2, H2 = 1, and H3 = 0). 
The trend towards overestimation became more pro-
nounced in the WCO scenario, as was observed for the 
Ĥ1 (3.41, 95%CI = 3.40 to 3.41) and Ĥ2 (1.64, 95%CI = 1.63 
to 1.65) mean herd effects. Conversely, this pattern was 
less pronounced in SCO, where Ĥ1 and Ĥ2 had a lower 

Table 1  Comparison between estimates and true values of bias 

( ̂�p , expressed as σg ) and dispersion ( ̂bw ,p ) for the benchmark 
scenario (BEN) and scenarios with pedigree errors (PE-25 and 
PE-40)

a Pearson correlations across different years in partial data set and replicates; 
Figures represent averages and standard deviations (SD) across replicates

Estimator Scenario Estimate (SD) True (SD) aCorrelation 
estimated—
true

�̂p
BEN 0.002 (0.035) 0.003 (0.047) 0.799

�̂p
PE-25 0.044 (0.038) − 0.130 (0.068) 0.663

�̂p
PE-40 0.070 (0.052) − 0.180 (0.070) 0.604

b̂w ,p BEN 1.006 (0.090) 0.990 (0.134) 0.708

b̂w ,p PE-25 0.960 (0.161) 0.894 (0.189) 0.665

b̂w ,p PE-40 0.980 (0.123) 1.054 (0.218) 0.722

Fig. 4  Changes in estimated versus true bias according to the % of total errors in the pedigree. In each plot, r denotes the Pearson correlation 
coefficient between true and estimated values. Different colors are used for different years in partial data set and red points indicate average biases 
from Table 1
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overestimation (2.51 and 1.25, 95%CI = 2.45 to 2.56 and 
1.22 to 1.27, respectively). To maintain the same compar-
ative baseline as in the true herd effects values, the means 
were adjusted so that the mean in Ĥ3 was zero.

Differences in bias were observed between herds in 
the scenario with weak connectedness (WCO, Table  3). 
The magnitude of this bias is explained by both the herd 
effects and their different genetic levels. Animals in 

herds 1 and 3, the extreme ones, presented the strong-
est true biases for WCO (– 0.84 and 1.43 σg , respectively, 
Table 3). An under- and over-estimation of the TBVs of 
target bulls were caused by confounding: due to the lack 
of connections, the genetic evaluation model was not 
able to disentangle the genetic effect of bulls performing 
within the herd from the herd’s environmental effects. In 
general, the bias estimator ( ̂�p ) could not correctly esti-
mate the magnitude and direction of this bias (Table  3 
and Fig. 5). For example, in the herd 3 the true bias was 
close to 1.4 σg but the corresponding estimate was close 
to zero.

On the other hand, in the scenario with strong con-
nectedness (SCO) the herd-year effects introduced in 
the genetic evaluation model were better able to cap-
ture real environmental differences due to herds. In this 
case, observed differences in EBVs between the bulls in 
the partial and whole datasets indicated the bias in the 
correct direction (corr(�p , �̂p) > 0.49; Fig.  5 left panel), 
although the magnitude was underestimated for herds 2 
and 3 (Table 3). In this scenario the magnitude of the true 
bias was lower than in the WCO scenario.

Regarding the dispersion of EBV, the true slopes did 
not differ markedly from one and no substantial differ-
ence was observed (based on its 99% confidence inter-
vals; not shown) in the estimates ( ̂bw,p ), neither between 
herds nor among levels of connectedness. All the dis-
persion estimates for WCO and SCO were close to one 
(Table  3), indicating that there was neither over- nor 
under-dispersion.

Table 2  Comparison between estimates and true values of 

accuracies ( ̂ρw ,p ), reliabilities ( ̂ρ2
p,w ) ratios, and unselected reliabilities 

( ̂relp ) for the benchmark scenario (BEN) and the scenarios with 
pedigree errors (PE-25 and PE-40)

a  Pearson correlations across different years in partial data set and replicates; 
Figures represent averages and standard deviations (SD) across replicates

Estimator Scenario Estimate (SD) True (SD) aCorrelation 
estimated—
true

ρ̂w ,p BEN 0.468 (0.043) 0.444 (0.064) 0.773

ρ̂w ,p PE-25 0.464 (0.078) 0.419 (0.079) 0.750

ρ̂w ,p PE-40 0.497 (0.074) 0.515 (0.098) 0.692

ρ̂2
p,w

BEN 0.219 (0.029) 0.210 (0.057) 0.705

ρ̂2
p,w

PE-25 0.227 (0.046) 0.195 (0.067) 0.682

ρ̂2
p,w

PE-40 0.256 (0.050) 0.294 (0.105) 0.570

r̂elp BEN 0.527 (0.043) 0.536 (0.030) 0.905

r̂elp PE-25 0.495 (0.067) 0.501 (0.063) 0.955

r̂elp PE-40 0.479 (0.072) 0.513 (0.062) 0.912

Table 3  Comparison between estimates and true values of bias ( ̂�p , expressed as σg ) and dispersion ( ̂bw ,p ) in scenarios of weak (WCO) 
and strong (SCO) connectedness

a Pearson correlations across different years in partial data set and replicates; Figures represent averages and standard deviations (SD) across replicates

Estimator Scenario Herd Estimate (SD) True (SD) aCorrelation 
estimated—
true

�̂p
WCO 1 − 0.009 (0.030) − 0.836 (0.114) 0.494

�̂p
WCO 2 − 0.008 (0.030) 0.468 (0.103) 0.432

�̂p
WCO 3 0.013 (0.033) 1.423 (0.122) 0.432

�̂p
SCO 1 − 0.085 (0.041) − 0.070 (0.108) 0.695

�̂p
SCO 2 0.000 (0.043) 0.202 (0.087) 0.488

�̂p
SCO 3 0.079 (0.038) 0.422 (0.089) 0.561

b̂w ,p WCO 1 0.966 (0.189) 0.992 (0.269) 0.763

b̂w ,p WCO 2 1.026 (0.190) 0.937 (0.300) 0.786

b̂w ,p WCO 3 1.032 (0.219) 0.955 (0.238) 0.631

b̂w ,p SCO 1 1.088 (0.239) 0.975 (0.254) 0.798

b̂w ,p SCO 2 1.039 (0.198) 1.157 (0.268) 0.709

b̂w ,p SCO 3 1.043 (0.169) 1.088 (0.289) 0.791
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The ρ̂w,p and ρ̂2
w,p estimates were similar between 

weak and strong connectedness scenarios (Table  4) and 
showed good agreement with their true values, with cor-
relations between estimates and true values across rep-
licates and years greater than 0.5. Finally, regarding the 
relp , its estimates remained nearly constant across con-
nectedness levels and herds, with values close to 0.50 
(Table 4). This parameter was, as in pedigree-based sce-
narios, very well estimated (corr(r̂elp,relp) > 0.9).

Discussion
In this study we evaluated the performance of the LR 
method [5] as a validation tool for genetic evaluation 
programs through a simulation experiment. Specifically, 
our focus was on complex scenarios typically found in 
beef cattle populations. The scenarios involved different 
levels of pedigree errors and genetic connectedness, two 
challenges frequently encountered in these genetic evalu-
ation programs.

The LR method assumes that the genetic evaluation 
model meets the BLUP theory assumptions, in general, 
and the existence of a complete and accurate pedigree 
and genetic connections among herds, in particular. Our 
BEN scenario fulfilled these assumptions and showed 
very good agreement between the true values of the LR 
metrics and their estimates. This aligns with the results 
obtained by Macedo et al. [6], who found that, as long as 

the model is correct, the pedigree complete and the pop-
ulation well-connected, the LR method provides robust 
estimates of all of its metrics. However, both errors in 
the pedigree and severe lack of connectedness induced a 
strong bias in the genetic evaluations that, we observed, 
the corresponding LR statistic �̂p was not able to accu-
rately capture.

Pedigree errors involve the introduction of spurious 
relationships between the animals that mask the true 
relationships. This can lead to biased breeding values 
and genetic parameter estimates [14, 15]. One common 
effect of pedigree errors is that they tend to shrink all the 
estimated breeding values toward the population mean. 
This effect is even more severe for the parents that are in 
the extremes of the distribution (i.e. highest and lowest 
breeding values; [28]). When the percentage of errors in 
the pedigree is high and many parents have their EBVs 
biased, the resulting offspring will tend to have less 
extreme EBVs. Consequently, the selection of superior 
animals will be inaccurate, often favoring the selection 
of younger bulls [25], and the estimated genetic trends 
will poorly estimate the actual genetic gain (as discussed 
below).

In scenarios where pedigree errors were introduced at 
rates of 25% and 40% (PE-25 and PE-40), we observed 
that the LR method detected biases. However, it did not 
estimate these biases accurately. The underlying factors 
contributing to the LR method’s tendency to estimate 

Fig. 5  Changes in estimated versus true bias when different levels of connectedness were simulated. In each plot, r denotes the Pearson 
correlation coefficients between true and estimated values. Different colors are used for different herds
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bias in the opposite direction remain unclear. It’s cru-
cial to highlight that while the LR method detects the 
presence of bias, it doesn’t offer definitive insight into 
the specific causes of these biases. In a nutshell, in sce-
narios involving pedigree errors, the LR method sheds 
light on potential bias problems in the genetic evaluation, 
although it does not provide a complete picture of why 
biases occur.

Another challenge in beef cattle genetic evaluation is 
dealing with weak connectedness, which refers to the 
situation where there are few closely related animals in 
the pedigree across management units [12, 13]. This is 
particularly important in beef cattle breeds compared to 
dairy cattle because beef cattle populations use less AI 
bulls. Weak connectedness should not bias the estimates 
of breeding values, as long as the animals are randomly 
distributed in the population with respect to their true 
breeding values [13]. However, if this assumption does 
not hold, bias can occur. This is particularly true in situ-
ations where one country produces genetic improvement 

and another heavily imports this genetic material. Exam-
ples include breeds such as Angus or Holstein cattle, or 
improved pig lines. In these cases, the information on 
which the selection was based may not be available. As 
a result, genetic and environmental effects can become 
confounded, especially in scenarios of weak connected-
ness. To mimic this lack of connectedness in our study, 
we violated the assumption and simulated two scenarios 
where genetic and environmental effects became strongly 
(WCO) or weakly (SCO) confounded within three dis-
tinct herds, both of which led to bias in genetic evalua-
tions. In the scenario where the lack of connectedness 
was stronger (WCO), the LR method failed to detect the 
true bias generated. Instead, when the connectedness 
was higher (SCO), the LR statistic was able to detect bias 
in one of the three herds, though it remained undetected 
in the others.

As discussed earlier, the biases found in genetic evalu-
ations have implications when estimating genetic gains 
by means of genetic trends. To avoid over- or under-esti-
mation of genetic gain, we basically need an unbiased-
ness condition; that is, the means of EBVs should be the 
same as the means of TBVs for all selection candidates. 
This ensures fair comparisons across old and young ani-
mals and is particularly important in breeding programs 
with complex age structures [4]. Instead, we expect over- 
or under-estimation of genetic gain when bias is positive 
or negative, respectively. We observed this in our study 
when contrasting the benchmark scenarios with those 
involving errors in the pedigree and lack of connect-
edness. These scenarios led to less genetic gain than 
expected (Fig. 3).

Reliable data collection procedures and maintenance 
of accurate and complete pedigree records are required 
to minimize the impact of pedigree errors and connect-
edness problems on genetic evaluations. The above may 
also involve validating parentage information through 
DNA testing, for example. In the genomic era, molecular 
markers can provide information on the genetic relation-
ships among animals that is not captured by the pedigree. 
Also, they may help refining relationships between ani-
mals from different management units [29, 30]. Although 
our study did not address the LR metrics using estimates 
of genomic breeding values (GEBVs), it is expected that 
genomic data would have improved connections between 
management units, for example in the WCO scenario, 
provided that a significant proportion (or all) of the ani-
mals were genotyped. This would lead to a less biased 
genetic evaluation model, better capturing real environ-
mental differences due to the herds, as seen in the SCO 
scenario.

Another approach could be to use more sophisticated 
statistical models that can account for the uncertainty 

Table 4  Comparison between estimates and true values 

of accuracies ( ̂ρw ,p ), reliabilities ( ̂ρ2
p,w ) ratios, and unselected 

reliabilities ( r̂elp ) in scenarios of weak (WCO) and strong (SCO) 
connectedness

a Pearson correlations across different years in partial data set and replicates; 
Figures represent averages and standard deviations (SD) across replicates

Estimator Scenario Herd Estimate 
(SD)

True (SD) aCorrelation 
estimated—
true

ρ̂w ,p WCO 1 0.456 (0.081) 0.444 (0.097) 0.747

ρ̂w ,p WCO 2 0.489 (0.058) 0.426 (0.129) 0.758

ρ̂w ,p WCO 3 0.448 (0.088) 0.424 (0.082) 0.697

ρ̂w ,p SCO 1 0.495 (0.089) 0.412 (0.100) 0.774

ρ̂w ,p SCO 2 0.485 (0.068) 0.512 (0.107) 0.717

ρ̂w ,p SCO 3 0.485 (0.077) 0.479 (0.107) 0.798

ρ̂2
p,w

WCO 1 0.219 (0.047) 0.222 (0.085) 0.567

ρ̂2
p,w

WCO 2 0.239 (0.033) 0.214 (0.109) 0.617

ρ̂2
p,w

WCO 3 0.200 (0.050) 0.200 (0.077) 0.751

ρ̂2
p,w

SCO 1 0.231 (0.043) 0.198 (0.080) 0.691

ρ̂2
p,w

SCO 2 0.235 (0.043) 0.287 (0.104) 0.574

ρ̂2
p,w

SCO 3 0.230 (0.045) 0.257 (0.109) 0.589

r̂elp WCO 1 0.550 (0.064) 0.546 (0.052) 0.924

r̂elp WCO 2 0.541 (0.077) 0.537 (0.063) 0.920

r̂elp WCO 3 0.529 (0.071) 0.531 (0.056) 0.926

r̂elp SCO 1 0.487 (0.091) 0.507 (0.064) 0.926

r̂elp SCO 2 0.531 (0.066) 0.552 (0.065) 0.921

r̂elp SCO 3 0.526 (0.083) 0.537 (0.074) 0.885



Page 12 of 15Pardo et al. Genetics Selection Evolution           (2024) 56:74 

and sparseness of the pedigree data (see Masuda et al. 
[31] for a comprehensive review of models for missing 
pedigree). For example, the inclusion of genetic groups 
or metafounders (MF) in genetic evaluation models has 
been proposed to address biases associated with large 
missing pedigree [32, 33]. Macedo et al. [27] and Kluska 
et al. [34], applied unknown parent groups (UPG) and 
MF to model missing pedigree data within dairy sheep 
and composite cattle populations, respectively. The 
findings of these works, which used the LR method to 
estimate �̂p , revealed that MF significantly reduces bias 
and, when incorporated into genomic models, produces 
less biased genomic predictions. Interestingly, Macedo 
et al. [35] suggested that removing old data in the pedi-
gree, regardless of including UPG or MF in the genetic 
evaluation model, is an efficient and practical strategy 
to alleviate this kind of bias.

In summary, mitigating the bias resulting from these 
common issues in beef cattle genetic evaluations, 
requires meticulous record collection and the imple-
mentation of appropriate statistical models. Our results 
indicate that the LR method’s metric �̂p may not per-
form adequately under certain conditions of pedigree 
errors and weak connectedness. It would be prudent 
for studies using the LR method to report detailed 
information about the extent of missing pedigree and 
measures of connectedness, as these factors signifi-
cantly impact the assumptions underlying most animal 
genetic evaluation models. Fitting UPG into the model 
may improve the estimator’s performance by address-
ing some of these errors (missing pedigree). However, 
accurate estimation of UPGs needs strong connected-
ness [36], which may not always be feasible. While MF 
can help mitigate these issues, it is not clear whether 
it definitively resolves them or consequently improves 
the performance of the LR method’s metric �̂p ; further 
investigation is required.

In our examination of the LR dispersion metric, we 
consistently observed that even in scenarios involving 
pedigree errors and connectedness problems, the true 
dispersion values ranged between 0.9 and 1.05, indicat-
ing an absence of inflation or deflation, respectively, 
in EBVs. Moreover, a good agreement was observed 
between the true dispersion values and those esti-
mated by the LR method for BEN and PE-40. Disper-
sion values close to one indicated that the EBVs of 
the focal individuals were consistently expressed on a 
uniform scale, irrespective of whether their progeny 
had recorded data in the genetic evaluation, across 
all the scenarios under consideration. While inflation 
doesn’t affect the ranking of animals within the same 

generation, it becomes relevant when selecting across 
generations, potentially favoring unproven young can-
didates over proven ones [37].

With respect to the estimates of ratios of accuracies 
and reliabilities, they all behaved quite stable within 
each evaluated scenario. In our study, the source of 
information that was added to improve the accuracies 
and reliabilities of the EBVs of the sires (our focal 
group) when moving from the partial to the whole data 
set was the phenotypic records of their offspring (own 
phenotypic records were already present in the partial 
data set). Especially, the LR metric ρ̂w,p reflected this 
increase and showed an acceptable agreement with 
their true counterparts even in the scenarios with 
errors in the pedigree and weak connectedness. These 
results agree with those reported by Macedo et al. [6], 
who pointed out that this may be due to the fact that 
the ratio of accuracies, which is based on correlation, is 
invariant to changes in the mean or scale of the data 
used to estimate it. It is important to emphasize that 
although both estimators of ratios of accuracies and 

reliabilities are expected to be equivalent, meaning 

E
(
ρ̂w,p

)
=

√
E
(
ρ̂2
w,p

)
 , individual realizations of these 

estimators ( ̂ρw,p and 
√
ρ̂2
w,p ) are not necessarily equal 

[5]. Additionally, ρ̂w,p is not influenced by simple forms 
of overdispersion ( ̂bp< 1), unlike ρ̂2

w,p which requires the 
evaluation model to be unbiased ( ̂bp = 1) to achieve its 
expected value. Therefore, if b̂p≠1, the estimators are 
likely to differ [6].

Finally, it is relevant to address the unselected reliabili-
ties estimator derived from the LR method, which resem-
bles the theoretical accuracies derived from the inverse 
of the MME [27]. This metric has been theoretically 
addressed [6, 27] but is seldomly explored practically. Its 
computation requires an estimate of the additive genetic 
variances of both focal individuals ( σ 2

a∗ ) and the base 
population ( σ 2

a  ). In our study, we used the true variances 
to obtain r̂elp , which contributed both to the stability of 
these estimates across different scenarios and to a better 
agreement between the true and estimated metrics.

Conclusions
The LR method is not able to reveal the bias in estimated 
breeding values induced by severe cases of incomplete 
pedigrees or lack of connectedness. However, even under 
these extreme scenarios, the method is a useful tool for 
estimating and evaluating dispersion of EBV and increase 
of accuracies and reliabilities.
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Appendix
Averaging out estimates of the LR metrics
In the main text of our article, we explain that for each 
LR metric within a scenario and a replicate we obtained 
six different estimates. These arouse from comparing 
“partial” breeding values from bulls born either in year 
np(np = {3, 4, 5}) with the corresponding “whole” breed-
ing values computed on years nw = np + 1(nw = {4, 5, 6}) . 
To average out these estimates, we followed the procedure 
described by Macedo et al. [27]. Here we describe this proce-
dure in more detail.

Briefly, the procedure involves two steps. In the first 
step, a two-way ANOVA with no interaction model is 
fitted to the six LR metric estimates. The two factors 
are related to whether the estimate was obtained with 
partial breeding values from year np and whole breed-
ing values from year nw or not, and thus involve three 
levels each. To be more explicit, consider the values 
obtained for the bias in one of the replicates and the 
corresponding linear model in matrix notation:

This is, of course, an overparameterized model, and 
consequently, least-square solutions are not unique. 
However, by dropping columns two and five of the X 
matrix above an equivalent model is obtained:

where the following parametric equivalence are 
established:

In the second step of the procedure, an estimable 
function that yields a unique estimate “as if the design 
was balanced” [27] is calculated. For the reparametrized 
model, the coefficients of this function are:
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Thus, in our example and for this scenario and repli-
cate, the estimate of the bias is:

For each LR metric within the replicate, the linear 
model was fitted using the ‘lm’ function in R and the 
estimate was produced resorting to the ‘estimate’ func-
tion from the R package ‘gmodels’ [42].

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12711-​024-​00943-1.

Supplementary Material 1. Genetic connectedness measures used in the 
simulated scenarios (“Lack of connectedness”).

Supplementary Material 2. Figure S1 Connectedness estimates across 
contemporary groups based on average scaled PEVD for both connected-
ness scenarios. We provide a detailed view of the degree of connected-
ness based on pairwise prediction error variance of difference (PEVD) 
values between CGs in two of the simulated scenarios: strong connected-
ness (SCO; left panel) and weak connectedness (WCO; right panel), from 
selection year 1 to 6. Note: the PEVD estimates are averages across 20 
replicates, with standard deviations ranging from 0.000 and 0.003. Figure 
S2 Differences in PEVD values between connectedness scenarios. Here we 
show the difference in the pairwise prediction error variance of difference 
(PEVD) between the two connectedness scenarios: weak connectedness 
(WCO) minus strong connectedness (SCO). Red dashed lines delineate 
the cases where CG comparisons involve pairs of herds across years. 
Figure S3 Connectedness estimates across contemporary groups based 
on average GDV* for both connectedness scenarios. We show the degree 
of connectedness based on the genetic drift variance (GDV*) values 
between contemporary groups in two of the simulated scenarios: strong 
connectedness (SCO; left panel) and weak connectedness (WCO; right 
panel), from selection year 1 to 6. Note: the GDV* estimates are averages 
across 20 replicates, with standard deviations ranging from 0.00 to 0.03. 
Figure S4 Common sires across contemporary groups for both connected-
ness scenarios. Here we plot the number of common sires between the 
different contemporary groups (herd-year) according to the simulated 
strategy to achieve the two levels of connectedness: strong (right panel) 
and weak (left panel). Values (colours) represent averages across the 20 
replicates. Red dashed lines delineate pairs of herds across years. Figure 
S5 Plots of the first two principal components (PC) based on the genomic 
relationship matrix for both connectedness scenarios. We show the effects 
of simulated connectedness levels across herds on genomic relationship 
in selection years 1 and 6 (left and right panels, respectively). After quality 
control (minor allele frequency > 0.01), the total number of SNPs retained 
for each PCA ranged from 83,168 to 89,500, depending on the popula-
tion and the scenario analysed: 4300 animals in both the year one and 
six of selection for each scenario (WCO and SCO; top and bottom panels, 
respectively). The PCA was applied to the genomic relationship matrix 
calculated following VanRaden [41]. Colours within each panel indicate 
the herds (1 to 3) and sex of animals (cows and bulls). Note: the example 
was taken from the data of the first replicate
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