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A B S T R A C T

Fine tuning crop development is a major breeding avenue to increase crop yield and for adaptation to climate
change. We used an ecophysiological model that integrates our current understanding of the physiology of wheat
phenology to predict the development and anthesis date of 91 recombinant inbreed lines (RILs) of durum wheat
with genotypic parameters controlling vernalization requirement, photoperiod sensitivity, and earliness per se
estimated using leaf stage, final leaf number, anthesis date data from a pot experiment with vernalized and
nonvernalized treatments combined with short- and long-day length. Predictions of final leaf number and
anthesis date of the QTL-based model was evaluated for the whole population of RILs in a set of independent field
trials and for the two parents, which were not used to estimate the parameter values. Our novel approach reduces
the number of environments and the time required to obtain the required data sets to develop a QTL-based
prediction of model parameters. Moreover, the use of a physiologically based model of phenology gives new
insight into genotype-phenology relations for wheat. We discuss the approach we used to estimate the param-
eters of the model and their association with QTL and major phenology genes that collocate at QTL.

1. Introduction

The increase in the occurrence and intensity of drought and heat
stress due to global climate change is accompanied by a greater impact
of genotype by environment interactions (G x E) on crop yields (Xiong
et al., 2021), making breeding for adaptation more difficult. A
fine-tuning of plant development is an avenue to cope with future cli-
mates and weather variability. Plant development is an important
determinant of G x E and climate adaptation (Asseng et al., 2019;
Fischer, 2016; Parent et al., 2018) and large and well understood genetic
variations in vernalization, photoperiod sensitivity, and earliness per se,
the three components of crop earliness, is available to crop breeders
(Hyles et al., 2020; Kiss et al., 2017).

Ecophysiological models are powerful tools to get a better insight

into how G x E interactions come about and to predict the performance
of genotypes in defined environments (e.g. Bertin et al., 2010), although
it requires more robust and biological sound crop models than do con-
ventional agricultural applications (Hammer et al., 2019). Phenology
models can be classified in two groups according to how they simulate
development. The classical approach is based on accumulated thermal
time between development phases modified by photoperiod and/or
vernalization status of the plants. Alternately, a physiological approach
dissects time to anthesis into primordium, leaf production, and leaf
growth processes, which integrate the effects of vernalization and
photoperiod (He et al., 2012; Jamieson et al., 1998). These two ap-
proaches can give similar predictions of anthesis date (Jamieson et al.,
2007). However, the advantage of a physiological-based approach to
dissect flowering time into component traits goes beyond the capability
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to simulate anthesis date by establishing a strong physiological link
between phenotype and genotype (Brown et al., 2013).

The structure of a model and the way interactions between the un-
derlying processes are considered is essential to model genetic vari-
ability (Parent and Tardieu, 2014). To correctly simulate G x E, model
architecture and associated coefficients should capture and integrate the
physiological basis of the genetic variations. The physiological-based
approach to model plant development has a greater potential explana-
tory capability of G x E because it simulates the avenues by which each
genotype reaches anthesis. Whether the same anthesis date is reached by
two different genotypes through less leaves or through a faster rate of
leaf appearance is likely to affect genotype adaptation, not only through
time to anthesis, but also via processes like leaf growth and final leaf size
(Dornbusch et al., 2011), tiller production and mortality (Giunta et al.,
2018) or ear fertility (Gonzalez-Navarro et al., 2016; Ochagavía et al.,
2018, 2017). The physiological approach to model phenology allows
linking phenology with leaf area and tillering and to analyze in-
teractions and trade-offs between these processes (Abichou et al., 2018;
Martre and Dambreville, 2018).

Previous studies linked crop phenology model parameters with
known phenology genes Hoogenboom and White, (2003), Hoogenboom
et al., (1997), for common bean; White et al. (2008), for winter wheat;
Zheng et al. (2013), for spring wheat) or by identifying quantitative trait
loci (QTL) associated with model parameters (Bogard et al. (2020a), for
spring wheat; Bogard et al. (2014), for winter wheat; Nakagawa et al.
(2005), for rice; Yin et al. (2005), for spring barley). All these studies
have used phenology models based on accumulated thermal time be-
tween growth phases that do not consider leaf development. ‘Genetic’
parameters of the models were estimated together using observations of
heading or anthesis date, which imply a long phenotypic distance be-
tween the observed variables and the model parameters.

In this study we developed a QTL-based model based on the
phenological framework proposed by Jamieson et al. (1998) to predict
leaf development and anthesis date of a recombinant inbreed line (RIL)
population of durum wheat (Triticum turgidum L. subsp. durum (Desf.)
Husn.). In contrast with previous studies, we estimated the parameters
controlling vernalization requirement, photoperiod sensitivity, and
earliness per se for each genotype separately using leaf stage, final
number, anthesis date data from a pot experiment with vernalized and
nonvernalized treatments combined with short- and long-day length.
QTL associated with each of the five genetic parameters of the model
were used to obtain multiple linear regression prediction of the
parameter values. Predictions of final leaf number and anthesis date of
the QTL-based model was evaluated for the whole population of RILs in
a set of independent field trials and for the two parents, which were not
used to estimate the parameter values. Compared with the classically
approach, which uses muti-year and multi-site field trials, our approach,
which requires only three experimental treatments that can be carried
out in the same year, reduces the number of environments, and the time
required to obtain the required data sets to develop a QTL-based pre-
diction of model parameters. The use of a physiologically basedmodel of
phenology gives new insight into genotype-phenology relations for
wheat. Several of the QTL associated with model parameters
co-localized with known vernalization requirement and photoperiod
sensitivity genes or QTL.

2. Materials and methods

2.1. Plant materials

Ninety-one lines of a F2-derived, F8-F9 recombinant inbred lines
(RILs) mapping population obtained from a cross between the Italian
durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) cultivars
Ofanto and Cappelli were used (Verlotta et al., 2010). Ofanto is an early
flowering, semi-dwarf cultivar released in 1990 that originated from a
cross between the durum wheat cultivars Appulo and Adamello.

Cappelli is late flowering with vernalization requirement and tall
cultivar released in Italy in 1915 derived from the North-African land-
race ‘Jean Retifah’. The two parents of the mapping population were
also used in this study.

2.2. Experimental treatments and phenotypic data used for parameter
estimation

A pot experiment with a set of three treatments (LDV, long days
vernalized; LDNV, long days nonvernalized; and SDV, short days ver-
nalized) was conducted at Ottava, Sardinia, Italy (41◦ N 8◦ E; 225m
above sea level; Giunta et al., 2018; Sanna et al., 2014) to estimate the
genetic parameters of the model. Seeds of similar size were imbibed for
24 h at room temperature on water saturated Whatman paper discs in
Petri dishes. For the nonvernalized treatment, germinated seeds were
directly transplanted in 5 L pots (three seeds per pot) filled with 1:2 (v:v)
mixture of sand and sandy-clay-loam soil. For the two vernalized
treatments, germinated seeds were transferred in a
controlled-temperature cabinet where they were maintained for 40 days
at 4◦C in the dark. At the end of the vernalization treatments their
coleoptile was about 3-cm long and the first seminal root was about
4-cm long. The two long day treatments were potted on 24 May and the
short-day vernalized treatment was potted on 23 December of the same
year. Two pots were used for each RIL/treatment combination and were
arranged in a completely randomized design. The May-sown plants were
maintained outdoors, and the December-sown ones were kept in a
greenhouse. The pots were watered and fertilized as required. Daily
weather data were recorded in a meteorological station located 300m
from the field, temperatures were recorded inside the greenhouse near
the plants. The environmental conditions for the three treatments are
summarized in Supplementary Table S1.

The plants were monitored twice weekly to record the number and
length of the leaves which had appeared on the main stem, the
appearance of the flag leaf ligule, and anthesis on main stem. Anthesis
was recorded when 50% of the anthers on the ear of the main stem were
visible (that is, Zadoks growth stage 65; Zadoks et al., 1974). The Haun
stage (decimal leaf stage) was calculated following Haun (1973):

LS = n+
l
L

(1)

where n is the number of ligulated leaves, l is the exposed length of leaf
n+1 at the time of measurement, and L is the final length of the blade of
leaf n+1. The exposed length of a leaf was measured with a ruler as the
distance from leaf tip to the upper collar of the sheath tube.

2.3. Description of the wheat phenology model

We used a modified version of the wheat phenology model described
by He et al. (2012) integrated in the crop growth model SiriusQuality
(Martre and Dambreville, 2018; Martre et al., 2006). The model is based
on the framework proposed by Jamieson et al. (1998). It considers that
vegetative and reproductive development is not independent and is
coordinated and overlap in time (Hay and Kirby, 1991; Kirby, 1990).
The successive appearance of leaves on the main-stem and tillers is the
expression of the vegetative development, while anthesis is a particular
stage in the reproductive development of the plant. Within this frame-
work, the variations associated with vernalization requirement and
daylength (DL) sensitivity are described in terms of primordium initia-
tion, leaf production, and final main stem leaf number.

The leaf production phase is modeled based on two independently
controlled processes, leaf initiation (primordia formation) and emer-
gence (leaf tip appearance). The interaction between these processes
leads to the determination of the final number of leaves (Lf) produced on
the main stem. At any time during vegetative development the number
of apex primordia (PN) is calculated through a metric relationship with
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leaf number under the assumption that the apex contains four primordia
at plant emergence (PNini) and that they accumulate at twice the rate of
leaf emergence (PNslope; Brooking and Jamieson, 2002):

PN = PNslope × L+PNini (2)

The rate of leaf appearance is described with a segmented linear
model (Jamieson et al., 1995a) where the first three leaves appear more
rapidly than the next ones:

L =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pdecr ×
Tt
PSD

, L < Ldecr

Tt
PSD

, L ≥ Ldecr
(3)

where L is the number of appeared leaves on the main stem (equivalent
to the Haun stage), Tt is the thermal time accumulated by the apex since
plant emergence; PSD is the phyllochron modified by sowing date for the
first three leaves; Pdecr is a factor (set at 0.75) decreasing the phyllochron
for leaf number less than Ldecr; and Ldecr is the Haun stage (set at 3
leaves) up to which the phyllochron is decreased by Pdecr. Thermal time
since plant emergence (Tt) is calculated using a linear model of daily
mean temperature with a base temperature of 0◦C. Initially the con-
trolling temperature (apex temperature) is assumed to be that of the
near soil surface (0–2 cm), and then that of the canopy after Haun stage
4. Near soil surface temperature and canopy temperature are calculated
using a surface energy balance model (Jamieson et al., 1995b).

Many studies have shown that phyllochron depends on the sowing
date (e.g. Baumont et al., 2019; McMaster et al., 2003; Slafer and
Rawson, 1997). In SiriusQuality, for a winter sowing (day of the year
1–90 for the Northern hemisphere) the phyllochron decreases linearly
with the sowing date and is minimum until mid-July for the Northern
hemisphere (day of the year 200; He et al., 2012):

PSD =

{
P×

(
1 − RP ×min

(
SD, SDW/S

))
, 1 ≤ SD < SDS/A

P, SD ≥ SDS/A
(4)

where SD is the sowing date in day of the year; P is the phyllochron for
autumn sowing; RP is the rate of decrease of PSD for winter sowing; SDW/

S and SDS/A are the sowing dates for which PSD is minimum and
maximum, respectively.

Vernalization progress and photoperiodic responses are modeled as
sequential processes. Vernalization starts once the seed has imbibed
water, which is assumed to take one day. In winter wheat, and other
cereals, vernalization requirement can be eliminated or greatly reduced
by a prolonged exposure to short DL (Dubcovsky et al., 2006; Evans,
1987), a process referred as short day vernalization. We modified the
vernalization model described by He et al. (2012) to account for this
process. The photoperiodic effect on the vernalization rate is likely to
involve a quantitative interaction with temperature rather than a com-
plete replacement of the vernalization requirement (Allard et al., 2012;
Brooking and Jamieson, 2002). In the revised model, the daily vernali-
zation rate (Vrate) increases at a constant rate (VAI) with daily mean
temperature from its value (VBEE) at the minimum vernalizing

temperature (Tvermin) to a maximum for an optimum temperature (Tveropt).
For temperature above Tveropt, under short days, Vrate reduces to zero at the
maximum vernalizing temperature (Tvermax), while under long days, Vrate
stays at its maximum value. The effectiveness of short days decreases
progressively as photoperiods increases. Vrate is given by:

where Tapexis the apex temperature, DL is the day length of the current
day, and DLsat and DLmin are the saturation and minimum DL for short
day vernalization, respectively. The progress toward full vernalization
(Vprog) is simulated as a time integral:

Vprog = min

(

1,
∑n

day=1
Vrate

)

(6)

Two parameters define the minimum (Labsmin) and maximum (Labsmax)
number of leaves that can be initiated on the main stem. The model
assumes that plants start with a high potential leaf number (Lpot set to an
initial value of Labsmax) which decreases with vernalization progress:

Lpot = Labsmax −
(
Labsmax − Labsmin

)
× Vprog (7)

Vernalization is complete when one of the following three conditions
is met: (1) Vprog equals 1; (2) Lpot equalsLabsmin; or (3) Lpot equals PN. All the
primordium formed during the vernalization phase are assumed to
produce leaves. Labsmax corresponds to the number of leaves produced by a
winter genotype grown under long days at a temperature above Tvermax.

The plant responds to DL only once vernalization is completed. DL
sensitivity leads to an increase in the number of leaf primordia resulting
from the vernalization routine. If DL of the day when vernalization is
completed exceeds a given value (DLsat), the final leaf number on main
stem (Lf) is set to the value calculated at the end of the vernalization
routine and the floral initiation stage is reached. For DL shorter than
DLsat, Brooking et al. (1995) have shown that Lf is determined by DL at
the stage of two leaves after the flag leaf primordium has been formed.
This creates the need for an iterative calculation of an approximate final
leaf number (Lapp) that stops when the required leaf stage is reached:

Lapp = max
(
Lpot, Lpot + SLDL× (DLsat − DL)

)
(8)

where, SLDL is a parameter defining the day length response as a linear
function of DL. It is assumed that the attainment of the stage “two leaves
after flag leaf primordium” is reached when half of the leaves have
emerged (Brooking et al., 1995):

0.5× Lapp ≤ L, then Lf = Lapp (9)

When this condition is fulfilled, transition to floral initiation is
completed and Lf is equal to the number of primordia formed on that
day. Anthesis occurs a fixed number of phyllochron (PFLLAnth) after the
appearance of the flag ligule.

The model described above has been developed as an independent
executable component (Manceau and Martre, 2018) in the BioMA soft-
ware framework (Donatelli and Rizzoli, 2008) integrated in the wheat
model SiriusQuality, version 2.0.57777 (He et al., 2012; Martre and
Dambreville, 2018; Martre et al., 2006).

Vrate =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, Tapex < Tver
min

VAI× Tapex + VBEE, Tver
min ≤ Tapex ≤ Tver

opt

max

⎛

⎜
⎜
⎜
⎝

0,
(
VAI× Tver

opt + VBEE
)
×

(

1+
Tveropt − Tapex
Tvermax − Tver

opt
×
max(DLmin,min(DLsat,DL)) − DLmin

DLsat − DLmin

)

⎞

⎟
⎟
⎟
⎠
, Tver

opt< Tapex < Tvermax

(5)
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2.4. Estimation of the ecophysiological model parameters

Five parameters of the phenology model were estimated for each of
the 91 RILs using the three treatments of the pot experiment described
above (Table 1). These parameters were estimated based a previous
study which showed that P, SLDL and VAI are enough to predict genetic
variability of winter wheat genotypes (He et al., 2012; Rincent et al.,
2017). PFLLAnth and Labsmin were also estimated because a previous
analysis of the data set used for parameter estimation in this study
revealed a significant genetic variability for these two traits (Sanna
et al., 2014).

We designed a calibration procedure that minimizes the interactions
between the different components of phenology. First, three parameters
controlling earliness per se (P, Labsmin,PFLLAnth) were estimated with the
LDV treatment. Labsminwas set equal to the measured value of Lf, then P and
PFLLAnth were estimated sequentially by minimalizing the root mean
squared error (RMSE) for Haun stage and the absolute error (AE) for
anthesis date, respectively. Then the sensitivity to DL (SLDL) was esti-
mated by minimizing the AE for the date of flag ligule appearance for
SDV treatment. Finally, the slope of the response vernalization rate to
temperature (VAI) was estimated by minimizing the AE for the date of
flag ligule appearance for LDV treatment. Parameters were estimated
with the Brent hybrid root-finding algorithm (Brent, 1973) by using the
‘optim’ function of the ‘stats’ package of the R software program, version
4.1.3 (R Core Team, 2022). The other parameters of the model were set
to the values given by He et al. (2012), except Ldecr, Tverpot and T

ver
max which

were increased following the work of Brown et al. (2013) and VBEE that
was also increased following Robertson et al. (1996) to take into account
the lower response of vernalization rate to temperature for durumwheat
compared with winter bread wheat(Supplementary Table S2). All sim-
ulations started on the sowing date.

2.5. Genetic map and quantitative trait loci detection

An updated version of the Ofanto × Cappelli genetic map previously
reported (Marone et al., 2012) was developed and used for QTL analysis
of the parameter values. Whole-genome profiling was performed using
the DArT-Seq™ technology (Diversity Arrays Technology Pty Ltd,
Australia). DArT-Seq™ detects both single nucleotide polymorphisms
(SNPs) and presence–absence sequence variants, collectively referred to
as DArT-Seq™ markers. Briefly, the genetic map is composed of 32
linkage groups which cover all of the chromosomes except 1 A. The total
number of markers is 9267, of which 4033 on the A genome and 5594 on
the B genome. The number of markers per chromosome ranges from 162
(4B) to 1217 (6B). The map length spanned 2119.2 cM, with 965.5 cM
for the A genome, and 1153.7 cM for the B genome.

QTL analysis was performed using the Composite Interval Mapping
method (Zeng, 1994) with the Qgene software, version 4.3.10 (Joehanes
and Nelson, 2008). Scanning interval of 1 cM between markers and
tentative QTL with a window size of 10 cM was used to detect QTL.

Marker cofactors for background control were set by single marker
regression and simple interval analysis with a maximum of five con-
trolling markers. Major QTL were defined as two or more linked markers
associated with a parameter with a logarithm of odds (LOD) score > 5.0
and a phenotypic variance contribution> 10 %. QTLwith a LOD score>
2.8 and a phenotypic variance contribution < 10 % were defined as
moderate QTL. Tentative QTL with a LOD score between 1.0 and 2.8
were also considered for the prediction of QTL-based parameters. For
main QTL effects, the positive sign of the estimates indicates that Ofanto
allele contributed to the higher values of the parameter. The intervals of
the QTL and flanking markers were determined following the method
described by Darvasi and Soller (1997). The proportion of phenotypic
variance explained by a single QTL was determined by the square of the
partial correlation coefficient (r2). Graphical representation of linkage
groups was carried out using the MapChart software, version 2.2
(Voorrips, 2002).

The available sequences of DArT-seq markers (provided by Triti-
carte, www.diversityarrays.com) were used as queries in a BLAST
against the ‘Svevo’ genome (Maccaferri et al., 2019) to assign a physical
interval to QTL identified in the present study. Similarly, available se-
quences of known genes involved in flowering time control in wheat and
other species were used as queries in a BLAST search to identify their
physical position onto the ‘Svevo’ genome. Physical position on the
‘Svevo’ genome of common markers mapped in previously published
studies was also used for comparison with known QTL for phenological
traits in tetraploid wheat.

2.6. Quantitative trait loci prediction of the phenology model parameters

QTL-based values for each of the five estimated parameters were
estimated for each RIL considering only additive QTL actions. Our aim
was to be built a predictive model, therefore, all QTL with LOD score> 1
were considered. Following the approach used by Bogard et al. (2014),
linear models for the five calibrated ecophysiological parameters were
obtained using multiple linear regressions with backward elimination of
the QTL by fitting the following statistical model to the estimated pa-
rameters values:

ŷj = m̂+
∑n

i=1
âi × gi,j (10)

where m̂ is the estimated intercept, âi is the estimated additive effect of
the i-th QTL on the phenology model parameter, and gi,jis the allele of
the j-th RIL at the i-th QTL. The Ofanto alleles were coded +1 and those
of Cappelli − 1.

2.7. Field experiment for original and QTL-based model validation

Estimated and QTL-based values of the five parameters were used to
simulate the development of the 91 RILs grown in the field during the
2012–2013 growing seasons at Ottava (experiment names OT13) and
during the 2007–2008 (FO08) and 2008–2009 (FO09) growing seasons

Table 1
Name, symbol, definition, nominal, minimal, and maximal value, unit and calibration criteria of the calibrated genetic parameters of SiriusQuality phenology sub-
model. The four parameters were optimized sequentially in order they are shown in the table.

Name Definition Value Unit Calibration criteria Method Treatment used for
calibrationa

Nominal Min Max

Labsmin Minimum absolute main stem leaf number - 7.8 11.3 Leaf Final leaf number Measured LDV
P Phyllochron 110 80 140 ◦Cd leaf− 1 Haun stage Estimated LDV
PFLLAnth Phyllochronic duration of the period between flag

leaf ligule appearance and anthesis
2.4 1.5 3.5 - Anthesis date Estimated LDV

SLDL Daylength response of leaf production 0.7 0 2.5 leaf h− 1

(DL)
Flag leaf ligule
appearance date

Estimated SDV

VAI Response of vernalization rate to temperature 0.001 0 0.015 d− 1◦Cd− 1 Flag leaf ligule
appearance date

Estimated LDNV

a LDV, long day vernalized; SDV, short day vernalized; LDNV, long day non vernalized.
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at Foggia, Italy (41.46◦ N, 15.55◦ E, 76 m a.s.l.). In Foggia, each line was
planted at a rate of 40 seeds per row (1-m long) with 0.3-m interrow
spacing. In Ottava, the RILs were sown with a 6-row planter at a density
of 350 seeds m− 2. Each plot consisted of six rows with an interrow
spacing of 0.18 m and had a surface area of 10 m2. At both sites the seeds
were sown in a randomized complete block design with three replica-
tions. These three experiments were not used for parameter estimation.
Anthesis dates was recorded at Ottava for each line and the two parents,
while at Foggia heading date was recorded and anthesis date was esti-
mated from the relationship obtained with OT13 data between thermal
time to anthesis and thermal time to heading (r2 = 0.95, P < 0.001).
Haun stage, final leaf number, flag leaf ligule appearance and anthesis
dates were also recorded at Ottava using the protocol described above
for the pot experiment. For all field experiments arithmetic means of all
traits were calculated. Predictions using the QTL-based model parame-
ters were compared with predictions using the estimated (original)
parameters.

The QTL-based based model was also evaluated for the two parents,
which were not used for QTL analysis, in the three environments
described above, and in five (Cappelli) or 15 (Ofanto) other site/year/
sowing date combinations. Cappelli was grown during the 2003–2004
growing season at Ottava with late-November and mid-February sowing
dates and during the 2004–2005 growing season with early-January and
mid-March sowing dates, and at Oristano, Sardinia, Italy (40◦ N, 8◦ W,
15 m a.s.l.) with mid-January sowing date. Ofanto was grown for eight
consecutive years (harvests 1992–1999) at Ottava with sowing dates
between mid-November and early-January, and at Oristano for seven
years (harvests 1993–2000) with sowing dates between late-November
and early-February. In all experiment, crops were sown at a density of
350 viable seeds m− 2. Each plot was 7-m long with 8-rows and an
interrow spacing of 0.18 m. The experimental design was a randomized
complete block design with three replicates. The sowing dates and
summary environmental conditions for all the trials are given in Sup-
plementary Table S1. All trials were rainfed and other crop inputs
including pest, weed and disease control, and nitrogen, potassium, and
phosphate fertilizers were applied at levels to prevent nutrients or pests,
weeds, and diseases from limiting plant development and growth. All
crops were simulated from the day of sowing. At each site, daily weather
data were recorded from meteorological stations located in the experi-
mental farms near the experimental fields. For each parent, parameters
values were obtained from the corresponding model linking genetic
markers to model parameters and the model was used to predict the
anthesis date.

2.8. Statistics for model evaluation

Several statistics were calculated to assess the quality of the model
simulation results. The observed and simulated data were compared
using ordinary least square regression and the mean squared error
(MSE). To get a better understanding of the model errors, the MSE was
decomposed in non-unity slope (NU), squared bias (SB) and lack of
correlation (LC) following Gauch et al. (2003). Spearman’s rank corre-
lation coefficient (ρ) was also calculated. All data analysis and graphs
were done using R statistical software program version 4.2 (R Core
Team, 2022).

3. Results

3.1. Estimations of the genetic parameters of the phenology model

The five estimated parameters showed large genetic variability be-
tween the RILs and significant transgressive segregation (Fig. 1). Ofanto
and Cappelli had close values for P and SLDL. VAI was the most different
parameter between the parents, with Cappelli having a much lower
value than Ofanto. VAI had a clear bimodal distribution and the two
parents had values close to the two peaks of the distribution. PFLLAnth

was significantly correlated with P and SLDL (r = 0.40 and − 0.27,
respectively). The strongest correlation between parameters was be-
tween Labsminand SLDL (r= − 0.66), although Labsminwas measured in the LDV
treatment and SLDL was estimated with the SDV treatments.

3.2. Quantitative trait loci analysis and QTL-based prediction of model
parameters

The genetic analysis of the estimated parameter values identified 13
moderate and major QTL (Table 2). All these QTL colocalized with
known QTL for wheat phenology (Table 2). The percentage of variance
of the parameters explained by each QTL varied between 14 % (QTL 3
for P) and 44 % (QTL 15 for VAI). No major or moderate QTL was
identified for PFFLAnth but several tentative QTL colocalized with
known QTL, including a QTL (QTL29, LOD= 2.0) previously identify for
DL sensitivity of heading date for winter wheat (Table 2). Two (for VAI)
to five (for Labsmin) moderate or major QTL were identified for each of the
other four parameters. Only one of these, QTL28, was associated with
two model parameters (SLDL and Labsmin), the other moderate and major
QTL were associated with only one model parameter, but QTL2 (for
Labsmin) and QTL27 (for P) included a tentative region for SLDL (Fig. 3).

Two moderate QTL (LOD > 2.8) for Labsmin colocalized with known
developmental genes (Fig. 3); QTL30 colocalized with Vrn-B3, and
QTL32 with Vrn-A2 and FT-A5. Vrn-A2was also close to QTL16 for SLDL
but not within the QTL confidence interval. We also found one tentative
QTL for Labsmin (and SLDL), QTL5, that colocalized with Ppd-B1 loci. For
VAI, the major QTL15 colocalized with Vrn-A1 on chromosome 5 A, and
the peak marker for two tentative QTL, QTL1 and QTL8, colocalized
with CO-B9 and FT-A2, respectively. The peak marker of QTL23 for P
colocalized with CO-B2 locus. For the other two parameters, PFLLAnth
and SLDL, the only associations to known developmental genes regarded
putative QTLs. For PFLLAnth, QTL25 colocalized with Co-A1 locus and
for SLDL, the peak marker of QTL2 and QTL5 colocalized with ELF-B1
and Ppd-B1 loci, respectively.

The five genetic parameters of SiriusQuality were estimated using the
79 QTL with a LOD score > 1. Eleven significant QTL and 21 tentative
QTL with a LOD score value between 1 and 2.8 were used as predictors
in the fitted statistical models (Table 2). P, SLDL, VAI, PFLLAnth and,
Labsmin were predicted with 11, 10, 8, 6, and 10 QTL, respectively. QTL 32,
which collocated at Vrn-A2 was not selected in the multilinear model to
predict Labsmin, but the tentative QTL16, close to Vrn-A2, was used to
predict SLDL. Seven tentative QTL collocated with several parameters.
Tentative QTL8 and QTL14 were associated with four of the five pa-
rameters, the other five tentative QTL (QTL1, QTL5, QTL7, QTL10, and
QTL25) were associated with two parameters.

The coefficients of the multi-linear model (Table 2) were well
correlated with the additive effect of the QTL (all r2 > 0.87 and P <

0.002), except for SLDL (r2 = 0.01, P = 0.56). Thirty one of the 33
tentative QTL used to predict the parameters colocated with known QTL
for heading date or other wheat phenology traits (Table 2). The fitted
multi-linear model predicted the five parameters without significant
bias (Fig. 3), they explained 36 % (for PFLLAnth) to 63 % (for P and
Labsmin) of the genotypic variation of the parameters. The relative RMSE for
P, SLDL, VAI, PFLLAnth and, Labsmin were 1.7 %, 18.9 %, 30.7 %,9.6 %,
and 4.1 %, respectively. The QTL-based parameters of the two parents of
the RILs were also well estimated, especially for Cappelli (Fig. 3).

3.3. Predictions of leaf stage

As illustrated in Fig. 4 for the lines with the highest (135.9 leaf
◦Cd− 1) and lowest (118.6 leaf ◦Cd− 1) values of P, the model parame-
trized with the estimated (original) parameters predicted well the rate of
main stem leaf appearance for the treatment LDV used to estimated P
(Fig. 2A) but also for the treatments not used to estimate it (SDV, LDNV;
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Fig. 2C,E), as well as for the field experiment OT13 (Fig. 2G). For the
latter experiment, the RMSE for main stem leaf number was only 0.15
leaves (Table 2). The QTL-based model also predicted well the rate of
leaf appearance in all treatments (Fig. 2C, D, F, and H), and the RMSE for
the validation experiment was close to that of the model with the orig-
inal parameters (Table 2).

3.4. Predictions of final leaf number

The treatments in the calibration experiment had large effects on Lf.
As expected, on average Lf was the lowest for LDV (averaging 9.0 leaves)
and the highest for LDNV (averaging 13.6 leaves; Fig. 3A). The genetic

variability of Lf was also much higher for the LDNV-grown plants than
for the two other treatments. The model explained 90 % of the genotypic
variation of Lf for the mean of the three treatments (Table 2) but only
35 % for SDV. For the field experiment of the validation data set where
Lf was recorded (OT13), the RMSE was only 0.46 leaves, but the model
explained 20 % of the genotypic variance. The RMSE for Lf was about
two-times higher for the QTL-based model than for the model with the
estimated parameters. The higher error of the QTL-based model was
mainly due to a higher lack of correlation (Table 2). However, for
validation data set both models gave similar results.

Fig. 1. Distribution and correlations between the genetic parameters of SiriusQuality phenology model for 91 RILs of the Ofanto (Of) × Cappelli (Ca) cross. The
phyllochron (P), the sensitivity to day length (SLDL), the response of the vernalization rate to temperature (VAI), and the number of phyllochron between flag leaf
ligule appearance and anthesis (PFLLAnth) were estimated sequentially each using one of the three environments of the calibration dataset, while Labsminwas measured
in the LDV treatment. Correlation coefficients are reported above the diagonal. NS, not significant; **, P < 0.01; ***, P < 0.001.
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Table 2
QTL used to predict the five genetic parameters of SiriusQuality phenology model. Two moderate QTL (QTL 31 and 32) not used to predict SLDL and Labsmin are also indicated in italic face. P, phyllochron; SLDL, daylength
(DL) sensitivity; VAI, rresponse of vernalization rate to temperature; Labsmin, absolute final leaf number; PFLLAnth, Phyllochronic duration of the period between flag leaf ligule appearance and anthesis. Major (LOD< 5 and
r2 > 0.1) and moderate (LOD > 2.8) QTL are indicated in bold face.

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

P 23 6BL 69 7.8 5325371 2258129–1236305 545.7–594.4 5.2 0.24 1.439 1.20837 QTL 47 in
Giunta et al.
(2018)

Spikelets spike− 1 Field

27 7BL 8 8.1 1112963 5567157–1402975 468.1 – 537.0 4.9 0.23 ¡1.543 ¡1.25825 QTL A.30 in Le
Gouis et al.
(2012)

Heading (◦Cd) Field (3 years) and
different
combinations of DL
and vernalization in
the greenhouse

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 54 in
Giunta et al.
(2018)

Phyllochron Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Mengistu et al.
(2016)

Booting (d),
anthesis (d),
maturity (d)

Field (2 years x 2
sites)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Giraldo et al.
(2016)

Heading (d) Field (4 year / site
combinations)

3 2BS 6 13.5 1862383 1080014–5411598 0.4 – 8.9 2.8 0.14 ¡1.015 ¡0.77854 Sukumaran
et al. (2018)

Anthesis (d),
maturity (d)

Field (potential,
drought, and high
temperature)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Ppd− 05
Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

25 7 AS 0 15.1 1128723 1128723–5353667 165.3 – 281.8 2.5 0.12 − 0.962 − 0.97753 QTL 50 in
Giunta et al.
(2018)

Final Leaf number Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Anthesis (◦Cd),
fruiting efficiency

Field

10 3BL 147 17.8 4004851 2276928–1130481 750.1 – 774.6 2.1 0.10 − 0.894 − 0.97620 QTL 6 in Sanna
et al. (2014)

Final leaf number,
terminal spikelet to
anthesis (◦Cd)

Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 22 in
Giunta et al.
(2018)

Final Leaf number Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Eps− 07
in Gupta et al.
(2020)

Heading (◦Cd) 13 field experiments
at different latitudes

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting (d),
anthesis(d),
maturity (d)

3 years x 2 sites in
Spain

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

6 2BL 2 19.3 2249524 5325236–3961379 617.0 – 698.9 1.9 0.10 1.218 0.56940 QTL 13 in
Giunta et al.
(2018)

Flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting (d),
anthesis (d),
maturity (d)

3 years x 2 sites in
Spain

(continued on next page)
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Giraldo et al.
(2016)

Heading (d) Field (4 year / site
combinations)

24 7A 20 22.1 2279140 1009498–1011692 703.4–722.6 1.7 0.08 − 1.022 − 0.40842 QTL0165 in
Giraldo et al.
(2016)

Heading (d) Field (4 year / site
combinations)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL0829 in
Mengistu et al.
(2016)

Booting (d),
anthesis (d),
maturity (d)

Field (2 years x 2
sites)

17 5 A 18 23.8 4405595 4542293–5367049 2.5 – 11.4 1.5 0.08 0.816 0.70204 QTL 11 in
Sanna et al.
(2014)

Leaves number at
terminal spikelet,
anthesis (◦Cd)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 36 in
Giunta et al.
(2018)

Anthesis (◦Cd) Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Vrn− 24
in Gupta et al.
(2020)

Heading (◦Cd) 13 field experiments
at different latitudes

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Roncallo et al.
(2017)

Heading (d),
anthesis (d)

6 field trials in
Argentina, sowing
from July to August

19 6AL 83 24.4 2261280 4394087–5563094 582.8 – 598.7 1.5 0.07 0.723 0.36715 QTL 43 in
Giunta et al.
(2018)

Phyllochron,
fruiting efficiency

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting (d),
anthesis (d),
maturity (d)

3 years x 2 sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Giraldo et al.
(2016)

Heading (d) Field (4 year / site
combinations)

8 3AL 15 25.8 1088186 5580236–1089657 28.1 – 219.6 1.4 0.08 − 0.739 − 0.63557 QTL 16 in
Giunta et al.
(2018)

Flag leaf appearance
(◦Cd)

Field

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Final leaf number Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Flag leaf appearance
(d) and anthesis (d)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Sukumaran
et al. (2018)

Anthesis (d),
maturity (d)

Field (potential,
drought, and high
temperature)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

14 4AL 54 31.0 2253908 1205880–4410019 24.2 – 137.3 1.2 0.06 0.673 0.68804 QTL 26 in
Giunta et al.
(2018)

Leaf number at
terminal spikelet,
ear fertility

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Eps− 22
in Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Milner et al.
(2016)

Heading (d),
maturity (d)

4 field trials at three
locations

(continued on next page)
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

SLDL 9 3AL 52 10.6 Xgwm1042 W01T03c -
2295584

561.3 – 591.8 3.6 0.17 ¡0.06 ¡0.02775 Meta-QTL in
Griffiths et al.
(2009)

Heading (d) 23 field trials at 5 sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

28 7BL 86 10.8 3021883 5582872–1121517 680.7 – 687.3 3.6 0.17 ¡0.018 0.05714 QTL 14 in
Sanna et al.
(2014)

Final leaf number,
leaf number at
terminal spikelet

Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Penultimate leaf to
anthesis (◦Cd)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 55 in
Giunta et al.
(2018)

Final leaf number,
maximum tiller
number

Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Spikelet spike− 1 Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Spikelet spike− 1 Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Eps− 32
in Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Roncallo et al.
(2017)

Heading (d),
anthesis (d)

6 field trials in
Argentina, sowing
from July to August

31 2 AL 30 12.5 980420 4398088–3946769 735.3 –
754.4

3.0 0.15 − 0.053 NAc QTL 7 in
Giunta et al.
(2018)

Fruiting efficiency Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Anthesis (◦Cd) Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.
Ppd− 04)in
Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

27 7BL 18 15.8 1018944 992708–4993835 518.1 – 583.8 2.4 0.12 0.045 0.03314 QTL A.30 in Le
Gouis et al.
(2012)

Heading (◦Cd) Field (3 years) +
different
combinations of DL
and vernalization in
the greenhouse

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 54 in
Giunta et al.
(2018)

Flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Mengistu et al.
(2016)

Booting (d),
anthesis (d),
maturity (d

Four field trials
(Etiopia)

10 3BL 141 22.1 1089762 4003283–1130262 731.3 – 770.3 1.7 0.08 0.047 0.01998 QTL 6 in Sanna
et al. (2014)

Leaf number at TS,
duration various
pre-anthesis
phenophases (◦Cd)

Pots greenhouse,
vernalized

(continued on next page)
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 22 in
Giunta et al.
(2018)

Final leaf number Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Eps− 07
in Gupta et al.
(2020)

Heading (◦Cd) 13 field experiments
at different latitudes

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting (d),
anthesis (d),
maturity (d)

3 years x 2 sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

2 1BL 12 26.9 4535838 1231191–1101118 652.9 – 678.5 1.4 0.07 0.042 0.02962 QTL 4 in
Giunta et al.
(2018)

Final leaf number Pots outdoor long-day
vernalized,

7 2BL 68 28.2 1109533 3064932–4409889 757.0 – 762.5 1.3 0.07 − 0.033 − 0.02670 QTL 15 in
Giunta et al.
(2018)

Phyllochron Pots outdoor long-day
vernalized, pots
greenhouse
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 2B.3 in
Ruan et al.
(2020)

Anthesis (d) 3 years at one location

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting, anthesis
and maturity (d)

3 years x 2 sites in
Spain

14 4AL 68 28.6 4410019 2253908–4009690 426.7 – 577.3 1.3 0.06 0.043 0.03965 QTL 26 in
Giunta et al.
(2018)

Leaf number at
terminal spikelet,
grains spike− 1

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Eps− 22
in Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Milner et al.
(2016)

Heading (d),
maturity (d)

4 field trials at three
locations

5 2BS 2 32.7 3934592 wPt− 5788–1020393 55.8 – 69.6 1.1 0.06 − 0.039 − 0.03767 QTL 4 in Sanna
et al. (2014)

Anthesis (◦Cd)and
different pre-
anthesis
phenophases (◦Cd)

Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 1 in Panio
et al. (2013)

Heading (d), leaf
porosity

Field, 2 years at one
location

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QHd.ubo− 2B
in Milner et al.
(2016)

Heading (d),
maturity (d)

4 field trials at three
locations

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 11 in
Giunta et al.
(2018)

Flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Ppd− 05
in Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Marcotuli et al.
(2017)

Heading (d) Field trials (2 sites, 1
year)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting (d),
anthesis (d),
maturity (d)

Field trials (3 years x
2 sites) in Spain
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

4 2BS 48 32.7 1121477 1669700 - Xwmc257 24.9 – 30.2 1.1 0.06 − 0.032 − 0.03968 QTL 9 in
Giunta et al.
(2018)

Anthesis (◦Cd), flag
leaf appearance
(◦Cd)

Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Anthesis (◦Cd) Field
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 2B.1 in

Ruan et al.
(2020)

Anthesis (d) Field (potential,
drought, and high
temperature)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

16 5AL 82 33.3 1200768 1088962–2303083 612.4 – 647.0 1.1 0.06 0.038 0.02976 QTL 34 in
Giunta et al.
(2018)

Spike weight at
anthesis

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Vrn− 25
in Gupta et al.
(2020)

Heading (◦Cd) Different DL and
levels of vernalization

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ qHde3 in
Nishimura
et al. (2018)

Heading (d) Field (4 years at one
site)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Roncallo et al.
(2017)

Heading (d),
anthesis (d)

6 field trials in
Argentina, sowing
from July to August

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Buerstmayr
et al. (2012)

Anthesis (d) Field, four
environments

VAI 15 5AL 24 4.2 5567501 3064395–1090215 539.6 – 554.2 11.1 0.44 0.00123 0.00108 QTL 10 in
Sanna et al.
(2014)

Phyllochron,
anthesis (◦Cd), leaf
number at terminal
spikelet, final leaf
number

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Meta-QTL M18
in Griffiths
et al. (2009)

Heading (d) 23 field trials (five
sites)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 33 in
Giunta et al.
(2018)

Leaf number at
terminal spikelet,
final leaf number,
anthesis (◦Cd),
maximum tiller
number

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Vrn− 11
in Gupta et al.
(2020)

Heading (◦Cd) Different DL and
levels of vernalization

21 6BL 41 12.6 3029892 3947529–3029892 23.9 – 26.5 3.0 0.15 0.00100 0.00045 QTL0612 in
Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL0655 in
Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
site at different
latitudes)

8 3AL 28 15.4 1089657 1166451–1237528 103.2 – 481.9 2.4 0.12 − 0.00050 − 0.00040 QTL 16 in
Giunta et al.
(2018)

Final leaf number Pots outdoor, long-
day vernalized
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Sukumaran
et al. (2018)

Anthesis (d),
maturity (d)

Field (potential,
drought, and high
temperature)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
site at different
latitudes)

12 4AL 23 20.6 4008720 4541315–5579508 609.2 – 628.9 1.8 0.09 0.00067 0.00024 QTL 24 in
Giunta et al.
(2018)

Leaf number o at
terminal spikelet

Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Final leaf number,
flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Final leaf number Field
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri

et al. (2011)
Heading (d) 15 field trials

18 5BC 60 22.3 5323929 1271726 - Gpw4463 396.1 – 428.4 1.7 0.08 0.00061 0.00049 QTL A.23 in Le
Gouis et al.
(2012)

Heading (◦Cd) Field (3 years) and
different
combinations of DL
and vernalization the
greenhouse

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 38 in
Giunta et al.
(2018)

​ ​

Phyllochron Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Vrn− 12
in Gupta et al.
(2020)

heading (◦Cd) Weak vs strong
vernalization

1 1BL 32 22.6 1245938 1042145–4008436 331.4 – 493.6 1.6 0.08 0.00061 0.00033 QTL 1 in Sanna
et al. (2014)

Terminal spikelet
(◦Cd)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Hd_Cad12 in
Milner et al.
(2016)

Heading (d),
maturity (d)

4 field trials at 3 sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 1 in
Giunta et al.
(2018)

Phyllochron Field

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Milner et al.
(2016)

Heading (d),
maturity (d)

4 field trials at three
sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting (d),
anthesis (d),
maturity (d)

3 years x 2 sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

(continued on next page)
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

22 6BL 14 23.8 3935283 3570667–1055879 670.1 – 689.7 1.6 0.08 − 0.00059 − 0.00025 QTL 45 in
Giunta et al.
(2018)

Leaf number at the
end of tillering

Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Vrn− 15
in Gupta et al.
(2020)

Heading (◦Cd) Across 4
’phenological
environments’

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Giraldo et al.
(2016)

Heading (d) Field (4 year / site
combinations)

PFLLAnth 29 7BL 9 18.5 1264692 Mag600–1252669 695.7 – 705.2 2.0 0.10 0.094 0.05277 QTL A.31 in Le
Gouis et al.
(2012)

Heading (◦Cd) Field (3 years) and
different
combinations of DL
and vernalization in
the greenhouse

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 57 in
Giunta et al.
(2018)

Final leaf number Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Roncallo et al.
(2017)

Heading (d),
anthesis (d)

6 field trials in
Argentina, sowing
from July to August

20 6AL 114 22.9 1043765 1090518–1699304 602.0 – 609.2 1.6 0.08 − 0.083 − 0.07448 QTL 44 in
Giunta et al.
(2018)

grains spike− 1 Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

13 4AL 0 23.8 1076004 1076004–1068548 3.3 – 4.6 1.6 0.08 − 0.085 − 0.08634 ​ ​ ​
25 7AS 4 25.1 1019140 1128723–1270127 165.3 – 516.5 1.5 0.07 − 0.077 − 0.06582 QTL 50 in

Giunta et al.
(2018)

Final leaf number Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Phyllochron,
fruiting efficiency,
flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Field

8 3AL 15 31.0 1088186 1370441–1089657 21.7 – 117.8 1.2 0.06 0.071 0.05761 QTL 16 in
Giunta et al.
(2018)

Flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Sukumaran
et al. (2018)

Anthesis (d),
maturity

Field (potential,
drought, and high
temperature)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

(continued on next page)
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

11 3BL 6 35.9 Xgwm181 2267290–5011369 824.5 – 837.9 1.0 0.05 0.061 0.08194 Hd_Pr11 in
Milner et al.
(2016)

Heading (d),
maturity (d)

Four field trials at 3
sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 23 in
Giunta et al.
(2018)

Leaf number at
terminal spikelet

Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Field

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (years x
sites at different
latitudes)

Labsmin 28 7BL 90 4.9 1113703 1092265–1120350 685.0 – 689.9 9.0 0.37 ¡0.338 ¡0.12836 QTL 14 in
Sanna et al.
(2014)

Leaf number at
terminal spikelet,
final leaf number

Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Penultimate leaf to
anthesis (◦Cd)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 55 in
Giunta et al.
(2018)

Flag leaf appearance
(◦Cd), final leaf
number

Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Spikelet spike− 1 Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Eps− 32
in Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Roncallo et al.
(2017)

Heading (d),
anthesis (d)

6 field trials in
Argentina, sowing
from July to August

2 1BL 62 6.2 4910793 4535838 -
Xgwm659

661.0 – 672.2 6.8 0.30 ¡0.251 ¡0.17304 QTL 4 in
Giunta et al.
(2018)

Final leaf number Pots outdoor, long-
day vernalized

30 7B 0 9.0 1065475 1065475–1112171 7.6 – 15.5 4.4 0.20 ¡0.273 ¡0.20360 QTL 58 in
Giunta et al.
(2018)

Flag leaf appearance
(◦Cd), anthesis
(◦Cd), final leaf
number, spikelet
spike− 1

Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Anthesis (◦Cd) Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q9_FT_19 and
Q10_FT_17 in
Wright et al.
(2020)

Anthesis (d) Field and pots, spring
sowing

26 7AL 50 11.0 Xgwm276 3064654–1074583 627.4 – 639.2 3.5 0.17 0.175 0.06228 Meta-QTL in
Griffiths et al.
(2009)

Heading (d) 23 field trials (five
sites)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Kuchel et al.
(2006)

Heading (d) Winter and summer
sowings, artificial
light, vernalization

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 51 in
Giunta et al.
(2018)

Final leaf number Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Final leaf number Pots greenhouse,
vernalized

(continued on next page)
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials32 5AL 20 11.5 2261896 978762–4405542 639.7 –
662.8

3.3 0.16 − 0.249 NAc QTL 35 in
Giunta et al.
(2018)

Final leaf number Pots outdoor, long-
day vernalized

18 5BC 60 14.8 5323929 Xbarc74 - Gpw4463 401.5 – 428.4 2.6 0.12 0.146 0.09500 QTL A.23 in Le
Gouis et al.
(2012)

Heading (◦Cd) Field (3 years) and
different
combinations of DL
and vernalization in
the greenhouse

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 38 in
Giunta et al.
(2018)

Phyllochron Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Q.ICD.Vrn− 12
in Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

8 3AL 21 18.3 4009170 3022183–1089657 61.6–219.6 2.0 0.10 0.195 0.08899 QTL 16 in
Giunta et al.
(2018)

Final leaf number Pots outdoor, long-
day vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Flag leaf appearance
(◦Cd)

Field

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Sukumaran
et al. (2018)

Anthesis (d),
maturity (d)

Field, 2 years
(potential, drought,
and high
temperature)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading (d) 27 field trials (year x
sites at different
latitudes)

1 1BS 18 20.3 1066594 1723461–1688943 113.5 – 386.9 1.8 0.09 0.182 0.13833 QTL 1 in Sanna
et al. (2014)

Terminal spikelet
(◦Cd)

Pots outdoor, long-
day

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Hd_Cad12 in
Milner et al.
(2016)

Heading(d),
maturity (d)

4 field trials at 3 sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 1 in
Giunta et al.
(2018)

Phyllochron Field

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Milner et al.
(2016)

Heading (d),
maturity (d)

4 field trials at 3 sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting (d),
anthesis (d),
maturity (d)

3 years x 2 sites

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2011)

Heading (d) 15 field trials

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Maccaferri
et al. (2014)

Heading date (d) 27 field trials (years x
sites at different
latitudes)

7 2BL 64 22.3 3950327 3064932–4409889 757.0 – 762.5 1.7 0.08 − 0.174 − 0.09350 QTL 15 in
Giunta et al.
(2018)

Phyllochron Pots greenhouse,
vernalized

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ QTL 2B.3 in
Nishimura
et al. (2018)

Anthesis (d) Field (potential,
drought, and high
temperature)

(continued on next page)
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Table 2 (continued )

Parameter QTL no. Chromosome-
linkage group

Position
(cM)

Confidence
interval (cM)

Peak
marker

Flanking markers Physical
interval (Mb)

Peak
LOD
value

r2a Additive
effectb

Coefficient of
multilinear
model

Colocation
with QTL

Phenotyped traits Environmentsd

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Soriano et al.
(2017)

Booting (d),
anthesis (d),
maturity (d)

3 years x 2 sites

5 2BS 12 26.2 3958859 wPt− 5788–1004499 55.8–80.7 1.4 0.07 − 0.16 − 0.09943 QTL 4 in Sanna
et al. (2014)

Leaf number at
terminal spikelet

Pots outdoor, long-
day vernalized

​ Anthesis and pre-
anthesis
phenophases (◦Cd)

Pots greenhouse,
vernalized

QTL 1 in Panio
et al. (2013)

Heading (d) Field trials, 2 years

QHd.ubo− 2B
in Milner et al.
(2016)

Heading (d),
maturity (d)

4 field trials at 3 sites

QTL 11 in
Giunta et al.
(2018)

Spikelet number Pots outdoor, long-
day

​ Flag leaf appearance
(◦Cd), anthesis
(◦Cd)

Pots greenhouse,
vernalized

Q.ICD.Ppd− 05
in Gupta et al.
(2020)

Heading (◦Cd) Different levels of
vernalization; short vs
normal DL

Marcotuli et al.
(2017)

Heading time Field, 2 sites, 1 year

Soriano et al.
(2017)

Booting (d),
anthesis (d),
maturity (d)

Field, 3 years x 2 sites
in Spain

14 4AL 56 28.6 3024608 3948025–4410019 24.2 – 137.3 1.3 0.06 − 0.154 − 0.06812 QTL 26 in
Giunta et al.
(2018)

Leaf number at
terminal spikelet,
grain spike− 1

Pots outdoor, long-
day

Q.ICD.Eps− 22
in Gupta et al.
(2020)

Heading (◦Cd) Weak vs strong
vernalization

Maccaferri
et al. (2011)

Heading (d) 15 field trials

Milner et al.
(2016)

Heading (d),
maturity (d)

4 field trials at 3 sites

a Percent of explained phenotypic variance calculated during the QTL detection using MapQTL.
b Additive effect of the Ofanto allele.
c QTL not included in the multi-linear model of parameter prediction.
d Plants were sow under short-day unless otherwise indicated.
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3.5. Predictions of flag leaf ligule appearance date

In the calibration experiment, the average number of days between
seed imbibition and the appearance of the flag leaf ligules was 56, 73,
and 135 for the LDV, SDV, and LDNV, respectively (Fig. 3B). The shorter
duration for LDV compared with LDNV was due to the low temperature
during the vernalization treatment. The lower number of leaves for LDV
compared to LDNV did not compensate for the low rate of leaf emer-
gence during the vernalization treatment for LDV. The model predicted
the flag leaf ligule appearance date with a RMSE of 0.9 days for the mean
of the three treatments used for parameter estimation (Fig. 3C, Table 2)
and explained 60 % (for LDV) to 99 % (for SDV) of the genotypic vari-
ance. The RMSE was more than three-folds higher for LDNV and LDV
than for SDV. For the validation trial for which the flag leaf ligule
appearance was recorded (OT13), the RMSE was significantly higher (4
days) than for the calibration data set. The model explained only 28 % of
the genotypic variance for flag leaf ligule appearance date for OT13
(Table 2, Fig. 4C), which was mainly responsible for the model error (LC
accounted for 70 % of the MSE).

For LDV, the RMSE for the days to flag leaf ligule appearance were
similar for the QTL-based model and the model with the estimated pa-
rameters, while for the LDNV and SDV it was about two- and five-times
higher for the QTL-based model than for the model with the estimated
parameters. For the validation data (OT13), the RMSE of both models
were similar, but the QTL-based model explained only 11 % of the ge-
netic variation of the date of flag leaf ligule appearance, compared with
65 % for the model with the estimated parameters. The ranking of the
lines was better conserved (ρ = 0.58 and 0.36 with the original and QTL-
based parameters, respectively). Fig. 5

3.6. Predictions of anthesis date

In the calibration experiment, the number of days to anthesis was
about two-times higher for SDV than for the long day treatments

(Fig. 3E). The genotypic variability was also much higher for SDV-grown
plants. Although three of the five genetic parameters were estimated
with the LDV treatment, the model explained less of the genotypic
variance for this treatment than for the other two (Table 3). Across the
three treatments of the calibration experiment, the RMSE for anthesis
date ranged from 1.7 (SDV) to 3.9 (LDNV) days and the r2 ranged from
0.46 (LDV) to 0.89 (SDV). In the three independent field experiment, the
RMSE and r2 for the mean anthesis across the RILs were 2.0 days and
0.56, respectively. In OT13 and FO08, the model error was mainly due to
a lack of correlation, while in FO09 about half was due to a lack of
correlation and non-unity slope.

For the validation data set, the RMSE for anthesis date was
0.2–0.8 days higher for the QTL-based model compared with the model
with the estimated parameters (Table 3, Fig. 6F). On average over the
three experiments of the validation data set, the QTL-based model
explained 34 % of the genetic variation of anthesis date, which is
slightly more than half of the genetic variation explained by the model
with the estimated parameters. The ranking of the lines was more
conserved between the estimated and QTL-based parameters (0.76 vs.
0.59).

3.7. Predictions of anthesis date for untested genotypes in untested
environments

The QTL-based model was further evaluated for the two parents of
the RIL population grown in the field in experiments not used for
parameter estimation. The two parents were not used to identify QTL, it
is thus a test of the ability of the QTL-based model to predict untested
genotypes. Across all site/year/sowing date combinations, the number
of days to anthesis ranged from 71 to 170 days for Cappelli and from 94
to 171 days for Ofanto. The model with the original parameters pre-
dicted anthesis date for Cappelli and Ofanto with a RMSE of 6.2 and 7.3
days and a r2 of 0.98 and 0.85, respectively (Table 3, Fig. 7A). The RMSE
of the QTL-based was higher than that of the original model by 2.4 days

Fig. 2. Chromosomal regions harboring QTL for the five genetic parameters of the SiriusQuality phenology model for the Ofanto × Cappelli RILs population. Genetic
distances (cM) are indicated on the left of each linkage group, marker codes are indicated on the right. The vertical bars indicate the 95 % confidence intervals (CI).
Dashed CI bars indicate tentative QTL with 1 < LOD < 2.8; solid CI bars indicate moderate QTL with 2.8 < LOD < 4.9; thick solid CI bars indicate major QTL with
LOD > 5. Signs in parenthesis after the parameter names indicate the sign of the additive effect of the Offanto allele. Major phenology genes in segregation in the
population are indicated by horizontal arrows on the left of the linkage groups.
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for Cappelli and was similar for both models for Ofanto (Table 3,
Fig. 7B). For Cappelli, the model with both the original and QTL-based
parameters had a larger RMSE for the autumn sowing dates (late
November – mid December) than for the spring sowing dates (late
January – late March). For the QTL based model, the RMSE and r2 were
7.7 d and 0.97 for the autumn sowing dates and were 9.9 days and 0.59
for the spring sowing dates, respectively.

4. Discussion

Gene- or QTL-based models are useful to integrate ecophysiological,
genetic and molecular knowledge and to improve simulation models.
They are also powerful tools to predict genotype performance (Chenu
et al., 2009), identify ideotypes (Bogard et al., 2020b) or combinations
of alleles or loci (Bogard et al., 2020a; Zheng et al., 2016) to adapt ge-
notypes to target environments under current or future climate

Fig. 3. QTL-based versus original estimations of the five genetic parameters of the SiriusQuality phenology model for 91 RILs of the Ofanto (Of) × Cappelli (Ca) cross.
The phyllochron (P), the sensitivity to day length (SLDL), the response of the vernalization rate to temperature (VAI), and the number of phyllochron between flag
leaf ligule appearance and anthesis (PFLLAnth) were calibrated using the three environments of the calibration dataset, while the absolute minimum leaf number
(Labsmin) was measured in the LDV treatment. Dashed lines are 1:1 lines and solid lines are linear regressions. Note that the two parents were not used for QTL
identification.
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scenarios, or to design new crop management strategies for specific
existing or virtual (new combinations alleles or loci associated with
model parameters) genotypes (Martre et al., 2014). In this study, we
used a model that integrates our current understanding of the physi-
ology of wheat development and phenology to predict the development

and phenology of a RILs population of durum wheat with parameters
estimated with vernalization and photoperiod treatments. We identified
major or moderate QTL associated with four of the five genotypic pa-
rameters of the model. We then used this genetic information to estimate
the value of parameters and to predict plant development and anthesis

Fig. 4. Haun stage versus days after see imbibition for the two RILs of the Ofanto × Cappelli cross with the highest (89− 11) and lowest (67− 44) phyllochron for the
calibration (A-F) and the validation (G-H) data sets. Symbols are measurements, lines are simulations. The names of the experiments as defined in Table 1 are given in
the figure. Simulations were performed with the wheat model SiriusQuality using the original (A, C, E, and G) and QTL-based (B,D, F, and H) genetic parameters.
Measurements are the mean ± 1 s.d. for n = 4 independent replicates.
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Fig. 5. Observed versus simulated final leaf number (A and B), days to flag leaf ligule appearance (C and D) and days to anthesis (E and F) for 91 RILs of the Ofanto ×

Cappelli cross. Data are for the short days vernalized (SDV, circles), long days non vernalized (LDN, triangles), and long days vernalized (LDV,squares) treatments of
the experiment used to estimate the genetic parameters of the SiriusQuality wheat phenology model. Simulations were performed using original (A, C, and E) and
QTL-based (B, D, and F) genetic parameters. Inset panels show the mean values for the three experimental treatments. Days to flag leaf ligule and anthesis were
calculated from the day after seed imbibition. Dashed lines are 1:1 lines, solid lines are linear regression. Measurements are the mean ± 1 s.d. for n = 4 inde-
pendent replicates.
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Table 3
Statistics of model performance to predict days to flag leaf ligule appearance, final leaf number and days to anthesis using the original and the QTL-based parameters for the calibration and the validation data sets. Days to
flag leaf ligule and anthesis were calculated from the day after seed imbibition and sowing for the calibration data set and validation data sets, respectively.

Trait Environment or
genotype

Original parameters QTL-based parameters

RMSEa (days
or leaf)

MSEa

decomposition (%
of MSE)

Linear regression statistics ρa RMSEa (days
or leaf)

MSEa

decomposition (%
of MSE)

Linear regression statistics ρa

LCa NUa SBa Slope
(-)

Intercept (days
or leaf)

r2 LCa NUa SBa Slope
(-)

Intercept (days
or leaf)

r2

Main stem leaf number Calibration data set
Within an experiment
LDV 0.54 27 48 25 1.19 − 1.47 0.99 0.99 0.54 28 49 23 1.20 − 1.53 0.98 0.99
SDV 0.64 59 13 28 1.08 − 0.28 0.97 0.99 0.68 61 12 28 1.09 − 0.27 0.97 0.99
LDNV 0.60 77 9 14 1.05 − 0.64 0.98 0.99 0.66 79 11 10 1.07 − 0.75 0.97 0.99
Validation data set
OT13 0.15 86 8 6 0.89 0.88 0.85 0.90 0.21 79 16 5 0.78 1.66 0.72 0.82

Final leaf number Calibration data set
Within an experiment
LDV 0.19 42 1 57 0.97 0.18 0.96 0.98 0.39 91 0 9 0.97 0.13 0.62 0.77
SDV 0.55 53 12 35 0.60 5.00 0.35 0.58 0.60 54 14 32 0.52 6.02 0.23 0.46
LDNV 0.65 70 3 27 0.93 1.33 0.88 0.93 1.03 90 1 9 0.92 1.33 0.58 0.76
Across-RIL mean of
environments

0.27 54 4 42 0.92 1.07 0.90 0.95 0.46 81 4 15 0.84 2.01 0.54 0.74

Validation data set
OT13 0.46 64 34 2 0.41 6.92 0.20 0.39 0.49 63 30 7 0.32 7.92 0.10 0.29

Days to flag leaf ligule
appearance

Calibration data set
Within an experiment
LDV 2.2 38 25 37 0.60 28.1 0.60 0.70 2.31 55 17 28 0.60 28.52 0.40 0.61
SDV 0.6 92 4 4 0.98 3.0 0.99 1.00 2.99 100 0 0 0.99 1.83 0.68 0.79
LDNV 2.1 70 13 17 1.13 − 6.1 0.93 0.98 4.41 94 3 4 1.15 − 7.68 0.62 0.82
Across-RIL mean of
environments

0.9 88 7 5 0.93 5.8 0.93 0.97 1.98 98 1 1 0.93 5.90 0.63 0.79

Validation data set
OT13 4.0 70 30 0 0.49 65.0 0.28 0.58 4.24 76 21 3 0.40 76.51 0.11 0.36

Days to anthesis Calibration data set
Within an experiment
LDV 2.9 35 8 57 0.65 26. 9 0.46 0.60 3.1 42 9 49 0.55 35.3 0.25 0.46
SDV 1.7 93 1 6 1.03 − 3.6 0.89 0.93 3.1 97 0 3 0.96 6.3 0.64 0.80
LDNV 3.9 76 3 21 1.12 − 5.9 0.81 0.90 5.3 85 3 12 1.20 − 11.4 0.59 0.78
Across-RIL mean of
environments

1.2 89 11 0 1.14 − 13.5 0.90 0.96 2.3 100 0 0 1.02 − 1.8 0.57 0.76

Validation data set
Within an experiment
OT13 1.7 66 28 6 0.69 44.8 0.67 0.82 2.5 62 38 1 0.48 75.2 0.35 0.59
FO08 3.2 65 29 6 0.46 89.5 0.24 0.50 3.4 61 32 7 0.39 101.6 0.17 0.44
FO09 2. 6 93 2 5 0.86 21.2 0.41 0.66 3.0 87 6 6 0.69 48.1 0.27 0.53
Across-RIL mean of
environments

2.00 74 17 9 0.70 46.4 0.56 0.76 2.5 67 29 4 0.52 75.1 0.34 0.59

Cappelli 6.2 62 4 34 0.96 8.4 0.98 0.99 8.6 32 8 61 0.93 15.5 0.98 0.99
Ofanto 7.3 70 19 11 0.82 28.1 0.85 0.87 7.1 78 21 1 0.82 27.3 0.84 0.86

a RMSE, root mean squared error; MSE, mean squared error; LC, lack of correlation; NU, non-unity slope; SB, squared biased; ρ, Spearman’s correlation coefficient.
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Fig. 6. Observed versus simulated final leaf number (A and B), days to flag leaf ligule appearance (C and D) and days to anthesis (E and F) for 91 RILs of the Ofanto ×

Cappelli cross grown in the field in Ottava, Sardinia, Italy during the 2021–2013 growing season (OT2013, circles) and in Foggia, Italy during the 2007–2008 (FO08,
triangles) and 2008–2009 (FO09, squares) growing seasons (validation data set). Simulations were performed with the SiriusQuality wheat phenology model using
original (A) and QTL-based (B) genetic parameters. Final leaf number and days to flag leaf ligule appearance were recorded in OT2013 only. Inset panels in (E) and
(F) show the mean values for the three field experiments. Days to flag leaf ligule and anthesis were calculated from the day after sowing. Dashed lines are 1:1 lines,
solid lines are linear regression. Measurements are the mean ± 1 s.d. for n = 3 independent replicates.
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date of the RIL population, including the parents, which were not used
for QTL identification, in untested environments in the field. We discuss
the approach we used to estimate the parameters of the model and their
association with QTL and major phenology genes that collocate at QTL.

4.1. Genotypic parameters for earliness per se, cold requirement, and
photoperiod sensitivity can be estimated independently with vernalization
and photoperiod treatments

We estimated five genotypic parameters independently for earliness
per se, cold requirement, and photoperiod sensitivity using three
vernalization and photoperiod treatments. This procedure minimized
the risk of finding local minima and reduced the computation time for
parameter estimation. It increases the risk of compensation for errors,

but it is a better test of the model compared with the estimation of all
parameters together.

For the validation data set, the RMSE for anthesis date was low and
was similar for the model with estimated parameters (2.0 d RMSE) and
with QTL-based parameters (2.5 d RMSE). Compared with previous
studies, the RMSE for anthesis date, was lower than that reported for
wheat (5–8.6 d in Bogard et al. (2014); 6–9 d in White et al. (2008); 4.3
d in Zheng et al. (2013)) or other species (5–7.5 d in Messina et al.
(2006) for soybean; 7.6–15 d in Uptmoor et al. (2012) for Brassica
oleracea; 4.2 d in Uptmoor et al. (2017) for spring barley). As in all these
studies, we found a significant decrease of the percentage of genetic
variations explained with the QTL-based parameters (34 %) compared
with the estimated original parameters (56 %). The ranking of the lines
for the time to anthesis was better conserved than the r2, the Spearman’s
rank correlation coefficient was 0.76 with the estimated parameters and
0.59 with the QTL-based parameters. The lower performance of gene- or
QTL-based models can be due to undetected effects of minor QTL (Yin
et al., 2005), poor estimation of allelic effects of known QTL (Uptmoor
et al., 2012), the use of markers outside the causal polymorphism and
possible recombination between markers in linkage disequilibrium
(Bogard et al., 2014), or the method used to estimate the QTL or gene
parameters (Zheng et al., 2013), in addition to the errors and limitations
of the model itself. The fact that the model used in this study does not
explicitly consider the effect of DL on P and PFLLAnth may explain the
low correlation between estimated and QTL-based values for these two
parameters, which likely contributed to the lower performance of the
QTL-based model.

Bogard et al. (2014), calibrated an empirical phenology model
modified from Weir et al. (1984) for a panel of 210 bread wheat geno-
types. They estimated the parameters of their model using heading date
data from field trials sown in the autumn and spring for the winter and
spring type genotypes, respectively. For the winter type genotypes, they
found several combinations of parameters that gave similar simulation
results for anthesis date and the overall (for spring and winter types)
RMSE for heading date was on average two-folds higher for the spring
than for the autumn sowings. He et al. (2012) calibrated the model used
here for 16 winter wheat cultivars with field data form autumn sown
crops and concluded that VAI cannot be estimated using only
autumn-sown field trials, even with a large number of environments
with a wide range of winter temperature and latitude (daylength). These
studies clearly indicate that to estimate vernalization parameters,
vernalization and DL treatments are needed, either in the field or under
controlled conditions, as used in this study and in previous studies (e.g.
Yin et al., 2005; Zheng et al., 2013). Here we show that a minimum of
three treatments is required to estimate the three components of
phenology.

The treatments should allow for a complete satisfaction of cold
requirement of all the studied genotypes. In our study, in the long day
vernalized treatments Lf varied between 7.8 and 11.3 leaves among the
lines, while the minimum number of leaves of fully vernalized spring
wheat genotypes is close to 6 leaves (Levy and Peterson, 1972). Labsmin was
thus likely overestimated because at least some lines were not fully
vernalized in the SDV treatment. This may explain the negative corre-
lation we found between Labsmin and SLDL and the five common
non-significant QTL for these two parameters. This hypothesis is also
supported by the colocation of QTL32 for Labsmin at Vrn-A2. VRN2 is a floral
repressor expressed only under long days, where it delays flowering
until plants are vernalized by repressing VRN3 (Trevaskis et al., 2007).
During cold periods the induction of VRN1 represses VRN2, allowing the
day-length response (Yan et al., 2004). Therefore, the colocation of
QTL32 for Labsmin at Vrn-A2 can be explained by admitting that the
vernalization treatment in the SDV treatments resulted in some lines
being not fully vernalized.

Fig. 7. Simulated versus observed days to anthesis for the two parents grown in
the field in 18 (Cappelli) and eight (Ofanto) site/year/sowing date combina-
tions. Simulations were performed with the wheat model SiriusQuality using the
original (A) and QTL-based (B) parameters. Days to flag leaf ligule and anthesis
were calculated from the day after sowing. Dashed lines are 1:1 lines, solids
lines are linear regression. Measurements are the mean ± 1 s.d. for n = 3 in-
dependent replicates.
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4.2. High-throughput field phenotyping for estimating model parameters
in large genetic populations

We used twice-weekly measurements of Haun stage, final main stem
leaf number, and anthesis date of long-day vernalized plants to estimate
the three earliness per se parameters (Labsmin, P, and, PFLLAnth), while the
rate of vernalization (VAI) and the sensitivity to DL (SLDLL) were esti-
mated using observations of the date of flag leaf ligule appearance of
nonvernalized plants grown under long days (LDNV) and vernalized
plants grown under short days (SDV), respectively. SLDL and VAI were
estimated by minimizing the error for the date of flag leaf ligule
appearance rather than for Lf to reduce the compensation for error for
PFLLAnth. It also improved the simulation of the stage flag leaf ligule
just visible, which is synchronous with the stage male meiosis, a key
stage to model the impact of abiotic stress on grain number abortion
(Barber et al., 2015).

Depending on the objectives of the study, our phenotyping protocol
can be greatly simplified to phenotype larger size genetic populations.
The minimum information required to calibrate the model are the Haun
stage measured every about two to three leaves and anthesis or heading
date (Jamieson and Munro, 2000) for the three treatments used in this
study. These treatments can be applied in single-row nurseries in the
field where daylength can be extended by spring sowing (as in this
study) or by the use of artificial lights (Zheng et al., 2013). Compared
with the classical approach, which uses multi-year and multi-site field
trials, our approach requires much less environments, as the three
treatments can be done in a single growing season on a single location.
Coupled with high-throughput phenotyping methods our approach is
thus much faster and can be applied to large genetic populations.

With the rapid development of plant phenomics, all the measure-
ments required to calibrate the model for new genotypes can be
automatized at high throughput. Methods using high-resolution visible
imagery with deep-learning algorithms have been developed to estimate
the date of heading and anthesis (Sadeghi-Tehran et al., 2017; Velumani
et al., 2020) and leaf tip number, and thus P (Li et al., 2023). Methods
have also recently been developed for high throughput phenotyping of
the date of flag leaf ligule appearance (S. Liu personal communication).
These phenomics methods will greatly facilitate the calibration of the
model used in this study for large genetic panels for genetic analyses and
breeding, which currently is the bottleneck of our approach.

4.3. Model parameters are to a large extent genetically independent and
are associated with major phenology genes

We predicted the parameter values considering only the additive
effect of the QTL but Bogard et al. (2014) found non-significant or small
bi-locus marker x marker interactions for markers associated with model
parameters for vernalization requirement and photoperiod in the bread
wheat panel they studied. Our objective was not to identify robust QTL
but to predict the genetic value of parameters; therefore, we used all
available information and predicted the parameters using all (tentative)
QTL with a LOD score > 1.

The multi-linear models predicted the five genotypic parameters
with six to 11 QTL and explained 36–68 % of the genetic variation of the
estimated parameters. In comparison, Bogard et al. (2014) estimated
three model parameters and their multi-linear predictions based
markers explained 68–71 % of the variation of their parameter. Re-
combinations between markers may be the cause of the large part of the
genetic variation of the parameter not explained by the QTL in our
study. The remaining unexplained variations of the parameters may be
due to QTL with smaller effect that were not detected because of the
limited size of our population and insufficient coverage of the genetic
map.

Twenty-nine of the 30 QTL used to predict the parameters colo-
calized with known phenology QTL. Our study provides a quantification

of their effect that is independent of the environment that can be used to
predict the phenology of genotypes in different environments. They also
provide new insights onto the physiological processes controlled by the
associated regions. Twelve of the 13 major and moderate QTL we
identified were associated with only one parameter and several collo-
cated at major phenology (Vrn-A1, Vrn-A2, Vrn-B3, Pppd-B1, CO-2, and
FT-A5), reflecting that the parameters are genetically independent for
the most part and that the model discriminates well the effect of the
physiological processes controlling the phenological development of
wheat.

PFFLAnth had a relatively high standard deviation between lines
(0.28 phyllochron) but a low heritability (8.7 %) and we found no sig-
nificant QTL for this parameter. A previous study on the same popula-
tion also did not find any significant QTL for the duration in thermal
time between flag leaf ligule appearance and anthesis (Sanna et al.,
2014). It has been reported that this period is sensitive to DL (Fischer,
2011; Whitechurch et al., 2007). Here, PFFLAnth was significantly
correlated with P and SLDL (Fig. 1). These correlations were, at least in
part, due to the nature of these parameters and the way they were
estimated. P and SLDL directly depend on the rate of leaf appearance,
and PFLLAnth is expressed in phyllochronic time. The impact of a
different rate of leaf appearance induced by DL is mediated by the
number of plastochrons that the plant is able to produce and by the
variation in duration induced by photoperiod. Improving the prediction
of the duration of the phase between flag leaf appearance and anthesis
(that is PFFLAnth) is an important model improvement target as it has a
strong effect on grain number per ear (Fischer, 2011).

In contrast with major and moderate QTL, half of the tentative QTL
were associated with two to four parameters (Fig. 8). Four of these QTL,
and the tentative QTL28, were associated with Labsminand SLDL. At least
some of these QTL colocations are likely related to incomplete vernali-
zation of some lines in LDV treatment (e.g. the common QTL between
PFLLANTh and VAI). SLDL and Pwere significantly correlated (r= 0.40,
P = 0.001) and we found two tentative QTL (QTL10 and QTL27) asso-
ciated with these two parameters (Figs. 3 and 8). In winter barley, under
long days conditions genotypes carrying the photoperiod sensitive

Fig. 8. Schema of the QTL associated with two or more model parameters. Tick
lines are major and moderate QTL with LOD > 2.8 and thin lines are tentative
QTL with LOD between 1.0. and 2.8. Numbers correspond to the QTL numbers
in Table 2 and in Fig. 3. Parameters are defined in Table 1. Major phenology
genes that collocate at QTL are indicated under the QTL numbers.
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alleles of Ppd1-H1 (early flowering) have a reduced leaf length and an
higher leaf appearance rate (Digel et al., 2016). In wheat, the DL
insensitivity alleles of Ppd-1was also found to reduce phyllochron under
long day in the field but only after leaf 7 (Ochagavía et al., 2017),
confirming the effect of photoperiod on the rate of emergence of
late-formed leaves found by Miralles and Richards (2000). In agreement
with these results, QTL10 and QTL27 had opposite additive effects on
SLDL and P. These results suggest the opportunity to consider an effect of
DL sensitivity on P. Although expressed only for the last leaves, this
would modify the duration of the terminal spikelet to anthesis and flag
leaf appearance to anthesis periods. Although none of the mentioned
QTL collocated at Ppd-1, they may carry genes down- or up-stream of
Ppd-1.However, the common genetic determinism of P and SLDL need to
be further studied as we cannot rule out that it can be driven by carbon
limitations during the stem extension period (Baumont et al., 2019).

Even though several studies reported epistatic interactions between
major phenology genes, including for wheat, the advantage of including
epistatic interactions in QTL-based models is still questionable. Bogard
et al. (2014) did not find any significant improvement in the simulation
of heading date following the inclusion of epistatic interactions in their
QTL-based model. This may be rooted in the nature of process-based
models. Biological epistatic interactions can occur when a process (e.
g. anthesis date) is the product of two or more processes (e.g. vernali-
zation and photoperiod response) at a lower the level of organization
(Holland, 2001; Melchinger et al., 1994). Multiplicative interactions are
a special case of epistasis that, in some cases, can results from additive
gene effect (Holland, 2001). Although there is limited evidence in the
literature, epistatic interactions in process-based models are not neces-
sarily limited to multiplicative interactions (Hammer et al., 2019). By
explicitly modeling the (non)-linear relationships among traits,
ecophysiological models have the potential to account for biologic
epistatic effects (Technow et al., 2015). In this work, epistatic in-
teractions were not explicitly considered in the QTL detection, nor in the
genetic models of the parameters of the model, but the model has the
potential to consider epistatic interactions by considering complex re-
lationships between biological processes. Some of the colocations be-
tween model parameters schematized in Fig. 8 illustrate putative
epistatic interactions between model parameters.

5. Conclusion

The QTL-based model of phenology developed in this study gives the
possibility to quantify the effect of major phenology genes on agro-
nomically important traits that are to a large part determined by
phenology (e.g. cold hardness, tillering, leaf size, plant height, and grain
number per ear; Hyles et al. (2020) in diverse environments. Future
work should further evaluate the QTL-based model under more divers
environments and for different genetic populations. This would provide

a better understanding of the model’s performance and applicability in
different contexts.

In contrast with empirical models that simulate thermal times be-
tween phenological states, the model used in this study simulates key
developmental stages (floral initiation, terminal spikelets, flag leaf tip
and ligule appearance) that define phase switch changes in leaf area
(Martre and Dambreville, 2018), tillering (Abichou et al., 2018), and
spikelet production and floret abortion (González et al., 2011). Future
model development should consider the rate and duration of the phases
of spikelet primordium formation and floret development, which are
controlled by flowering time regulators (Gol et al., 2017), and determine
the number spikelet per ear and floret survival and abortion (González
et al., 2011). Kirby (1990) showed that the rate of spikelet primordium
formation is directly related to Lf. In this study, we identified four major
QTL for three parameters (P, SLDL, and Labsmin) that colocalized with
known QTL for spikelet number per ear (Table 2). Future studies with
the model used in this study should also try to use makers in the causal
polymorphism of known major phenology genes. This will provide
quantitative information on the effect of this genes on important phys-
iological traits (model parameters).
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Appendix A

Table A1
List of symbols and their description.

Symbol Description

DL Daylength
FO08 Experiment conducted in Foggia during the 2007–2008 growing season
FO09 Experiment conducted in Foggia during the 2008–2009 growing season
G x E Genotype x environnement interaction
Lf Final main-stem leaf number
LC Lack of correlation
LDNV Long days nonvernalized treatment
LDV Long days vernalized treatment

(continued on next page)
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Table A1 (continued )

Symbol Description

LOD Logarithm of odds
NU Non-unity slope
OT13 Experiment conducted in Ottava during the 2012–2013 growing season
P Phyllochron
QTL Quantitative trait loci
r2 Coefficient of determination
RIL Recombinant inbreed line
RMSE Root mean squared error
SB Squared bias
SD Sowing date in day of the year
SDW/S Sowing dates for which PSD is minimum
SDS/A Sowing dates for which PSD is maximum
SDV Short days vernalized treatment
Tt Thermal time since plant emergence
ρ Spearman’s rank correlation coefficient

Appendix B. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.eja.2024.127379.
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Streck, T., Supit, I., Tao, F., Van der Velde, M., Wallach, D., Wang, E., Webber, H.,
Wolf, J., Xiao, L., Zhang, Z., Zhao, Z., Zhu, Y., Ewert, F., 2019. Climate change
impact and adaptation for wheat protein. Glob. Chang. Biol. 25 (1), 155–173.
https://doi.org/10.1111/gcb.14481.

Barber, H.M., Carney, J., Alghabari, F., Gooding, M.J., 2015. Decimal growth stages for
precision wheat production in changing environments? Ann. Appl. Biol. 166 (3),
355–371. https://doi.org/10.1111/aab.12207.

Baumont, M., Parent, B., Manceau, L., Brown, H.E., Driever, S.M., Muller, B., Martre, P.,
2019. Experimental and modeling evidence of carbon limitation of leaf appearance
rate for spring and winter wheat. J. Exp. Bot. 70 (9), 2449–2462. https://doi.org/
10.1093/jxb/erz012.

Bertin, N., Martre, P., Genard, M., Quilot, B., Salon, C., 2010. Under what circumstances
can process-based simulation models link genotype to phenotype for complex traits?
Case-study of fruit and grain quality traits. J. Exp. Bot. 61 (4), 955–967. https://doi.
org/10.1093/jxb/erp377.

Bogard, M., Biddulph, B., Zheng, B., Hayden, M., Kuchel, H., Mullan, D., Allard, V., Le
Gouis, J., Chapman, S.C., 2020a. Linking genetic maps and simulation to optimize
breeding for wheat flowering time in current and future climates. Crop Sci. 60 (2),
678–699. https://doi.org/10.1002/csc2.20113.

Bogard, M., Hourcade, D., Piquemal, B., Gouache, D., Deswartes, J.-C., Throude, M.,
Cohan, J.-P., 2020b. Marker-based crop model-assisted ideotype design to improve
avoidance of abiotic stress in bread wheat. J. Exp. Bot. 72 (4), 1085–1103. https://
doi.org/10.1093/jxb/eraa477.

Bogard, M., Ravel, C., Paux, E., Bordes, J., Balfourier, F., Chapman, S.C., Le Gouis, J.,
Allard, V., 2014. Predictions of heading date in bread wheat (Triticum aestivum L.)
using QTL-based parameters of an ecophysiological model. J. Exp. Bot. 65 (20),
5849–5865. https://doi.org/10.1093/jxb/eru328.

Brent, R.P., 1973. Algorithms for minimization without derivatives. Prentice-Hall,
Englewood Cliffs, New Jersey.

Brooking, I.R., Jamieson, P.D., Porter, J.R., 1995. The influence of daylength on final leaf
number in spring wheat. Field Crops Res 41, 155–165.

Brooking, I.R., Jamieson, P.D., 2002. Temperature and photoperiod response of
vernalization in near-isogenic lines of wheat. Field Crops Res 79 (1), 21–38.

Brown, H.E., Jamieson, P.D., Brooking, I.R., Moot, D.J., Huth, N.I., 2013. Integration of
molecular and physiological models to explain time of anthesis in wheat. Ann. Bot.
112 (9), 1683–1703. https://doi.org/10.1093/aob/mct224.

Buerstmayr, M., Huber, K., Heckmann, J., Steiner, B., Nelson, J.C., Buerstmayr, H., 2012.
Mapping of QTL for Fusarium head blight resistance and morphological and

developmental traits in three backcross populations derived from Triticum dicoccum
× gib. Theor. Appl. Genet. 125 (8), 1751–1765. https://doi.org/10.1007/s00122-
012-1951-2.

Chenu, K., Chapman, S.C., Tardieu, F., McLean, G., Welcker, C., Hammer, G.L., 2009.
Simulating the yield impacts of organ-level quantitative trait loci associated with
drought response in maize: A "gene-to-phenotype" modeling approach. Genetics 183
(4), 1507–1523. https://doi.org/10.1534/genetics.109.105429.

Darvasi, A., Soller, M., 1997. A simple method to calculate resolving power and
confidence interval of QTL map location. Behav. Genet. 27 (2), 125–132. https://doi.
org/10.1023/a:1025685324830.

Digel, B., Tavakol, E., Verderio, G., Tondelli, A., Xu, X., Cattivelli, L., Rossini, L., von
Korff, M., 2016. Photoperiod1 (Ppd-H1) controls leaf size. Plant Physiol. 172,
405–415. https://doi.org/10.1104/pp.16.00977.

Donatelli, M., Rizzoli, A.E., 2008. A design for framework-independent model
components of biophysical systems. In: Sànchez-Marrè, M., Béjar, J., Comas, J.,
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