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Abstract Many proteins that undergo sequential enzymatic modification in the Golgi cisternae 
are displayed at the plasma membrane as cell identity markers. The modified proteins, called 
glycans, represent a molecular code. The fidelity of this glycan code is measured by how accurately 
the glycan synthesis machinery realizes the desired target glycan distribution for a particular cell 
type and niche. In this article, we construct a simplified chemical synthesis model to quantitatively 
analyse the trade-offs between the number of cisternae, and the number and specificity of enzymes, 
required to synthesize a prescribed target glycan distribution of a certain complexity to within a 
given fidelity. We find that to synthesize complex distributions, such as those observed in real cells, 
one needs to have multiple cisternae and precise enzyme partitioning in the Golgi. Additionally, 
for a fixed number of enzymes and cisternae, there is an optimal level of specificity (promiscuity) 
of enzymes that achieves the target distribution with high fidelity. The geometry of the fidelity 
landscape in the multidimensional space of the number and specificity of enzymes, inter-cisternal 
transfer rates, and number of cisternae provides a measure for robustness and identifies stiff and 
sloppy directions. Our results show how the complexity of the target glycan distribution and number 
of glycosylation enzymes places functional constraints on the Golgi cisternal number and enzyme 
specificity.

Editor's evaluation
This article contributes to an important and largely unexplored topic in cell biology: the under-
standing of glycosylation. The authors introduce a mathematical model of glycosylation in the Golgi 
apparatus and use the model to investigate how the complexity (diversity) and fidelity of the plasma 
membrane glycan distribution depend on parameters such as the number of Golgi cisternae or 
enzyme specificity. The article is well written and makes the effort to present a rather complex topic 
in an accessible way by leaving some of the details in the appendices.

Introduction
A majority of the proteins synthesized in the endoplasmic reticulum (ER) are transferred to the Golgi 
cisternae for further chemical modification by glycosylation (Alberts, 2002), a process that sequen-
tially and covalently attaches sugar moieties to proteins, catalyzed by a set of enzymatic reactions 
within the ER and the Golgi cisternae. These enzymes, called glycosyltransferases, are localized in 
the ER and cis-medial and trans-Golgi cisternae in a specific manner (Varki, 2009; Cummings and 
Pierce, 2014). Glycans, the final products of this glycosylation assembly line, are delivered to the 
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plasma membrane (PM) conjugated with proteins, whereupon they engage in multiple cellular func-
tions, including immune recognition, cell identity markers, cell-cell adhesion, and cell signalling (Varki, 
2009; Cummings and Pierce, 2014; Varki, 2017; Drickamer and Taylor, 1998; Gagneux and Varki, 
1999). This glycan code (Gabius, 2018; Dwek, 1996), representing information (Winterburn and 
Phelps, 1972) about the cell, is generated dynamically, following the biochemistry of sequential 
enzymatic reactions and the biophysics of secretory transport (Varki, 2017; Varki, 1998; Pothukuchi 
et al., 2019).

In this article, we will focus on the role of glycans as markers of cell identity. For the glycans to play 
this role, they must inevitably represent a molecular code (Gabius, 2018; Varki, 2017; Pothukuchi 
et al., 2019). While the functional consequences of glycan alterations have been well studied, the 
glycan code has remained an enigma (Gabius, 2018; Pothukuchi et al., 2019; Bard and Chia, 2016; 
D’Angelo et al., 2013). We study the fidelity of molecular code generation, that is, the precision and 
reliability with which the glycan distribution is created. While it has been recognized that fidelity of 
the glycan code is necessary for reliable cellular recognition (Demetriou et al., 2001), a quantitative 
measure of fidelity of the mechanism and the constraints that fidelity requirements put on cellular 
structure and organization are lacking.

There are two aspects of the cell-type-specific glycan code and the code generation mechanism 
that have an important bearing on quantifying fidelity. The first is that extant glycan distributions have 
high complexity (section ‘Complexity of glycan code’), owing to evolutionary pressures arising from 
(a) reliable cell-type identification amongst a large set of different cell types in a complex organism, 
the preservation and diversification of ‘self-recognition’ (Drickamer and Taylor, 1998), (b) pathogen-
mediated selection pressures (Varki, 2009; Varki, 2017; Gagneux and Varki, 1999), and (c) herd 
immunity within a heterogenous population of cells of a community (Wills and Green, 1995) or within 
a single organism (Drickamer and Taylor, 1998). We interpret this to mean that the target distribu-
tion of glycans for a given cell type is complex; in section ‘Complexity of glycan code’, we define a 
quantitative measure for complexity and demonstrate its implications. The second is that the cellular 
machinery for the synthesis of glycans, which involves sequential chemical processing via cisternal 
resident enzymes and cisternal transport, is subject to variation and noise (Varki, 2017; Varki, 1998; 
Pothukuchi et  al., 2019); the synthesized glycan distribution is, therefore, a function of cellular 
parameters such as the number and specificity of enzymes, inter-cisternal transfer rates, and number 
of cisternae. We will discuss an explicit model of the cellular synthesis machinery in section ‘Synthesis 
of glycans in the Golgi cisternae’.

Here, we define fidelity as the minimum achievable Kullback-Leibler (KL) divergence (Cover and 
Thomas, 2012; MacKay, 2003) between the synthesized distribution of glycans and the target glycan 
distribution as a function of given cellular parameters, such as the number and specificity of enzymes, 
inter-cisternal transfer rates, and number of cisternae (section ‘Optimization problem’). Using a simpli-
fied chemical synthesis model, we analyse the trade-offs between the number of cisternae and the 
number and specificity of enzymes in order to achieve a prescribed target glycan distribution with 
high fidelity (section ‘Results of optimization’). Our analysis leads to a number of interesting results, a 
few of which we list here:

i.	 First, since an important function of the glycan spectrum is cell type/niche identification, 
it seems natural to relate glycan complexity to organismal complexity taken to be associ-
ated with the number of cell types in the organism (Carroll, 2001; Bonner, 1998). Here, 
we provide a measure of the complexity of the glycan distribution of a given cell type 
using mass spectrometry coupled with determination of molecular structure (MSMS) data. 
Using this we have analysed the MSMS data from hydra, planaria, and mammalian cells. 
We find that the complexity of the glycan distribution indeed correlates with the organism 
complexity.

ii.	 Constructing a high-fidelity representation of a complex target distribution, such as those 
observed in real cells, requires a complex Golgi machinery with multiple cisternae, precise 
enzyme partitioning, and control on enzyme specificity. This definition of fidelity of the glycan 
code allows us to provide a quantitative argument for the evolutionary requirement of multiple 
compartments. While it is possible to produce complex glycan distributions in one compart-
ment using a large number of enzymes, such a design would inevitably require a more elabo-
rate genetic cost.

iii.	 Within our synthesis model, an increase in the number of Golgi cisternae drives an increase in 
the glycan complexity, keeping everything else fixed.

https://doi.org/10.7554/eLife.76757
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iv.	 We explore the geometry of the fidelity landscape in the multidimensional space of the 
number and specificity of enzymes, inter-cisternal transfer rates, and number of cisternae. This 
allows us to discuss issues such as robustness to noise, and stiff and sloppy directions in this 
multidimensional space.

v.	 For fixed number of enzymes and cisternae, there is an optimal level of specificity of enzymes 
that achieves the complex target distribution with high fidelity. Keeping the number of enzymes 
fixed, having low specificity or sloppy enzymes and larger cisternal number could give rise to a 
diverse repertoire of functional glycans, a strategy used in organisms such as plants and algae. 
Promiscuous enzymes bring in the potential for evolvability (Kirschner and Gerhart, 2008); 
promiscuity allows the system to be stable to random mutations in proteins or variations in the 
target distribution.

Thus, our results imply that the pressure to produce the target glycan code for a given cell type 
with high fidelity places strong constraints on the cisternal number and enzyme specificity (Sengupta 
and Linstedt, 2011). Taken together, our quantitative analysis of the trade-offs has deep implications 
for the non-equilibrium self-assembly of Golgi cisternae and suggests that the control of cisternal 
number must involve a coupling of non-equilibrium self-assembly of cisternae with enzymatic chemical 
reaction kinetics (Glick and Malhotra, 1998). This combined dynamics of chemical processing with 
non-equilibrium membrane dynamics involving fission, fusion, and transport (Sachdeva et al., 2016; 
Sens and Rao, 2013) opens up a new direction for future research.

Complexity of glycan code
Since each cell type (in a niche) is identified with a distinct glycan profile (Gabius, 2018; Varki, 2017; 
Pothukuchi et al., 2019), and this glycan profile is noisy because of the stochastic noise associated 
with the synthesis and transport (Pothukuchi et al., 2019; Bard and Chia, 2016; D’Angelo et al., 
2013), a large number of different cell types can be differentiated only if the cells are able to produce 
a large set of glycan profiles that are distinguishable in the presence of this noise. Our task is to 
identify a quantitative measure for the complexity of a glycan profile such that a set of more complex 
glycan profiles is able to support a larger number of well-separated profiles, and therefore, a larger 
number of cell types, or equivalently, a more complex organism (a rigorous definition of complexity 
can be given in terms of the KL metric [Cover and Thomas, 2012; MacKay, 2003] between two 

(a)

(b)

Figure 1. Living cells display a complex glycan distribution. (a) 3-Gaussian mixture model (GMM) and 20-GMM 
approximation for the relative abundance of glycans taken from mass spectrometry coupled with determination 
of molecular structure (MSMS) data of planaria Schmidtea mediterranea, Hydra magnipapillata, and human 
neutrophils. (b) The change in the Kullback–Leibler (KL) divergence ‍D(pT∥p(m)

GMM)‍ as a function of the number of 
GMM components ‍m‍. The KL divergence for planaria saturates at ‍m = 5‍, for hydra at ‍m = 11‍, and for human cells 
at ‍m = 20‍. Thus, the number of components required to approximate the glycan profile correlates well with the 
complexity of the organism. Details are given in Appendix 1.

https://doi.org/10.7554/eLife.76757
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glycan profiles. We declare that two profiles are distinguishable only if the KL distance between the 
profiles is more than a given tolerance. This tolerance is an increasing function of the noise. We 
define the complexity of a set of possible glycan profiles as the size of the largest subset such that 
the KL distance of any pair of profiles is larger than the tolerance). Furthermore, we would like to be 
able to estimate the complexity of a glycan profile from molecular structure (MSMS) measurements 
(Cummings and Crocker, 2020; Subramanian et al., 2018; Sahadevan et al., 2014).

In order to identify such a quantitative measure of complexity, we first need a consistent way 
of smoothening or coarse-graining the raw glycan profiles obtained from MSMS measurements to 
remove measurement and synthesis noise. Here, we denoise the glycan profile by approximating 
it by a Gaussian mixture model (GMM) with a specified number of components that are supported 
on a finite set of indices (Bacharoglou, 2010). Since the size of the set of all possible ‍m‍-component 
Gaussian densities is an increasing function of ‍m‍, we define the complexity of a mixture of Gaussians as 
the number of components ‍m‍. Figure 1 demonstrates that the value of ‍m‍ at which the ‍m‍-component 
GMM approximation of the target profile saturates is a good measure of complexity. Using this defi-
nition we see that the complexity of the glycan profiles of various organisms correlates well with the 
number of cell types in an organism (details of the procedure are given in Appendix 1). We will now 
describe a general model of the cellular machinery that is capable of synthesizing glycans of any 
complexity. We expect that cells need a more elaborate mechanism to produce profiles from a more 
complex set.

Synthesis of glycans in the Golgi cisternae
The glycan display at the cell surface is a result of proteins that flux through and undergo sequen-
tial chemical modification in the secretory pathway, comprising an array of Golgi cisternae situated 
between the ER and PM, as depicted in Figure 2. Glycan-binding proteins (GBPs) are delivered from 
the ER to the first cisterna, whereupon they are processed by the resident enzymes in a sequence of 
steps that constitute the N-glycosylation process (Varki, 2009). A generic enzymatic reaction in the 
cisterna involves the catalysis of a group transfer reaction in which the monosaccharide moiety of a 
simple sugar donor substrate, for example, UDP-Gal, is transferred to the acceptor substrate, by a 
Michaelis–Menten (MM)-type reaction (Varki, 2009)

	﻿‍

Acceptor + glycosyl donor + Enzyme
ωf−−⇀↽−−
ωb

[
Acceptor · glycosyl donor · Enzyme

] ωc−→ glycosylated acceptor + nucleotide + Enzyme
‍�

(1)

Figure 2. Enzymatic reaction and transport network in the secretory pathway. Represented here is the array of 
Golgi cisternae (blue) indexed by ‍j = 1, . . . , NC‍ situated between the endoplasmic reticulum (ER) and plasma 
membrane (PM). Glycan-binding proteins ‍Pc(1)

1 ‍ are injected from the ER to cisterna-1 at rate ‍q‍. Superimposed 
on the Golgi cisternae is the transition network of chemical reactions (column) – inter-cisternal transfer (rows), 

the latter with rates ‍µ(j)‍. ‍Pc(1)
1 ‍ denotes the acceptor substrate in compartment ‍j‍ and the glycosyl donor ‍c0‍ is 

chemostated in each cisterna. This results in a distribution (relative abundance) of glycans displayed at the PM (red 
curve), which is representative of the cell type.

https://doi.org/10.7554/eLife.76757
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From the first cisterna, the proteins with attached sugars are delivered to the second cisterna at a 
given inter-cisternal transfer rate, where further chemical processing catalyzed by the enzymes resi-
dent in the second cisterna occurs. This chemical processing and inter-cisternal transfer continue until 
the last cisterna, thereupon the fully processed glycans are displayed at the PM (Varki, 2009). The 
network of chemical processing and inter-cisternal transfer forms the basis of the physical model that 
we will describe next.

Any physical model of such a network of enzymatic reactions and cisternal transfer needs to be 
augmented by reaction and transfer rates and chemical abundances. To obtain the range of allowed 
values for the reaction rates and chemical abundances, we use the elaborate enzymatic reaction 
models, such as the KB2005 model (Umaña and Bailey, 1997; Krambeck et al., 2009; Krambeck 
and Betenbaugh, 2005) (with a network of 22,871 chemical reactions and 7565 oligosaccharide struc-
tures) that predict the N-glycan distribution based on the activities and levels of processing enzymes 
distributed in the Golgi cisternae of mammalian cells. For the allowed rates of cisternal transfer, we 
rely on the recent study by Ungar and coworkers (Fisher et  al., 2019; Fisher and Ungar, 2016), 
whose study shows how the overall Golgi transit time and cisternal number can be tuned to engineer 
a homogeneous glycan distribution.

Model
Chemical reaction and transport network in cisternae
We consider an array of ‍NC‍ Golgi cisternae, labelled by ‍j = 1, . . . , NC‍, between the ER and PM 
(Figure 2). GBPs, denoted as ‍Pc(1)

1 ‍, are delivered from the ER to cisterna-1 at an injection rate ‍q‍. It is 
well established that the concentration of the glycosyl donor in the jth cisterna is chemostated (Varki, 
2009; Hirschberg et al., 1998; Caffaro and Hirschberg, 2006; Berninsone and Hirschberg, 2000), 
thus in our model we hold its concentration ‍c

(j)
0 ‍ constant in time for the jth cisterna. The acceptor ‍Pc(1)

1 ‍ 
reacts with ‍c

(1)
0 ‍ to form the glycosylated acceptor ‍Pc(1)

2 ‍, following an MM reaction (1) catalyzed by the 
appropriate enzyme. The acceptor ‍Pc(1)

2 ‍ has the potential of being transformed into ‍Pc(1)
3 ‍, and so 

on, provided the requisite enzymes are present in that cisterna. This leads to the sequence of enzy-
matic reactions ‍Pc(1)

1 → Pc(1)
2 → . . .Pc(1)

k → . . .‍, where ‍k‍ enumerates the sequence of glycosylated 
acceptors using a consistent scheme (such as in Umaña and Bailey, 1997). The glycosylated GBPs 
are transported from cisterna-1 to cisterna-2 at an inter-cisternal transfer rate ‍µ

(1)
‍, whereupon similar 

enzymatic reactions proceed. The processes of intra-cisternal chemical reactions and inter-cisternal 
transfer continue to the other cisternae and form a network as depicted in Figure 2. Although, in 
this article, we focus on a sequence of reactions that form a line graph, the methodology we propose 
extends to tree-like reaction sequences, and more generally to reaction sequences that form a 
directed acyclic graph.

Let ‍Ns − 1‍ denote the maximum number of possible glycosylation reactions in each cisterna ‍j‍, cata-
lyzed by enzymes labelled as ‍E

(j)
α ‍, with ‍α = 1, . . . , NE‍, where ‍NE‍ is the total number of enzyme species 

in each cisterna. Since many substrates can compete for the substrate-binding site on each enzyme, 
one expects in general that ‍Ns ≫ NE‍. The configuration space of the network in Figure 2 is ‍Ns × NC‍ . 
For the N-glycosylation pathway in a typical mammalian cell, ‍Ns = 2 × 104‍, ‍NE‍ = 10–20, and ‍NC‍ = 4–8 
(Umaña and Bailey, 1997; Krambeck and Betenbaugh, 2005; Krambeck et al., 2009; Fisher and 
Ungar, 2016). We account for the fact that the enzymes have specific cisternal localization by setting 
their concentrations to zero in those cisternae where they are not present.

The action of enzyme ‍E
(j)
α ‍ on the substrate ‍Pc(j)

k ‍ in cisterna ‍j‍ is given by

	﻿‍
Pc(j)

k + E(j)
α

ωf(j,k,α)c(j)
0−−−−−−⇀↽−−−−−−

ωb(j,k,α)

[
E(j)
α − Pc(j)

k − c(j)
0

]
ωc(j,k,α)−−−−−→ Pc(j)

k+1 + E(j)
α

‍�
(2)

where ‍k = 1, . . . Ns − 1‍. In general, the forward, backward, and catalytic rates ‍ωf ‍, ‍ωb‍, and ‍ωc‍, respec-
tively, depend on the cisternal label ‍j‍, the reaction label ‍k‍, and the enzyme label ‍α‍, which parametrize 
the MM reactions (Price and Stevens, 1999). For instance, structural studies on glycosyltransferase-
mediated synthesis of glycans (Moremen and Haltiwanger, 2019) would suggest that the forward 
rate ‍ωf ‍ depends on the binding energy of the enzyme ‍E

(j)
α ‍ to acceptor substrate ‍Pc(j)

k ‍ and a physical 
variable that characterizes the cisternae.

https://doi.org/10.7554/eLife.76757
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A potential candidate for such a cisternal variable is pH (Kellokumpu, 2019), whose value is main-
tained homeostatically in each cisterna (Casey et al., 2010); changes in pH can affect the shape of an 
enzyme (substrate) or its charge properties, and in general the reaction efficiency of an enzyme has a pH 
optimum (Price and Stevens, 1999). Another possible candidate for a cisternal variable is membrane 
bilayer thickness (Dmitrieff et al., 2013); indeed, both pH (Llopis et al., 1998) and membrane thick-
ness are known to have a gradient across the Golgi cisternae. We take ‍ωf(j, k,α) ∝ P(j)(k,α)‍, where 

‍P(j)(k,α) ∈ (0, 1)‍ is the binding probability of enzyme ‍E
(j)
α ‍ with substrate ‍Pc(j)

k ‍, and define the binding 
probability ‍P(j)(k,α)‍ using a biophysical model, similar in spirit to the Monod-Wyman-Changeux model 
of enzyme kinetics (Monod et al., 1965; Changeux and Edelstein, 2005) that depends on enzyme-
substrate-induced fit.

Let ‍ℓ
(j)
α ‍ and ‍ℓk‍ denote, respectively, the optimal ‘shape’ for enzyme ‍E

(j)
α ‍ and the substrate ‍Pc(j)

k ‍. We 

assume that the mismatch (or distortion) energy between the substrate ‍k‍ and enzyme ‍E
(j)
α ‍ is ‍∥ℓk − ℓ

(j)
α ∥‍, 

with a binding probability given by

	﻿‍
P(j)(k,α) = exp

(
−σ

(j)
α ∥ℓk − ℓ

(j)
α ∥

)
‍� (3)

where ‍∥ · ∥‍ is a distance metric defined on the space of ‍ℓ
(j)
α ‍ (e.g. the square of the ‍ℓ2‍-norm would be 

related to an elastic distortion model [Savir and Tlusty, 2007]) and the vector ‍σ ≡ [σ(j)
α ]‍ parametrizes 

enzyme specificity. This distortion model captures the above idea that the reaction between the flex-
ible enzyme and fixed substrate is facilitated by an induced fit. A large value of ‍σ

(j)
α ‍ indicates a highly 

specific enzyme, a small value of ‍σ
(j)
α ‍ indicates a promiscuous enzyme. It is recognized that the degree 

of enzyme specificity or sloppiness is an important determinant of glycan distribution (Varki, 2009; 
Roseman, 2001; Hossler et al., 2007; Yang et al., 2018).

Our synthesis model is mean field, in that we ignore stochasticity in glycan synthesis that may 
arise from low copy numbers of substrates and enzymes, multiple substrates competing for the 
same enzymes, and kinetics of inter-cisternal transfer (Umaña and Bailey, 1997; Krambeck et al., 
2009; Krambeck and Betenbaugh, 2005). Then the usual MM steady-state conditions for (2), which 
assumes that the concentration of the intermediate enzyme-substrate complex does not change with 
time, imply that

	﻿‍

[
E(j)
α − Pc(j)

k − c(j)
0

]
=

ωf(j, k,α) c(j)
0

ωb(j, k,α) + ωc(j, k,α)
E(j)
α c(j)

k .
‍�

where ‍c
(j)
k ‍ is the concentration of the acceptor substrate ‍Pc(j)

k ‍ in compartment ‍j‍.
Together with the constancy of the total enzyme concentration, 

‍

[
E(j)
α

]
tot

= E(j)
α +

∑Ns
k=1‍

 

‍

[
E(j)
α − Pc(j)

k − c(j)
0

]
‍
, this immediately fixes the kinetics of product formation (not including inter-cisternal 

transport),

	﻿‍

dc(j)
k+1
dt

=
NE∑
α=1

V(j, k,α)P(j)(k,α)c(j)
k

M(j, k,α)
(

1 +
∑Ns

k′=1
P(j)(k′,α)c(j)

k′
M(j,k′,α)

) k = 1, . . . , NS; j = 1, . . . , NC

‍�

(4)

 
where

	﻿‍
M(j, k,α) = ωb(j, k,α) + ωc(j, k,α)

ωf(j, k,α)c(j)
0

P(j)(k,α)
‍�

 
and

	﻿‍
V(j, k,α) = ωc(j, k,α)

[
E(j)
α

]
tot

.
‍�

This reparametrization of the reaction rates ‍ωf,ωb,ωc‍ in terms of ‍M, V‍ is convenient since it 
relates to experimentally measurable parameters ‍Vmax‍ and MM constant ‍KM‍, for each ‍(j, k,α)‍, which 
can be easily read out (see Appendix 2). As is the usual case, the maximum velocity ‍Vmax‍ is not an 

https://doi.org/10.7554/eLife.76757
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intrinsic property of the enzyme because it is dependent on the enzyme concentration 
‍

[
E(j)
α

]
tot‍

; while 

‍KM(j, k,α) = M(j, k,α)c(j)
0 /P(j)(k,α)‍ is an intrinsic parameter of the enzyme and the enzyme-substrate 

interaction. The enzyme catalytic efficiency, the so-called “‍kcat/KM‍” ‍∝ P(j)(k,α)‍, is high for perfect 
enzymes (Bar-Even et al., 2015) with minimum mismatch.

We now add to this chemical reaction kinetics the rates of injection (‍q‍) and inter-cisternal transport 

‍µ
(j)

‍ from the cisterna ‍j‍ to ‍j + 1‍; in Appendix 3, we display the complete set of equations that describe 
the changes in the substrate concentrations ‍c

(j)
k ‍ with time. These kinetic equations automatically obey 

the conservation law for the protein concentration (‍p‍). At steady state, these kinetic equations lead 
to a set of nonlinear recursion equations (15)-(16) that are displayed in Appendix 3, which can be 
solved numerically to obtain the steady-state glycan concentrations, ‍c ≡ c(j)

k ‍, as a function of the inde-
pendent vectors ‍M ≡ [M(j, k,α)]‍, ‍V ≡ [V(j, k,α)]‍, and ‍L ≡ [P(j)(k,α)]‍, the transport rates ‍µ ≡ [µ(j)]‍ and 
specificity, ‍σ ≡ [σ(j)

α ]‍.

Optimization problem
Let ‍c∗‍ denote the ‘target’ concentration distribution, normalized to the distribution so that ‍

∑Ns
k=1 c∗k = 1‍, 

for a particular cell type, that is, the goal of the sequential synthesis mechanism described in the 
section ‘Chemical reaction and transport network in cisternae’ is to approximate ‍c∗‍. Let ‍̄c‍ denote the 
normalized steady-state glycan concentration distribution displayed on the PM. Then Equation 16 
implies that ‍̄ck = µ(NC)c(NC)

k ‍, ‍k = 1, . . . , Ns‍. We measure the fidelity ‍F(c∗∥c̄)‍ between the ‍c∗‍ and ‍̄c‍ by the 
ratio of the KL divergence ‍D(c∗∥c)‍ (Cover and Thomas, 2012; MacKay, 2003) to the entropy ‍H(c∗)‍

	﻿‍
F(c∗∥c̄) := D(c∗∥c̄)

H(c∗)
=

∑Ns
k=1 c∗k ln

(
c∗k
c̄k

)
=
∑Ns

k=1 c∗k ln
(

c∗k
c(NC )

k µ(NC )

)

∑Ns
k=1 c∗k ln(1/c∗k ) ‍�

(5)

The reason why we divide the KL divergence by the entropy of the target distribution is to enable 
comparison of the fidelity of the mechanism across target distributions of different complexity. Note 
that high fidelity corresponds to low values of ‍F(c∗∥c̄)‍, vice versa.

Thus, the problem of designing a sequential synthesis mechanism that approximates ‍c∗‍ for a given 
enzyme specificity ‍σ‍, transport rate ‍µ‍, number of enzymes ‍NE‍, and number of cisternae ‍NC‍ is given by

	﻿‍
Optimization A : D̄(σ, NE, NC, c∗) := min

µ, M, V, L ≥0
F(c∗∥c̄),

‍� (6)

where we emphasize that the optimum fidelity ‍̄D(σ, NE, NC, c∗)‍ is a function of ‍(σ, NE, NC, c∗)‍. Note that 
there is a separation of time scales implicit in Optimization A – the chemical kinetics of the production 
of glycans and their display on the PM happens over cellular time scales, while the issues of trade-offs 
and changes of parameters are related to evolutionary timescales.

Optimization A, though well-defined, is a hard problem since the steady-state concentrations (16) 
are not explicitly known in terms of the parameters ‍(µ, M, V, L)‍. In Appendix 4, we formulate an 
alternative problem Optimization B in which the steady-state concentrations are defined explicitly in 
terms of new parameters ‍µ, R‍, and ‍L‍, and prove that Optimization A and Optimization B are exactly 
equivalent. This is a crucial insight that allows us to obtain all the results that follow. In Appendix 5, 
we describe the variant of the sequential quadratic programming (SQP) (Boyd and Vandenberghe, 
2004), which we use to numerically solve the optimization problem.

Results
The dimension of the optimization search space is extremely large ‍≈ O(Ns × NE × NC)‍. To make the 
optimization search more manageable, we make the following simplifying assumptions:

i.	 We ignore the ‍k‍-dependence of the vectors ‍(M, V)‍, or alternatively of ‍R‍ – see Appendix 4 for 
details.

ii.	 The enzyme-substrate-binding probability ‍P(j)(k,α)‍ is still dependent on the substrate ‍k‍. We 
assume that the shape function is a scalar (a length), that is, ‍l

(j)
α = ℓ

(j)
α ‍. It further simplifies the 

algebra to assume that the lengths of the substrates are integer multiples of a basic unit (which 
we take to be 1), that is, ‍ℓk = k‍. The norm that appears in (3) is taken to be the absolute value 

https://doi.org/10.7554/eLife.76757
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difference 
‍

∣∣∣lk − l(j)α
∣∣∣
‍
. Other metrics, such as 

‍

∣∣∣lk − l(j)α
∣∣∣
2

‍
, corresponding to the elastic distortion 

model (Savir and Tlusty, 2007), do not pose any computational difficulties, and we see that 
the results of our optimization remain qualitatively unchanged.

iii.	 We drop the dependence of the specificity on ‍α‍ and ‍j‍, and take it to be a scalar ‍σ‍.

These restrictions significantly reduce the dimension of the optimization search, so much so that in 
certain limits we can solve the problem analytically (in Appendix 6, we show that Equation 21 can be 
solved analytically in the limit ‍Ns ≫ 1‍ since the glycan index ‍k‍ can be approximated by a continuous 
variable, and the recursion relations for the steady-state glycan concentrations Equations 15–16 can 
be cast as a matrix differential equation. This allows us to obtain an explicit expression for the steady-
state concentration in terms of the parameters ‍(R, L)‍). This helps us obtain some useful heuristics 
(Appendix 6) on how to tune the parameters, for example, ‍NE‍, ‍NC‍, ‍σ‍, and others, in order to generate 
glycan distributions ‍c‍ of a given complexity. These heuristics inform our more detailed optimization 
using ‘realistic’ target distributions.

The calculations in Appendix 6 imply, as one might expect, that the synthesis model needs to be 
more elaborate, that is, needs a larger number of cisternae ‍NC‍ or a larger number of enzymes ‍NE‍, 
in order to produce a more complex glycan distribution. For a real cell type in a niche, the specific 
elaboration of the synthesis machinery would depend on a variety of control costs associated with 
increasing ‍NE‍ and ‍NC‍. While an increase in the number of enzymes would involve genetic and tran-
scriptional costs, the costs involved in increasing the number of cisternae could be rather subtle.

Notwithstanding the relative control costs of increasing ‍NE‍ and ‍NC‍, it is clear from the special case 
that increasing the number of cisternae achieves the goal of obtaining an accurate representation 
of the target distribution. Suppose the target distribution ‍c

∗
k = δ(k − M)‍ for a fixed ‍M ≫ 1‍, that is, 

‍c
∗
k = 1‍ when ‍k = M ‍, and 0 otherwise, and that the ‍NE‍ enzymes that catalyze the reactions are highly 

specific. In this limit, Optimization A reduces to a simple enumeration exercise (Jaiman and Thattai, 
2018): clearly, one needs ‍NE = M ‍ enzymes, one for each ‍k = 1, . . . , M ‍ reactions, in order to generate 

‍PcM‍. For a single Golgi cisterna with a finite cisternal residence time (finite ‍µ‍), the chemical synthesis 
network will generate a significant steady-state concentration of lower index glycans ‍Pck‍ with ‍k < M ‍, 
contributing to a low fidelity. To obtain high fidelity, one needs multiple Golgi cisternae with a specific 
enzyme partitioning ‍(E1, E2, . . . , EM)‍ with ‍Ej‍ enzymes in cisterna ‍j = 1, . . . , Nc‍. This argument can be 
generalized to the case where the target distribution is a finite sum of delta functions. The more 
general case, where the enzymes are allowed to have variable specificity, needs a more detailed study, 
to which we turn to next.

Target distribution from coarse-grained MSMS
As discussed in the section ‘Complexity of glycan code’, we obtain the target glycan distribution 
from glycan profiles for real cells using MSMS measurements (Cummings and Crocker, 2020). The 
raw MSMS data, however, is not suitable as a target distribution. This is because it is very noisy, with 
chemical noise in the sample and Poisson noise associated with detecting discrete events being the 
most relevant (Du et al., 2008). This means that many of the small peaks in the raw data are not part 
of the signal, and one has to ‘smoothen’ the distribution to remove the impact of noise.

We use MSMS data from human T-cells (Cummings and Crocker, 2020) for our analysis. As 
discussed in the section ‘Complexity of glycan code’, the GMMs are often used to approximate distri-
butions with a mixed number of modes or peaks (MacKay, 2003), or in our setting, a given fixed 
complexity. Here, we use a variation of the GMMs (see Appendix 1 for details) to create a hier-
archy of increasingly complex distributions to approximate the MSMS raw data. Thus, the 3-GMM 
and 20-GMM approximations represent the low- and high-complexity benchmarks, respectively. In 
Appendix 1, we show that the likelihood for the glycan distribution of the human T-cell saturates at 20 
peaks. Thus, statistically the human T-cell glycan distribution is accurately approximated by 20 peaks.

This hierarchy allows us to study the trade-off between the complexity of the target distribution 
and the complexity of the synthesis model needed to generate the distribution as follows. Let ‍T(i)‍ 
denote the ‍‍-component GMM approximation for the human T-cell MSMS data. We sample this target 
distribution at indices ‍k = 1, . . . , Ns‍, that represent the glycan indices, and then renormalize to obtain 
the discrete distribution ‍{T(i)

k , k = 1, . . . , Ns}‍. To highlight the role of target distribution complexity, 

https://doi.org/10.7554/eLife.76757
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we focus on the 3-GMM ‍T(3)‍ (low complexity) and 20-GMM approximation ‍T(20)‍ (high complexity) in 
describing our results.

Trade-offs between number of enzymes, number of cisternae, and 
enzyme specificity to achieve given complexity
We summarize the main results that follow from an optimization of the parameters of the glycan 
synthesis machinery to a given target distribution in Figure 3 and Figure 4.

a.	 The optimal fidelity ‍̄D(σ, NE, NC, c∗)‍ is a convex function of ‍σ‍ for fixed values for other param-
eters (see Figure 3), that is, it first decreases with ‍σ‍ and then increases beyond a critical value 
of ‍σmin‍.
The lower complexity distributions can be synthesized with high fidelity with small ‍(NE, NC)‍, 
whereas higher complexity distributions require significantly larger ‍(NE, NC)‍ (see Figure 4a 
and b). For a typical mammalian cell, the number of enzymes in the N-glycosylation pathway 
is in the range ‍NE = 10 − 20‍ (Umaña and Bailey, 1997; Krambeck and Betenbaugh, 2005; 
Krambeck et al., 2009; Fisher and Ungar, 2016), Figure 4b would then suggest that the 
optimal cisternal number would range from ‍NC = 3 − 8‍ (Sengupta and Linstedt, 2011).
The fidelity ‍̄D(σ, NE, NC, c∗)‍ is decreasing in ‍NC‍ and ‍NE‍ for fixed values of the other 
parameters, and increasing in the complexity of ‍c∗‍ for fixed ‍(σ, NC)‍. The marginal contribution 

(a) Less complex target, 3-GMM approximation (b)More complex target, 20-GMM approximation

(c) Less complex target, 3-GMM approximation (d)More complex target, 20-GMM approximation

Figure 3. Trade-offs amongst the glycan synthesis parameters, enzyme specificity ‍σ‍, cisternal number ‍NC‍, and 
enzyme number ‍NE‍ to achieve a complex target distribution ‍c∗‍. (a, b) Normalised Kullback–Leibler distance 

‍̄D(σ, NE, NC, c∗)‍ as a function of ‍σ‍ and ‍NC‍ (for fixed ‍NE = 3‍), (c, d) ‍̄D(σ, NE, NC, c∗)‍ as a function of ‍σ‍ and ‍NE‍ 
(for fixed ‍NC = 3‍), with the target distribution ‍c∗‍ set to the 3-Gaussian mixture model (GMM) (less complex) and 
20-GMM (more complex) approximations for the human T-cell mass spectrometry coupled with determination 
of molecular structure (MSMS) data. ‍̄D(σ, NE, NC, c∗)‍ is a convex function of ‍σ‍ for each ‍(NE, NC, c∗)‍, 
decreasing in ‍NC, NE‍ for each ‍(σ, c∗)‍, increasing in the complexity of ‍c∗‍ for fixed ‍(σ, NE, NC)‍. The specificity 

‍σmin(c∗, NE, NC) = argminσ{D̄(σ, NE, NC, c∗)}‍ that minimizes the error for given ‍(NE, NC, c∗)‍ is an increasing 
function of ‍NC, NE‍ and the complexity of the target distribution ‍c∗‍.

https://doi.org/10.7554/eLife.76757
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of ‍NC‍ and ‍NE‍ in improving fidelity ‍̄D‍ is approximately equal (see Figure 4a and b). We discuss 
the origin of this symmetry later in this section.

b.	 The optimal enzyme specificity ‍σmin(c∗, NC) = argminσ{D̄(σ, N̄E, NC, c∗)}‍, which minimizes 
the error as function of ‍(NC, c∗)‍ with ‍NE‍ fixed at ‍̄NE‍, is an increasing function of ‍NC‍ and the 
complexity of the target distribution ‍c∗‍ (Figure 3a and b and Figure 4c and d). This is consistent 
with the results in Appendix 6 where we established that the width of the synthesized distribu-
tion is inversely dependent on the specificity ‍σ‍: since a GMM approximation with fewer peaks 
has wider peaks, ‍σmin‍ is low, and vice versa. Similar results hold when ‍NC‍ is fixed at ‍̄NC‍, and ‍NE‍ 
is varied (see Figure 3c and d and Figure 4c and d).

Our results are consistent with those in Fisher et al., 2019. They optimize incoming glycan ratio, 
transport rate, and effective reaction rates in order to synthesize a narrow target distribution centred 
around the desired glycan. The ability to produce specific glycans without much heterogeneity is an 
important goal in the pharmaceutical industry. They define heterogeneity as the total number of glycans 
synthesized and show that increasing the number of compartments ‍NC‍ decreases heterogeneity and 

(a) Fidelity for less complex target, �∗ = 3-GMM
approximation

(b) Fidelity for more complex target �∗ = 20-GMM
approximation

(c) Optimal enzyme specificity for less complex target, �∗ =
3-GMM approximation

(d) Optimal enzyme specificity for more complex target �∗ =
20-GMM approximation

Figure 4. Fidelity of glycan distribution and optimal enzyme properties to achieve a complex target distribution. 
The target ‍c∗‍ is taken from 3-Gaussian mixture model (GMM) (less complex) and 20-GMM (more complex) 
approximations of the human T-cell mass spectrometry coupled with determination of molecular structure (MSMS) 
data. (a, b) Optimum fidelity ‍minσ{D̄(σ, NC, NE, c∗)}‍ as a function of ‍(NE, NC)‍. More complex distributions 
require either a larger ‍NE‍ or ‍NC‍. The marginal impact of increasing ‍NE‍ and ‍NC‍ on the fidelity ‍̄D‍ is approximately 
equal. (c, d) Enzyme specificity ‍σmin‍ that achieves ‍minσ{D̄(σ, NC, NE, c∗)}‍ as a function of ‍(NE, NC)‍. ‍σmin‍ 
increases with increasing ‍NE‍ or ‍NC‍. To synthesize the more complex 20-GMM approximation with high fidelity 
requires enzymes with higher specificity ‍σmin‍ compared to those needed to synthesize the broader, less complex 
3-GMM approximation.

https://doi.org/10.7554/eLife.76757


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Yadav et al. eLife 2022;11:e76757. DOI: https://doi.org/10.7554/eLife.76757 � 11 of 46

increases the concentration of the specific glycan. They also show that the effect of compartments 
in reducing heterogeneity cannot be compensated by changing the transport rate. Our results are 
entirely consistent with theirs – we have shown that ‍̄D‍ decreases as we increase ‍NC‍. Thus, if the target 
distribution has a single sharp peak, increasing ‍NC‍ will reduce the heterogeneity in the distribution.

We insert an important cautionary note here. It would seem that the results in Figure 4 imply that 
there is an approximate ‍NE − NC‍ symmetry in the model, that is, increasing either ‍NE‍ or ‍NC‍ affects 
the fidelity, optimal enzyme specificity, and the sensitivity in approximately the same way. This would 
be an erroneous inference, and is a consequence of the distortion model we have used for calculating 
the binding probabilities of substrates with enzymes. The root cause for this apparent symmetry is that 
we have allowed for all enzymes to catalyze reactions in all cisternae (albeit with different efficiencies). 
This symmetry is violated by simply restricting the activity of the enzymes to be dependent on the 
cisternae. A simple realization of this in terms of the distortion model is given in Appendix 7.

Optimal partitioning of enzymes in cisternae
Having studied the optimum ‍NE, NC,σ‍ to attain a given target distribution with high fidelity, we ask 
what is the optimal partitioning of the ‍NE‍ enzymes in these ‍NC‍ cisternae? Answering this within 
the context of our chemical reaction model (section ‘Chemical reaction and transport network in 
cisternae’) requires some care since it incorporates the following enzymatic features: (a) enzymes with 
a finite specificity ‍σ‍ can catalyze several reactions, although with an efficiency that varies with both 
the substrate index ‍k‍ and cisternal index ‍j‍, and (b) every enzyme appears in each cisternae; however, 
their reaction efficiencies depend on the enzyme levels, the enzymatic reaction rates, and the enzyme 
matching function ‍L‍, all of which depend on the cisternal index ‍j‍.

Therefore, instead of focusing on the cisternal partitioning of enzymes, we identify the chemical 
reactions that occur with high propensity in each cisternae. For this we define an effective reaction 
rate ‍Reff(j, k)‍ for ‍Pck → Pck+1‍ in the jth cisterna as

	﻿‍ Reff(j, k) =
∑NE

α=1 R(j)
α P(j)(k,α).‍� (7)

According to our model presented in the section ‘Chemical reaction and transport network in 
cisternae’, the list of reactions with high effective reaction rates in each cisterna corresponds to a 
cisternal partitioning of the perfect enzymes. In a future study, we will consider a Boolean version of 
a more complex chemical model to address more clearly the optimal enzyme partitioning amongst 
cisternae.

Figure 5ai shows the heat map of the effective reaction rates in each cisterna for the optimal that 
minimizes the normalized KL distance to the 20-GMM target distribution ‍T(20)‍ (see Figure 5aii). The 
optimized glycan profile displayed in Figure 5aiii is very close to the target. An interesting observa-
tion from Figure 5ai is that the same reaction can occur in multiple cisternae.

Keeping everything else fixed at the optimal value, we ask whether simply repartitioning the 
optimal enzymes amongst the cisternae alters the displayed glycan distribution. In Figure 5bi, we 
have exchanged the enzymes of the fourth and second cisterna. The glycan profile after enzyme 
partitioning (see Figure 5biii) is now completely altered (compare Figure 5bii with Figure 5biii). Thus, 
one can generate different glycan profiles by repartitioning enzymes amongst the same number of 
cisternae (Jaiman and Thattai, 2018).

Geometry of the fidelity landscape
Here we show that the optimum solution is not unique, rather it is highly degenerate, with several 
equally good optimum solutions. Thus the multidimensional fidelity landscape in ‍R‍, ‍µ‍, ‍L‍, and ‍σ‍ is 
typically rugged. We analyse the geometry of this fitness landscape by doing a local Hessian analysis 
about the optimal solutions.

Degeneracies in the synthesis model
The synthesis model is highly degenerate, in the sense that many combinations of parameters give rise 
to the same glycan profile. This makes the optimization non-convex as there are many equally good 
minima. These degeneracies are both discrete and continuous. The continuous degeneracies corre-
spond to regions in reaction rate (‍R‍)-transport rate (‍µ‍) space moving along which does not change 

https://doi.org/10.7554/eLife.76757
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the concentration profile. The discrete degeneracies are disconnected regions in the parameter space 
which correspond to the same glycan profile. The number of discrete degeneracies increases expo-
nentially with increase in (‍NE, NC‍). We also find that the fraction of initial conditions converging to a 
solution close to the global minima increases on increasing (‍NE, NC‍). Technical details of these issues 
are discussed in Appendix 8.

Stiff and sloppy directions
We analyse the change in fidelity on small perturbations in ‍R‍, ‍µ‍, ‍L‍, and ‍σ‍ around the optimal solu-
tion. This allows us to determine where the cell needs to develop a tighter control mechanism (stiff 

(a)

(b)

Figure 5. Optimal enzyme partitioning in cisternae. (a) Heat map of the effective reaction rates in each cisterna 
(representing the optimal enzyme partitioning) and the steady-state concentration in the last compartment 
(‍c(NC)‍) for the 20-Gaussian mixture model (GMM) target distribution. Here, ‍NE = 5‍, ‍NC = 7‍, normalized 

‍D(T(20)∥c(NC))/H(T(20)) = 0.11‍. (b) Effective reaction rates after swapping the optimal enzymes of the fourth and 
second cisternae. The displayed glycan profile is considerably altered from the original profile.

https://doi.org/10.7554/eLife.76757
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directions) and where it has more leeway around the optimal values (sloppy directions). We do this 
by analysing the eigenvalues and eigenvectors of the Hessian around the optimal point (details in 
Appendix 9). We find that small perturbations around the optimal values in ‍σ‍ change the glycan 
profile a lot more compared to perturbations in the other parameters and this stiffness in ‍σ‍ generally 
decreases on increasing ‍NE, NC‍ (Figure 6a–c). Small perturbations in ‍µ‍ and some ‍L‍ directions around 
the optimum also significantly alter the glycan profile and the stiffness increases on increasing ‍NC, NE‍, 
eventually becoming comparable to ‍σ‍. The glycan profile is robust to perturbations in most ‍R‍ and 
some ‍L‍ directions (Figure 6b). The total average stiffness of the optimization parameters, defined by 
the mean of all eigenvalues of the hessian, decreases on increasing ‍NE, NC‍ (Figure 6c).

Implications for robustness to parametric noise
Since the synthesized glycan distribution displayed by the cell marks its identity, it must be robust 
to noise intrinsic to the synthesis machinery. The degeneracy of solutions and sloppy directions in 

(a) (b)

(c) (d)

Figure 6. Stiff and sloppy directions in the optimization parameters. (a) Eigenvectors of the Hessian matrix 

‍
∂2

∂Xi∂Xj
F
∣∣∣
Xmin‍

 for ‍(NE, NC) = (4, 4)‍. The x-axis indexes the ‍NC + 2NENC + 1 = 37‍ eigenvectors, the y-axis indexes 

the ‍NC + 2NENC + 1‍ components of the eigenvectors, and the greyscale denotes the absolute value of the 
component in the range ‍[0, 1]‍. The components are grouped according to (‍µ, R, L,σ‍), and the eigenvectors 
are ordered according to the most dominant component in the eigenvector (‍µ‍, orange; ‍R‍, blue; ‍L‍, green; ‍σ‍, 
purple). There is some mixing of the different components (‍R‍ and ‍µ‍ or ‍σ‍ and ‍µ‍) but this is usually small. (b) The 

distribution of eigenvalues ‍λi‍ of the Hessian matrix 
‍

∂2

∂Xi∂Xj
F
∣∣∣
Xmin‍

. Each stripe represents an eigenvalue, and the 

location of the stripe on the x-axis represents whether the dominant component of the associated eigenvector 
belongs to ‍µ‍, ‍R‍, ‍L‍, or ‍σ‍ direction. (c) The average stiffness along ‍µ‍, ‍R‍, ‍L‍, or ‍σ‍ directions, defined by the log of 
the average of eigenvalues corresponding to the eigenvectors in the respective group, as a function of ‍NC‍ for 

fixed ‍NE = 4‍. (d) Total average stiffness 
‍
⟨λ⟩ = log

( ∑
λi

NC+2NENC+1

)
‍
 as a function of ‍NE, NC‍.
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the fidelity landscape makes the glycan distribution robust to intrinsic noise in the synthesis and cell-
to-cell variations in the kinetic parameters. We find that the number of degeneracies increases on 
increasing (‍NE, NC‍), and the average stiffness of the optimized parameters decreases on increasing 
(‍NE, NC‍), making the synthesis more robust to parameter fluctuations. Further, while the parameter 
space is high dimensional, the dimension of controllable parameters (measured by the stiff directions) 
is low dimensional. We find this dimensional reduction a compelling idea which we will take up later.

Strategies to achieve high glycan diversity
So far we have studied how the complexity of the target glycan distribution places constraints on the 
evolution of Golgi cisternal number and enzyme specificity. We now take up another issue, namely, 
how the physical properties of the Golgi cisternae, namely, cisternal number and inter-cisternal trans-
port rate, may drive the diversity of glycans (Varki, 2011; Dennis et al., 2009). There is substantial 
correlative evidence to support the idea that cell types that carry out extensive glycan processing 
employ larger numbers of Golgi cisternae. For example, the salivary Brunner’s gland cells secrete 
mucous that contains heavily O-glycosylated mucin as its major component (Van Halbeek et  al., 
1983). The Golgi complex in these specialized cells contain 9–11 cisternae per stack. Additionally, 
several organisms such as plants and algae secrete a rather diverse repertoire of large, complex glyco-
sylated proteins, for a variety of functions (McFarlane et al., 2014; Koch et al., 2015; O’Neill et al., 
2004; Hayashi and Kaida, 2011; Kumar et al., 2011; Gow and Hube, 2012; Atmodjo et al., 2013; 
Free, 2013; Pauly et al., 2013; Burton and Fincher, 2014). These organisms possess enlarged Golgi 
complexes with multiple cisternae per stack (Becker and Melkonian, 1996; Mironov et al., 2017; 
Donohoe et al., 2007; Mogelsvang et al., 2003; Ladinsky et al., 2002).

We define diversity as the total number of glycan species produced above a specified threshold 
abundance ‍cth‍. This last condition is necessary because very small peaks will not be distinguishable in 
the presence of noise. In computing the diversity from our chemical synthesis model, we have chosen 
the threshold to be ‍cth = 1/Ns‍, where ‍Ns‍ is the total number of glycan species. We have checked that 
the qualitative results do not depend on this choice (see Appendix 10—figure 1).

We use the sigmoid function ‍(1 + e−x/τ )−1
‍ as a differentiable approximation to the Heaviside func-

tion ‍Θ(x)‍ and define the following optimization to maximize diversity for a given set of parameter 
values, ‍NE, NC,σ‍:

	﻿‍

Diversity(σ, NC, NE) := maxµ,R,L
∑Ns

i=1
(
1 + e−Ns(ci−cth))−1

s.t. Rmin ≤ R(j)
α ≤ Rmax,

µmin ≤ µ(j) ≤ µmax, ‍�

(a) (b)

Figure 7. Strategies for achieving high glycan diversity. Diversity versus ‍NC‍ and transport rate ‍µ‍ at various values 
of specificity ‍σ‍ for fixed ‍NE = 3‍. (a) Diversity vs. ‍NC‍ at optimal transport rate ‍µ‍. Diversity initially increases with 

‍NC‍, but eventually levels off. The levelling off starts at a higher ‍NC‍ when ‍σ‍ is increased. These curves are bounded 
by the ‍σ = 0‍ curve. (b) Diversity vs. cisternal residence time (‍µ

−1
‍) in units of the reaction time (‍R

−1
min‍) at various 

value of ‍σ‍, for fixed ‍NC = 4‍ and ‍NE = 10‍.
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where, as before, ‍(µmax,µmin) = (1, 0.01)‍/min, and ‍(Rmax, Rmin) = (20, 0.018)‍/min, and ‍cth = 1/Ns‍ is the 
threshold. See Appendix 2 for details on the parameter estimation.

The results displayed in Figure 7a show that for a fixed specificity ‍σ‍ the diversity at first increases 
with the number of cisternae ‍NC‍, and then saturates at a value that depends on ‍σ‍. For very-high-
specificity enzymes, one can achieve very high diversity by appropriately increasing ‍NC‍. This estab-
lishes the link between glycan diversity and cisternal number. However, this link is correlational at 
best since there are many ways to achieve high glycan diversity – notably by increasing the number 
of enzymes.

On the other hand, one of the goals of glycoengineering is to produce a particular glycan profile 
with low heterogeneity (Fisher et al., 2019; Jaiman and Thattai, 2018). For low-specificity enzymes, 
the diversity remains unchanged upon increasing the cisternal residence time. For enzymes with high 
specificity, the diversity typically shows a non-monotonic variation with the cisternal residence time. 
At small cisternal residence time, the diversity decreases from the peak because of the early exit of 
incomplete oligomers. At large cisternal residence time, the diversity again decreases as more reac-
tions are taken to completion. Note that the peak is generally very flat, which is consistent with the 
results in Fisher et al., 2019. To get a sharper peak, as advocated for instance by Jaiman and Thattai, 
2018, one might need to increase the number of high-specificity enzymes ‍NE‍ further.

Discussion
The precision of the stereochemistry and enzymatic kinetics of these N-glycosylation reactions (Varki, 
2009) has inspired a number of mathematical models (Umaña and Bailey, 1997; Krambeck et al., 
2009; Krambeck and Betenbaugh, 2005) that predict the N-glycan distribution based on the activ-
ities and levels of processing enzymes distributed in the Golgi cisternae of mammalian cells and 
compare these predictions with N-glycan mass spectrum data. Models such as the KB2005 model 
(Umaña and Bailey, 1997; Krambeck and Betenbaugh, 2005; Krambeck et al., 2009) are extremely 
elaborate (with a network of 22,871 chemical reactions and 7565 oligosaccharide structures) and 
require many chemical input parameters. These models have an important practical role to play, that 
of being able to predict the impact of the various chemical parameters on the glycan distribution, 
and to evaluate appropriate metabolic strategies to recover the original glycoprofile. Additionally, 
a recent study by Ungar and coworkers (Fisher et al., 2019; Fisher and Ungar, 2016) shows how 
physical parameters, such as overall Golgi transit time and cisternal number, can be tuned to engineer 
a homogeneous glycan distribution. Overall, such models can help predict glycosylation patterns and 
direct glycoengineering projects to optimize glycoform distributions.

Our focus is different. We are interested in the role of glycans as a marker or molecular code of cell 
identity (Gabius, 2018; Varki, 2017; Pothukuchi et al., 2019), and in particular, understanding enzy-
matic and transport processes located in the secretory apparatus of the cell that ensure that this code 
is generated with high fidelity. To do this, we have had to develop a new formal apparatus that allows 
us to address these questions and discuss trade-offs between competing drives. Since our analysis 
draws on many diverse fields, we provide a short summary of the assumptions, methods, and results 
of the article before discussing the implications of our work.

i.	 The glycan profile on the cell surface is a marker of cell-type identity (Varki, 2009; Gabius, 
2018; Varki, 2017; Pothukuchi et al., 2019). We define the complexity of a glycan profile to 
be the minimum number of GMM components required to approximate the profile to within 
the noise floor. We show that with this definition of complexity more complex organisms corre-
late with higher complexity glycan profiles. We use this to analyse the complexity of the glycan 
profiles of planaria, hydra, and mammalian cells (Drickamer and Taylor, 1998).

ii.	 The glycans at the cell surface are the end product of a sequential chemical processing via a set 
of enzymes resident in the Golgi cisternae and transport across cisternae (Varki, 2017; Varki, 
1998; Pothukuchi et al., 2019). We have proposed a general model for chemical synthesis 
and transport that, in principle, allows us to compute the synthesized glycan distribution at 
the cell surface as a function of the enzymes ‍NE‍, reaction rates ‍R‍, enzyme configurations ‍L‍, 
specificity of enzymes ‍σ‍, number of cisternae ‍NC‍, and transport rates ‍µ‍. However the large 
dimension of the search space makes this optimization intractable. We thus use a simplified 
synthesis model with fewer parameters; while our quantitative results are based on this simpli-
fied model, we believe that at a qualitative level our results have more general validity.
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iii.	 We define the fidelity of a synthesis mechanism as the minimum normalized KL divergence 
(Cover and Thomas, 2012; MacKay, 2003) between synthesized glycan distribution on the 
cell surface and a ‘target’ profile.

iv.	 The results of the optimization over rates ‍R‍ and enzyme configurations ‍L‍ for a given value of 
‍(NC, NE,σ)‍ and a target distribution ‍c∗‍ of given complexity are given in Figure 3 and Figure 4. 
Here, we highlight some qualitative consequences of the model:
a.	 Keeping the number of enzymes fixed, a more elaborate transport mechanism (via control 

of ‍NC‍ and ‍µ‍) is essential for synthesizing high-complexity target distributions to within 
a high fidelity, or equivalently, low error (Figure 4a and b). Fewer cisternae cannot be 
compensated for by optimizing the enzymatic synthesis via control of parameters ‍R‍, ‍L‍, 
and ‍σ‍. An empirical verification of this would involve a coordinated analysis of the glycan 
profiles, ultrastructure of Golgi, and the number of glycosylation enzymes across many 
species.

b.	 Thus, our study suggests that the requirement that a glycan code of a given complexity be 
synthesized with sufficiently high fidelity imposes functional control on the Golgi cisternal 
number. It also provides an argument for the evolutionary requirement of multiple compart-
ments by demonstrating that the fidelity and robustness of the glycan code arising from 
a chemical synthesis that involves multiple cisternae are higher than the one that involves 
a single cisterna (keeping everything else fixed) (see Figure 4a and b and Figure 6) This 
feature, that with multiple cisternae and precise enzyme partitioning one may generically 
achieve a highly accurate representation of the target distribution, has been highlighted 
in an algorithmic model of glycan synthesis Jaiman and Thattai, 2018.
Combining (a) and (b), our study quantitatively shows that constructing a high-fidelity 
representation of a complex target distribution, such as those observed in real cells, 
requires a complex Golgi machinery with multiple cisternae, precise enzyme partitioning, 
and control on enzyme specificity. This definition of fidelity of the glycan code allows 
us to provide a quantitative argument for the evolutionary requirement of multiple 
compartments. While it is possible to produce complex glycan distributions in one 
compartment using a large number of enzymes, such a design would inevitably require a 
more elaborate genetic cost.

c.	 Organisms such as plants and algae have a diverse repertoire of glycans that are utilized 
in a variety of functions (McFarlane et al., 2014; Koch et al., 2015; O’Neill et al., 2004; 
Hayashi and Kaida, 2011; Kumar et al., 2011; Gow and Hube, 2012; Atmodjo et al., 
2013; Free, 2013; Pauly et al., 2013; Burton and Fincher, 2014). Our study shows that it 
is optimal to use low-specificity enzymes to synthesize target distributions with high diver-
sity (Figure 7). However, this compromises on the complexity of the glycan distribution, 
revealing a tension between complexity and diversity. One way of relieving this tension is 
to have larger ‍NE‍ and ‍NC‍.

d.	 Our study shows that for a fixed ‍NC‍ and ‍NE‍, there is an optimal enzyme specificity that 
achieves the lowest distance from a given target distribution. As we see in Figure 4d, 
this optimal enzyme specificity can be very high for highly complex target distributions. 
Such high specificity can lower fitness when the environment, and hence the target glycan 
distribution, fluctuates rapidly, and the synthesis parameters cannot change rapidly 
enough to track the environment (Nam et al., 2012; Peracchi, 2018). This compromise, 
between robustness to a changing environment and high fidelity in synthesizing high-
complexity glycan profiles, is achievable by sloppy enzymes coupled with error-correcting 
mechanisms (Nam et al., 2012; Peracchi, 2018). However, sloppy enzymes create ‘wrong’ 
glycans, and therefore, ex-post error-correcting mechanisms must be in place to correct 
synthesis errors to ensure high fidelity of the glycan code. A task for the future is to under-
stand the role of intracellular transport in providing non-equilibrium proofreading mech-
anisms to reduce such coding errors, and its optimal adaptive strategies and plasticity in 
a time-varying environment.
Combining (c) and (d), we find that keeping the number of enzymes fixed, having low 
specificity or sloppy enzymes, and larger cisternal number could give rise to a diverse 
repertoire of functional glycans. Sloppy or promiscuous enzymes bring in the potential 
for evolvability (Kirschner and Gerhart, 2008), and sloppiness allows the system to be 
stable to random mutations in proteins or variations in the target distribution.

e.	 The model solution is degenerate, in the sense that there are many equally good global 
minimas. These degeneracies are both continuous and discrete. The continuous degen-
eracies correspond to regions in the reaction rate – transport rate space, moving along 
which will not change the concentration profile, thus ensuring robustness to internal 
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noise. This suggests that the distribution is robust to slight cell-to-cell variations in these 
kinetic parameters.

f.	 Our model implies that close to a local minima the inter-cisternal transport rate ‍µ‍ and 
the specificity of the enzymes ‍σ‍ are stiff directions, that is, the cell should exercise tighter 
control on ‍µ‍ and ‍σ‍ as compared to the other parameters. The reaction rates close to the 
local minima are sloppy directions, and moving along these directions does not change 
the glycan profile much.

v.	 Taken together, our quantitative analysis of the trade-offs has deep implications for non-
equilibrium self-assembly of the Golgi cisternae, and suggests that the non-equilibrium control 
of cisternal number must involve a coupling of non-equilibrium self-assembly of cisternae with 
enzymatic chemical reaction kinetics (Glick and Malhotra, 1998).

Admittedly the chemical network that we have considered here is much simpler than the chemical 
network associated with the possible protein modifications in the secretory pathway. For instance, 
typical N-glycosylation pathways would involve the glycosylation of a variety of GBPs. Further, apart 
from N-glycosylation, there are other glycoprotein, proteoglycan, and glycolipid synthesis pathways 
(Alberts, 2002; Varki, 2009; Pothukuchi et  al., 2019). Our task has been to get at a qualitative 
understanding using quantitative methods and thereby to arrive at general principles. We believe 
our analysis is generalizable and that the qualitative results we have arrived at would still hold. To 
conclude, our work establishes the link between the cisternal machinery (chemical and transport) and 
high-fidelity synthesis of a complex glycan code. We find that the pressure to achieve the target glycan 
code for a given cell type places strong constraints on the cisternal number and enzyme specificity 
(Sengupta and Linstedt, 2011). An important implication is that a description of the non-equilibrium 
self-assembly of a fixed number of Golgi cisternae must combine the dynamics of chemical processing 
and membrane dynamics involving fission, fusion, and transport (Sengupta and Linstedt, 2011; Sach-
deva et  al., 2016; Sens and Rao, 2013). We believe that this is a promising direction for future 
research.
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Appendix 1
Constructing target distributions for glycans of a given cell type
The distribution of the glycans on the cell surface is obtained via mass spectrometry. The x-axis of 
mass spectroscopy (MS) graphs is mass/charge of the ionized sample molecules, and the y-axis is 
relative intensity corresponding to each mass/charge value, taking the highest intensity as 100%. 
This relative intensity roughly correlates with the relative abundances of the molecules in the sample.

The raw MS data is noisy and cannot be directly used as the target distribution in our optimization 
problem. There are three major sources of noise in the MS data (Du et al., 2008): chemical noise in 
the sample, the Poisson noise associated with detecting discrete events, and the Nyquist–Johnson 
noise associated with any charge system. We propose a simple model that accounts for the chemical 
noise and the Poisson sampling noise. Using this noise model and the available MS data, we generate 
parametric bootstrap samples of glycan measurements and fit a GMM on this sample to approximate 
the glycan distribution. This GMM probability distribution is used as the target distribution in our 
numerical experiments.

The MS data obtained from Cummings and Crocker, 2020; Subramanian et al., 2018; Sahadevan 
et al., 2014 had mass ranging between 500 and 5000 Da with intensity reported at every 0.0153 
Da. We first bin this MS data into 180 bins and take the maximum value within each bin as the value 
of intensity for that bin. Appendix 1—figure 1 plots the raw MS data and the binned distribution. 
Next, we describe the parametric bootstrap model that we used to generate the glycan data. Let 

‍̄Ik‍ represent the relative intensity of the kth bin in the binned MS graph. We generate a sample 
population of glycans using the MS data in the following way:

i.	 Poisson sampling noise: The MS data does not have absolute count information. We assume an 
arbitrary maximum count ‍Imax‍ and define the intensity ‍Ik = Imax Īk‍. The plots in Appendix 1—
figure 2a show that the results are not sensitive to the specific value of ‍Imax‍.

ii.	 Chemical noise: The sample used for MS analysis also contains small amounts of molecules 
that are not glycans. These appear as very small peaks in the MS data. We assume that the 
probability pk that the peak at index ‍k‍ corresponds to a glycan is given by

	﻿‍ pk = 1 − e−
Ik

Imax = 1 − e−Īk‍�

which adequately suppresses this chemical noise.
iii.	 Bootstrapped glycan data: The count nk at the glycan index ‍k‍ is distributed according to the 

following distribution:

	﻿‍

nk =




0 (1 − pk) n = 0

n pke−Ik (Ik)n

n! n ≥ 1.‍�

We assume that the MS data was generated from N different cells. Thus, the total count at 
glycan index k is given by the sum of N i.i.d. samples distributed according to the distribution 
above. In Appendix 1—figure 2b, we show that results are insensitive to N. We normalize the 
count distribution by the total number of counts across all the bins to obtain the bootstrapped 
probability mass function PT.

https://doi.org/10.7554/eLife.76757
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Appendix 1—figure 1. The binned mass spectroscopy (MS) data (blue) approximates the raw MS data (red) very 
well. We use this binned data for Gaussian mixture model (GMM) approximation of the MS data.

(a) (b)

Appendix 1—figure 2. Log likelihood vs. number of components (‍N ‍) in the Gaussian mixture model (GMM). We 
see that the log likelihood saturates at around,‍N = 20‍, thus 20-GMM is a very good representation of the mass 
spectroscopy (MS) data from human T-cells. The different symbols are for (a) different values of the maximum 
intensity ‍Imax = 50, 100, 200‍ and (b) different values of the number of i.i.d. samples,‍Ni = 500, 1000, 2000‍ showing 
the insensitivity of the log likelihood to the value of ‍Imax‍ and.‍Ni‍

The bootstrapped distribution ‍pT ‍ is noisy, and hence cannot be used directly as the target 
distribution. We use a GMM-based approach to denoise the raw data. The advantage of using 
a GMM-based approach is that it creates an easily interpretable hierarchy of increasingly more 
detailed distributions to approximate the mass spectrometry profile. We define the complexity of 
a mass spectrometry profile as the minimum number of components (individual Gaussians) in the 
GMM model required to approximate it. The details of the GMM calculations are as follows. We 
fix the number of components ‍m‍. We want to approximate the bootstrapped probability ‍pT ‍ by the 
‍m‍-component mixture of Gaussian distributions ‍pGMM(θ) =

∑m
i=1 wiNηi,∆i‍, where ‍Nηi,∆i‍ denotes the 

Gaussian distribution with mean ‍ηi‍ and variance ‍∆i‍, ‍wi ≥ 0‍ and ‍
∑m

i=1 wi = 1‍, the parameter vector 

‍θ = (w,η,∆)‍ . We compute the optimal ‍m‍-component GMM approximation by minimizing the KL 
divergence ‍D(pT||pGMM(θ))‍ as a function of parameter vector ‍θ‍. Since

	﻿‍

D(pT||pGMM(θ)) :=
Ns∑

k=1
pT(k) log

(
pT(k)∑m

i wiNηi,∆i (k)

)

=
Ns∑

k=1
pT(k) log pT(k) −

Ns∑
k=1

pT(k) log
( m∑

i
wiNηi,∆i (k)

)
,
‍�

https://doi.org/10.7554/eLife.76757
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the optimization problem ‍minθ D(pT||pGMM(θ))‍ is equivalent to

	﻿‍
maxθ g(θ) :=

NS∑
k=1

pT(k) log

( m∑
i=1

wiNηi,∆i (k)

)

‍�

This is a non-convex optimization. We use an expectation-maximization (EM)-based iterative 
heuristic to compute a local maximum. Let ‍θ(t)‍ denote the current value of the parameters. For each 
component ‍i = 1, . . . , m‍, and index ‍k = 1, . . . , Ns‍, define

	﻿‍

z(t)
i (k) =

w(t)
i N

η(t)
i ,∆(t)

i
(k)

∑m
j=1 w(t)

j N
η(t)

j ,∆(t)
j

(k)
.

‍�

Then ‍z
(t)
i (k) ≥ 0‍, and ‍

∑m
i=1 z(t)

i (k) = 1‍. We interpret ‍z
(t)
i (k)‍ as the probability that the count in bin ‍k‍ 

came from component ‍‍. Define

	﻿‍
Q(θ, θ(t)) =

NS∑
k=1

m∑
i=1

pT(k)z(t)
i (k) log

(
wiNηi,∆i (k)

z(t)
i (k)

)

‍�

Then, we have that

	﻿‍
Q(θ̂, θ̂) =

NS∑
k=1

m∑
i=1

pT(k)̂zi(k) log

( m∑
i=1

wiNηi,∆i (k)

)
=

NS∑
k=1

pT(k) log

( m∑
i=1

wiNηi,∆i (k)

)
= g(θ̂),

‍�

and

	﻿‍

g(θ) =
NS∑

k=1
pT(k) log

( m∑
i=1

wiNηi,∆i (k)
z(t)

i (k)
z(t)

i (k)

)

≥
NS∑

k=1

m∑
i=1

pT(k)z(t)
i (k) log

(
wiNηi,∆i (k)

z(t)
i (k)

)
= Q(θ, θ(t)).

‍�

Define

	﻿‍
θ(t+1) = argmax

θ
Q(θ, θ̂)

‍� (8)

Then, we have that

	﻿‍ g(θ(t+1)) ≥ Q(θ(t+1), θ(t)) ≥ Q(θ(t), θ(t)) = g(θ(t)).‍�

Therefore, the iterative algorithm in (Equation 11) generates a sequence ‍{θ(t) : t ≥ 1}‍ with non-
decreasing values of ‍g‍, and the sequence converges to a local maximum. Next, we show that the 
optimization in (8) can be computed efficiently.

i.	 ‍w‍-update

	﻿‍
w(t+1) = arg max

w

NS∑
k=1

m∑
i=1

pT(k)z(t)
i (k) log(wi) =⇒ w(t+1)

i =
∑NS

k=1 z(t)
i (k)pT(k)

∑m
i=1

∑NS
k=1 z(t)

i (k)pT(k)‍�
(9)

ii.	 ‍η‍-update

	﻿‍
η(t+1)

i = arg min
η

NS∑
k=1

pT(k)̂zi(k)|k − ηi|2 =⇒ η(t+1)
i =

∑Ns
k=1 z(t)

i (k)k
∑Ns

k=1 z(t)
i (k)

.
‍�

(10)

iii.	 ‍∆‍-update

https://doi.org/10.7554/eLife.76757
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	﻿‍

∆(t+1)
i = argmax∆≥∆cut

{
−
∑Ns

k=1 pT(k)z(t)
i (k)|k − ηt+1

i |2

2∆
− log(∆)

}

= max



����

∑NS
k=1 pT(k)z(t)

i (k)|k − η(t+1)
i |2

∑Ns
k=1 pT(k)z(t)

i (k)
,∆cut


 ,

‍�

(11)

where ‍∆cut‍ is the minimum allowed width of the Gaussians, in our case ‍∆cut = 1‍ since glycan index, 
‍k ∈ {1, 2, . . .NS}‍, takes integer values with spacing 1.

Since this is a heuristic algorithm for a non-convex optimization, we performed several initializations 
of the algorithm to identify the best local maximum.

The number of components ‍m‍ in a GMM is a free parameter. The KL divergence between the true 
and GMM approximated (‍D(pT||pGMM)‍), shown in Figure 1, saturates at some value of the number 
of components, and adding components beyond this only increases model complexity without 
increasing the quality of approximation. We define the complexity of a mass spectrometry data by 
the number of components at which saturation is reached. We compare the complexity of glycan 
profiles of hydra, planaria, and humans. The numbers of cell types in hydra, planaria, and humans are 
around 41 (Siebert et al., 2019), 44 (Fincher et al., 2018), and 103 (Han et al., 2020), respectively, 
based on transcriptome analysis (these are lower bounds based on the main cell types, and especially 
for planaria and hydra, are subject to constant revision). Our analysis of the MSMS data of these 
organisms suggests that organisms with fewer cell types have less complex glycan distribution.

https://doi.org/10.7554/eLife.76757


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Yadav et al. eLife 2022;11:e76757. DOI: https://doi.org/10.7554/eLife.76757 � 26 of 46

Appendix 2
Parameter estimation
The typical transport time of glycoproteins across the Golgi complex is estimated to be in the 
range 15–20 mins (Umaña and Bailey, 1997), which corresponds to the transport rate ‍µ = 0.18‍/
min. We bound the transport rate for our optimization between 0.01/min and 1/min.

Next, we estimate the range of values for the chemical reaction rates. The injection rate 

‍q‍ is in the range 100–1500 pmol/106 cell 24 hr (Umaña and Bailey, 1997; Krambeck et al., 
2009). For our calculation, we set ‍q = 387.30‍ pmol/106 cells 24 hr = 0.27 pmol/106 cells min, 
where 387.30 is the geometric mean of 100 and 1500. We set the range for the enzymatic rate 
‍R‍ to be

	﻿‍
Rmin = min

α

{
V(α)

max/ν
K(α)

M + 1
ν

q
µ

}
≤ R ≤ Rmax = max

α

{
V(α)

max/ν
K(α)

M

}
.
‍�

where ‍K
(α)
M ‍ and ‍V

(α)
max‍ denote the Michaelis constants and ‍Vmax‍ of the αth enzyme. The conversion 

from 1 pmol/106 cells to concentration can be obtained by taking cisternal volume (‍ν‍) to be 2.5 µm3 
(Umaña and Bailey, 1997; Krambeck et al., 2009). This gives

	﻿‍
1 pmoles/106 cells = 10−12moles

106 × 2.5 × 10−18 × 103litre
= 400µM.

‍� (12)

In Appendix 2—table 1, we report the parameters for the eight enzymes taken from Table 3 in 
Umaña and Bailey, 1997. From these parameters, it follows that

	﻿‍

Rmin = min
α

{
V(α)

max/ν
K(α)

M + 1
ν

q
µ

}

= V(7)
max/ν

K(7)
M + 1

ν
q
µ

= .16×400µM/min
3400µM+149.4µM = 0.018min−1

‍�

	﻿‍

Rmax = max
α

{
V(α)

max/ν
K(α)

M

}

= V(1)
max/ν
K(1)

M
= 5×400µM/min

100µM = 20min−1

‍�

Appendix 2—table 1. Enzyme parameters taken from Table 3 in Umaña and Bailey, 1997 that we 
use to calculate the bounds on the reaction rate ‍R‍.
Here, ‍K

(α)
M ‍ and ‍V

(α)
max‍ denote the Michaelis constant and ‍Vmax‍ of the αth enzyme.

‍α‍ ‍K
(α)
M ‍(µmol) ‍V

(α)
max‍(pmol/106 cell-min)

1 100 5

2 260 7.5

3 200 5

4 100 5

5 190 2.33

6 130 .16

Appendix 2—table 1 Continued on next page
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‍α‍ ‍K
(α)
M ‍(µmol) ‍V

(α)
max‍(pmol/106 cell-min)

7 3400 .16

8 4000 9.66

Appendix 2—table 1 Continued
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Appendix 3
Kinetics of sequential chemical reactions and transport
On including the rates of injection (‍q‍) and inter-cisternal transport ‍µ

(j)
‍ from the cisterna ‍j‍ to ‍j + 1‍ 

into the chemical reaction kinetics, the change in substrate concentrations ‍c
(j)
k ‍ with time is given by

	﻿‍

dc(1)
1

dt
= q −

NE∑
α=1

V(1, 1,α)P(1)(1,α)c(1)
1

M(1, 1,α)
(

1 +
∑Ns

k′=1
P(1)(k′,α)c(1)

k′
M(1,k′,α)

) − µ(1)c(1)
1

dc(1)
k

dt
=

NE∑
α=1

V(1, k − 1,α)P(1)(k − 1,α)c(1)
k−1

M(1, k − 1,α)
(

1 +
∑Ns

k′=1
P(1)(k′,α)c(1)

k′
M(1,k′,α)

)

−
NE∑
α=1

V(1, k,α)P(1)(k,α)c(1)
k

M(1, k,α)
(

1 +
∑Ns

k′=1
P(1)(k′,α)c(1)

k′
M(1,k′,α)

) − µ(1)c(1)
k

dc(1)
Ns

dt
=

NE∑
α=1

V(1, Ns − 1,α)P(1)(Ns − 1,α)c(1)
Ns−1

M(1, Ns − 1,α)
(

1 +
∑Ns

k′=1
P(1)(k′,α)c(1)

k′
M(1,k′,α)

) − µ(1)c(1)
Ns

‍�

(13)

for cisterna-1, and

	﻿‍

dc(j)
1

dt
= µ(j−1)c(j−1)

1 −
NE∑
α=1

V(j, 1,α)P(j)(1,α)c(j)
1

M(j, 1,α)
(

1 +
∑Ns

k′=1
P(j)(k′,α)c(j)

k′
M(j,k′,α)

) − µ(j)c(j)
1

dc(j)
k

dt
= µ(j−1)c(j−1)

k +
NE∑
α=1

V(j, k − 1,α)P(j)(k − 1,α)c(j)
k−1

M(j, k − 1,α)
(

1 +
∑Ns

k′=1
P(j)(k′,α)c(j)

k′
M(j,k′,α)

)

−
NE∑
α=1

V(j, k,α)P(j)(k,α)c(j)
k

M(j, k,α)
(

1 +
∑Ns

k′=1
P(j)(k′,α)c(j)

k′
M(j,k′,α)

) − µ(j)c(j)
k

dc(j)
Ns

dt
= µ(j−1)c(j−1)

Ns
+

NE∑
α=1

V(j, Ns − 1,α)P(j)(Ns − 1,α)c(j)
Ns−1

M(j, Ns − 1,α)
(

1 +
∑Ns

k′=1
P(j)(k′,α)c(j)

k′
M(j,k′,α)

) − µ(j)c(j)
Ns

‍�

(14)

for cisternae ‍j = 2, 3, . . . , NC‍. These set of dynamical equations (13)-(14), with initial conditions, 
can be solved to obtain the concentration ‍c

(j)
k (t)‍ for ‍t ≥ 0‍. Equations (13)-(14) automatically obey 

the conservation law for the protein concentration (‍p‍), that is, the total protein concentration 

‍p
(j) =

∑Ns
k′=1 c(j)

k′ ‍ in the jth cisterna automatically satisfies

	﻿‍

dp(1)

dt
= q − µ(1)p(1)

dp(j)

dt
= µ(j−1)p(j−1) − µ(j)p(j)

‍�

for ‍j = 2, 3, . . .NC‍.
At steady state, the left-hand side of equations (13)-(14) is set to zero, which, after rescaling the 

kinetic parameters in terms of the injection rate ‍q‍, that is, ‍V(j, k,α) = V(j, k,α)/q‍ and ‍µ
(j) = µ(j)/q‍, gives 

https://doi.org/10.7554/eLife.76757


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Yadav et al. eLife 2022;11:e76757. DOI: https://doi.org/10.7554/eLife.76757 � 29 of 46

the following recursion relations for the steady-state concentrations of the glycans in each cisterna. 
In the first cisterna,

	﻿‍

c(1)
1 = 1

µ(1) +
∑NE

α=1
V(1,1,α)P(1)(1,α)c(1)

1

M(1,1,α)

(
1+

∑Ns
k′=1

P(1)(k′ ,α)c(1)
k′

M(1,k′ ,α)

)

c(1)
k =

∑NE
α=1

V(1,k−1,α)P(1)(k−1,α)c(1)
k−1

M(1,k−1,α)

(
1+

∑Ns
k′=1

P(1)(k′ ,α)c(1)
k′

M(1,k′ ,α)

)

µ(1) +
∑NE

α=1
V(1,k,α)P(1)(k,α)c(1)

k

M(1,k,α)

(
1+

∑Ns
k′=1

P(1)(k′ ,α)c(1)
k′

M(1,k′ ,α)

)

c(1)
Ns

=

∑NE
α=1

V(1,Ns−1,α)P(1)(Ns−1,α)c(1)
Ns−1

M(1,Ns−1,α)

(
1+

∑Ns
k′=1

P(1)(k′ ,α)c(1)
k′

M(1,k′ ,α)

)

µ(1) ‍�

(15)

and in cisternae ‍j ≥ 2‍,

	﻿‍

c(j)
1 =

µ(j−1)c(j−1)
1

µ(j) +
∑NE

α=1
V(j,1,α)P(j)(1,α)c(j)

1

M(j,1,α)

(
1+

∑Ns
k′=1

P(j) (k′ ,α)c(j)
k′

M(j,k′ ,α)

)

c(j)
k =

µ(j−1)c(j−1)
k +

∑NE
α=1

V(j,k−1,α)P(j)(k−1,α)c(j)
k−1

M(j,k−1,α)

(
1+

∑Ns
k′=1

P(j) (k′ ,α)c(j)
k′

M(j,k′ ,α)

)

µ(j) +
∑NE

α=1
V(j,k,α)P(j)(k,α)c(j)

k

M(j,k,α)

(
1+

∑Ns
k′=1

P(j) (k′ ,α)c(j)
k′

M(j,k′ ,α)

)

c(j)
Ns

=

µ(j−1)c(j−1)
Ns

+
∑NE

α=1
V(j,Ns−1,α)P(j)(Ns−1,α)c(j)

Ns−1

M(j,Ns−1,α)

(
1+

∑Ns
k′=1

P(j) (k′ ,α)c(j)
k′

M(j,k′ ,α)

)

µ(j) ‍�

(16)

Equations (15)-(16) automatically imply that the total steady-state glycan concentration in each 
cisterna ‍j = 1, . . . , Nc‍ is given by

	﻿‍

∑Ns
k=1 c(j)

k = 1
µ(j) .

‍�

https://doi.org/10.7554/eLife.76757


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Yadav et al. eLife 2022;11:e76757. DOI: https://doi.org/10.7554/eLife.76757 � 30 of 46

Appendix 4
Reformulation of Optimization A
Define a new set of parameters,

	﻿‍

R(j, k,α) =
NE∑
α=1

V(j, k,α)

M(j, k,α)
(

1 +
∑Ns

k′=1
P(j)(k′,α)c(j)

k′
M(j,k′,α)

)

‍�

(17)

where ‍c‍ denotes the steady-state glycan concentration corresponding to a specific ‍(µ, M, V, L)‍. 
Define ‍v‍ by the following set of linear equations:

	﻿‍

v(1)
1 = 1

µ(1) +
∑NE

α=1 R(1, 1,α)P(1)(1,α)

v(1)
k =

v(1)
k−1

∑NE
α=1 R(1, k − 1,α)P(1)(k − 1,α)

µ(1) +
∑NE

α=1 R(1, k,α)P(1)(k,α)

v(1)
Ns

=
v(1)

Ns−1
∑NE

α=1 R(1, Ns − 1,α)P(1)(Ns − 1,α)
µ(1) ‍�

(18)

for ‍j = 1‍, and

	﻿‍

v(j)
1 =

v(j−1)
1 µ(j−1)

µ(j) +
∑NE

α=1 R(j, 1,α)P(j)(1,α)

v(j)
k =

v(j−1)
k µ(j−1)

µ(j) +
∑NE

α=1 R(j, k,α)P(j)(k,α)

+
v(j)

k−1
∑NE

α=1 R(j, k − 1,α)P(j)(k − 1,α)

µ(j) +
∑NE

α=1 R(j, k,α)P(j)(k,α)

v(j)
Ns

=
v(j−1)

Ns

∑NE
α=1 R(j, Ns − 1,α)P(j)(Ns − 1,α)

µ(j) +
v(j−1)

Ns
µ(j−1)

µ(j) ‍�

(19)

for ‍j = 2, . . . , NC‍. Then, by the definition of ‍R‍ in (17), it trivially follows that the steady-state 
concentration ‍c‍ corresponding to ‍(µ, M, V, L)‍ is a solution for (18)–(19).

Next, we show that for ‍v‍ obtained from (18)–(19) for any parameter ‍(µ, R, L)‍, there exists 
parameter ‍(µ, M, V, L)‍ such that (15)–(16) are automatically satisfied when we set ‍c = v‍, that is, ‍v‍ is 
the steady-state concentration for ‍(µ, M, V, L)‍, and vice versa. Let

	﻿‍

A =


[c(j)

k ]j,k :
µ(j) ≥ 0, M(j, k,α) ≥ 0, V(j, k,α) ≥ 0, l(j)α ≥ 0,

[c(j)
k ]jk given by (15) and (16),




‍�

and let

	﻿‍

B =


[v(j)

k ]j,k :
µ(j) ≥ 0, R(j, k,α) ≥ 0, l(j)α ≥ 0

[v(j)
k ]j,k given by (18) and (19)


 .

‍�

Then, our task is to show that ‍A = B‍. Suppose ‍[c
(j)
k ]j,k ∈ A‍. Let ‍[M(j, k,α)]‍, ‍[V(j, k,α)]‍, and ‍[l

(j)
α ]‍ be the 

corresponding parameters. Define

https://doi.org/10.7554/eLife.76757
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	﻿‍

R(j, k,α) =
NE∑
α=1

V(j, k,α)

M(j, k,α)
(

1 +
∑Ns

k′=1
P(j)(k′,α)c(j)

k′
M(j,k′,α)

) ≥ 0

‍�

Then ‍[c
(j)
k ]j,k ∈ B‍.

Next, suppose ‍[v
(j)
k ]j,k ∈ B‍. Let ‍[R(j, k,α)]‍, ‍[l

(j)
α ]‍ denote the corresponding parameters. Since 

‍
∑Ns

k=1 v(j)
k = 1/µ(j) < ∞‍, it follows that ‍

∑Ns
k=1 P(j)(k,α)v(j)

k < 1/µ(j) < ∞‍. Thus, there exist parameters 

‍[M(j, k,α)]‍, ‍[V(j, k,α)]‍, and ‍[l
(j)
α ]‍ such that

	﻿‍

R(j, k,α) =
NE∑
α=1

V(j, k,α)

M(j, k,α)
(

1 +
∑Ns

k′=1
P(j)(k′,α)v(j)

k′
M(j,k′,α)

)

‍�

(20)

Therefore, ‍[v
(j)
k ]j,k‍ satisfy (15) and (16), that is, ‍[v

(j)
k ]j,k ∈ A‍.

Thus, the set of all concentration profiles defined by (18)–(19) as a function of all possible values of 
the parameters ‍(µ, R, L)‍ is identical to the set defined by (15)–(16) as a function of ‍(µ, M, V, L)‍. This 
is a crucial insight since it allows us to search the entire parameter space using (18)–(19), where the 
concentration is known explicitly in terms of ‍(µ, R, L)‍.

To pose the new optimization problem, it is convenient to define ‍̄v
(j)
i = µ(j)v(j)

i ‍, for ‍j = 1, . . . , NC‍, 
and ‍i = 1, . . . , Ns‍. Furthermore, the glycan distribution of the surface is given by ‍µ

NC vNC
i = v̄i‍. Thus, it 

follows that Optimization B

	﻿‍
D̄(σ, NE, NC, c∗) := min

µ, R, L ≥ 0
F(c∗∥v̄)

‍� (21)

is equivalent to (6). Since ‍v‍ is explicitly known as a function of ‍(R, L)‍, Optimization B (21) is a more 
tractable optimization problem than (6). Note that in this setting the function ‍D(σ, NE, NC, c∗)‍ in (21) 
is independent of the rates ‍µ‍. See Appendix 4—figure 1 for a flow chart of the two optimization 
schemes.
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Appendix 4—figure 1. Flow chart showing the optimization schemes for Optimization A and B. We prove that 

‍D
A
min = DB

min‍ by showing the set of all ‍c‍ is equal to the set of all ‍v‍. We additionally establish that the optimum 

‍vmin = cmin‍.

While 21 is easy to implement, we note that the parameters (e.g. reaction rates, specificity) are 
not constrained to take only physically relevant values; a legitimate concern is that the absence of 
such physicochemical constraints might drive this optimization to physically unrealistic solutions.

There are two possible ways to impose these parameter constraints. One is to impose constraints 
on the ‘microscopic’ chemical parameters, such as the rate of individual reactions ‍R(j, k,α)‍ and the 
inter-cisternal transport rate ‍µ

(j)
‍. These take into consideration constraints arising from molecular 

enzymatic processes. The other is to impose constraints on ‘global’ physical parameters, such as 
the total transport time across the Golgi cisternae and the average enzymatic reaction time. Here, 
we impose constraints on the microscopic reaction and transport parameters to define constrained 
Optimization B:

	﻿‍

D̄(σ, NC, NE, c∗) := minµ,R,L F(c∗∥v̄)

s.t. Rmin ≤ R(j, k,α) ≤ Rmax,

µmin ≤ µ(j) ≤ µmax

1 ≤ ℓ
(j)
α ≤ NS. ‍�

The upper and lower bounds on the rates ‍R‍ and ‍µ‍ are estimated in Appendix 2: ‍µmax = 1‍/min 
(resp. ‍µmin = .01‍/min) and ‍Rmax = 20‍/min (resp. ‍Rmin = .018‍/min).
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Appendix 5
Numerical scheme for performing the non-convex optimization
We solve Optimization C using the numerical scheme detailed below. The optimization problem 
consists of minimizing a non-convex objective with linear box constraints. We use the MATLAB 
FMINCON function to solve this optimization. We use SQP, a gradient-based iterative optimization 
scheme for solving optimizations with non-linear differentiable objective and constraints. Since 
our problem is non-convex and SQP only gives local minima, we initialize the algorithm with many 
random initial points. We use SOBOLSET function of MATLAB to generate space filling pseudo-
random numbers. We have taken 1000 initializations for each ‍NE, NC‍, and ‍σ‍ value. We have taken 50 
equally spaced points between 0 and 1 to explore the ‍σ‍-space for Figure 3. Some minor fluctuations 
in ‍D‍ due to non-convexity of the objective function in the final results were smoothed out by taking 
the convex hull of the ‍D‍ vs. ‍σ‍ graph. The results for ‍σmin(NE, NC)‍ and ‍D(σmin, NE, NC)‍ (Figure 4) were 
obtained by adding ‍σ‍ to the optimization vector and then performing the optimization.

A similar numerical scheme was used to optimize diversity.
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Appendix 6
Analytical solution when ‍Ns ≫ 1‍
It is possible to obtain analytical expressions for the steady-state glycan distribution in the limit 
‍Ns ≫ 1‍ when the glycan index ‍k‍ can be approximated by a continuous variable. In this case, (15)–(16) 
can be cast as differential equations,

	﻿‍

dc(1)
k

dk
≈ c(1)

k − c(1)
k−1

=

(∑NE
α=1 R(1, k − 1,α) exp(−σ|k − 1 − l(1)

α |)
µ(1) +

∑NE
α=1 R(1, k,α) exp(−σ|k − l(1)

α |)
− 1

)
c(1)

k−1

≈ −

(
µ(1) + d

dk
∑NE

α=1 R(1, k,α) exp(−σ|k − l(1)
α |)

µ(1) +
∑NE

α=1 R(1, k,α) exp(−σ|k − l(1)
α |)

)
c(1)

k ,
‍�

(22)

and

	﻿‍

dc(j)
k

dk
≈ c(j)

k − c(j)
k−1

= µ(j−1)

µ(j) +
∑NE

α=1 R(j, k,α) exp(−σ|k − l(j)α |)
c(j−1)

k

−

(
µ(j) + d

dk
∑NE

α=1 R(j, k,α) exp(−σ|k − l(j)α |)

µ(j) +
∑NE

α=1 R(j, k,α) exp(−σ|k − l(j)α |)

)
c(j)

k
‍�

(23)

for ‍j = 2, . . . , NC‍. In equation 22 and equation 23,

	﻿‍

d
dk

NE∑
α=1

R(j, k,α) exp(−σ|k − l(j)α |)

=
NE∑
α=1

R(j, k,α)σ exp(−σ|k − l(j)α |)(1 − 2I(k ≥ lα)) + R′(j, k,α) exp(−σ|k − l(j)α |)
‍�

(24)

where the indicator function ‍I
(
·
)
‍ is equal to 1 if the argument is true, and 0 otherwise and ‍R′(j, k,α)‍ 

is the derivative of ‍R(j, k,α)‍ with respect to ‍k‍.
Define a vector function ‍C(k) ∈ RN

c ‍ of the continuous variable ‍k‍ by ‍C(k) = [c(1)
k , c(2)

k , . . . c(NC)
k ]‍. Then, 

(equation 22) and (equation 23) can be written as

	﻿‍
dC(k)

dk
= M(k)C(k)

‍�
(25)

where the matrix ‍M(k)‍ is given by

	﻿‍

M(k) =




A(1)(k) 0 0 0 . . . 0

B(2)(k) A(2)(k) 0 0 . . . 0

0 B(3)(k) A(3)(k) 0 . . . 0
...

...
...

...
...

0 . . . 0 B(NC)(k) A(NC)(k)



‍�

(26)

with
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	﻿‍

A(j)(k) = −
µ(j) + d

dk
∑NE

α=1 R(j, k,α) exp(−σ|k − l(j)α |)

µ(j) +
∑NE

α=1 R(j, k,α) exp(−σ|k − l(j)α |)

B(j)(k) = µ(j−1)

µ(j) +
∑NE

α=1 R(j, k,α) exp(−σ|k − l(j)α |) ‍�

The functions ‍A(j)(k)‍ and ‍B(j)(k)‍ involve absolute value and indicator functions; therefore, the 
differential equation has to be solved in a piecewise manner assuming continuity of solution ‍C(k)‍.

The general solution of (25)

	﻿‍ C(k) = C0 exp
(
Ω(k)

)
‍� (27)

is written in terms of the Magnus function ‍Ω(k) =
∑∞

n=1 Ω(n, k)‍, obtained from the Baker–Campbell–
Hausdorff formula (Blanes et al., 2009),

	﻿‍

Ω(1, k) =
´ k

0 M(k1)dk1

Ω(2, k) = 1
2
´ k

0 dk1
´ k1

0 dk2
[
M(k1), M(k2)

]

Ω(3, k) = 1
6
´ k

0 dk1
´ k1

0 dk2
´ k2

0 dk3
[
M(k1),

[
M(k2), M(k3)

]]
+
[
M(k3),

[
M(k2), M(k1)

]]

. . . . . . ‍�

where ‍
[
M(k1), M(k2)

]
:= M(k1)M(k2) − M(k2)M(k1)‍ is the commutator, and the higher order terms in … 

contain higher order nested commutators.
Here, we establish conditions under which the series ‍

∑∞
n=1 Ω(n, k)‍ that defines solution ‍C(k)‍ to the 

differential equation (25) converges. We also solve (25) for some special cases.
The commutator

	﻿‍

[M(k1), M(k2)] =




0 0 0 0 . . . 0

a21 0 0 0 . . . 0

a31 a32 0 0 . . . 0

0 a42 a43 0 . . . 0
...

...
...

...
...

0 . . . an,n−2 an,n−1 0



‍�

where

	﻿‍

ai,i−1 = A(i−1)(k2)B(i)(k1) + A(i)(k1)B(i)(k2) − A(i−1)(k1)B(i)(k2) + A(i)(k2)B(i)(k1)

ai,i−2 = B(i−1)(k2)B(i)(k1) − B(i−1)(k1)B(i)(k2) ‍�

The general form of ‍Ω(n, k)‍ is given by Blanes et al., 2009

	﻿‍
Ω(n, k) = zn

n!

ˆ k

0
dk1

ˆ k1

0
dk2 . . .

ˆ kn−2

0
dkn−1

ˆ kn−1

0
dkn

∑
l

WlM(kpl
1
)M(kpl

2
) . . .M(kpl

n
)
‍�

(28)

where ‍(p
(l)
1 , p(l)

2 . . . p(l)
n )‍ is a permutation of ‍(1, 2, 3, . . . n)‍, ‍Wl ∈ {−1, 1}‍, and ‍zn ∈ 1, . . .n‍.

Let ‍Ā = maxk,l,m |Ml,m(k)|‍. Define
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	﻿‍

=




Ā 0 0 0 . . . 0

Ā Ā 0 0 . . . 0

0 Ā Ā 0 . . . 0
...

...
...

...

0 . . . 0 Ā Ā



‍�

We can bound all the matrix elements of ‍Ω(n, k)‍ in the following way:

	﻿‍

Ωlm(n, k) ≤ znM̄n
l,m
´ k

0 dk1
´ k1

0 dk2 . . .
´ kn−1

0 dkn

= znM̄n
∣∣∣
lm

kn

n! ‍�

(29)

The matrix

	﻿‍

n =




a11 0 0 0 . . . 0

a21 a22 0 0 . . . 0

a31 a32 a33 0 . . . 0

a41 a42 a43 a44 . . . 0
...

...
...

...
...

an1 . . . an,n−2 an,n−1 ann



‍�

where ‍alm = Slm(n)Ān
‍ for appropriately defined polynomials ‍Sl,m(n)‍. Thus, it follows that 

‍Ωlm ≤ znSlm(n)(A∗)n kn

n!‍ and ‍Ωl,m(k) ≤
∑∞

n=1 znSl,m(n)(A∗)n kn

n!‍. Consequently, the series will converge if 
‍̄Ak < 1‍, that is, ‍k ≤ 1

Ā‍. Assuming ‍µ
(j) = µ ∀j‍, we can bound ‍̄A‍ as

	﻿‍
Ā ≤ max

j,k

(
µ + σ

∑NE
α=1 R(j, k,α) exp(−σ|k − l(j)α |)

µ +
∑NE

α=1 R(j, k,α) exp(−σ|k − l(j)α |)
+

∑NE
α=1 R′(j, k,α) exp(−σ|k − l(j)α |)

µ +
∑NE

α=1 R(j, k,α) exp(−σ|k − l(j)α |)

)

‍�
(30)

Since the parameters ‍µ, σ, R(j, k,α), l(j)α ‍, and ‍NE‍ are finite and positive, and ‍R′(j, k,α)‍ is finite, ‍̄A‍ 
has a finite upper bound, implying that ‍k‍ is always greater than zero, and the series has a finite radius 
of convergence.

While in principle we can obtain the glycan profile for any ‍NE‍ and ‍NC‍ with arbitrary accuracy, 
assuming ‍R(j, k,α) = R(j)

α ‍, we provide explicit formulae for a few representative cases: (i) ‍(NE = 1, NC = 1)‍ 
and (ii) ‍(NE = 1, NC = 2)‍.

i. ‍NE = 1, NC = 1‍: The solution of the differential equation is given by

	﻿‍

c(k)=





c0e−k
(
µ+R exp(−σ(l−k))

µ+R exp(−σl)

)(1/σ)−1
k ≤ l

c(l)e−(k−l)
(

µ+R
µ+R exp(−σ(k−l))

)(1/σ)+1
k > l

‍�

(31)

A representative concentration profile is plotted in Appendix 6—figure 1. The concentration 
profile consists of two distinct components: an initial exponential decay, and then an exponential 
rise and fall concentrated around ‍l‍. The relative weight of these two components is controlled by the 
sensitivity ‍σ‍ and the rate ‍R‍. Such explicit formulae can be obtained for any ‍NE > 1‍, as long as ‍NC = 1‍.
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(a) (b)

Appendix 6—figure 1. Glycan concentration profile calculated from the model using (a) formula (31) for 

‍NE = NC = 1‍ and (b) formulae (32)–(36) for ‍NE = 1, NC = 2‍.

ii. ‍NE = 1, NC = 2‍: The concentration profile ‍c(2)‍ in cisterna-2 can be obtained from the following 
calculation. Let ‍l(j)‍ denote the ‘length’ of the enzyme in cisterna ‍j = 1, 2‍. For ‍k ≤ min{l(1), l(2)}‍,

	﻿‍

c(2)(k) = c0µ
(1)e−k

(µ(2) + R(2) exp(−σ(l(2) − k))
µ(1) + R(1)e−σl(1)

)(1/σ)−1 ˆ k

0

(µ(1) + R(1) exp(−σ(l(1) − k)))(1/σ)−1

(µ(2) + R(2) exp(−σ(l(2) − k)))1/σ dk

+ c(2)(0)e−k
(
µ(2) + R(2)e−σ(l(2)−k)

µ(2) + R(2)e−σl(2)

)(1/σ)−1

‍
� (32)

Next, consider the case where ‍l(1) ≤ l(2)‍. Then, for ‍l(1) < k ≤ l(2)‍

	﻿‍

c(2)(k) = c(1)(l(1))µ(1)e−(k−l(1))(µ(1) + R(1))(1/σ)+1(µ(2) + R(2) exp(−σ(l(2) − k)))(1/σ)−1

ˆ k

l(1)

(µ(2) + R(2) exp(−σ(l(2) − k)))−1/σ

(µ(1) + R(1) exp(−σ(k − l(1))))(1/σ)+1 dk

+c(2)(l(1))e−(k−l(1))
(

µ(2) + R(2)e−σ(l(2)−k)

µ(2) + R(2)e−σ(l(2)−l(1))

)(1/σ)−1

‍�

(33)

and for ‍l(1) ≤ l(2) < k‍,

	﻿‍

c(2)(k) = c(1)(l(1))µ(1)e−(k−l(1))
(

µ(1)+R(1)

µ(2)+R(2) exp(−σ(k−l(2)))

)(1/σ)+1

ˆ k

l(2)

(µ(2) + R(2) exp(−σ(k − l(2))))1/σ

(µ(1) + R(1) exp(−σ(k − l(1))))(1/σ)+1 dk

+c(2)(l(2))e−(k−l(2))
(

µ(2) + R(2)

µ(2) + R(2)e−σ(k−l(2))

)(1/σ)+1

‍�

(34)

Next, the case where ‍l(1) ≥ l(2)‍. For ‍l(2) < k ≤ l(1)‍,
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	﻿‍

c(2)(k) = c0µ
(1)e−k (µ(1)+R(1)e−σl(1)

)1−(1/σ)

(µ(2)+R(2) exp(−σ(k−l(2))))(1/σ)+1

ˆ k

l(2)

(µ(1) + R(1) exp(−σ(l(1) − k)))(1/σ)−1

(µ(2) + R(2) exp(−σ(k − l(2))))−1/σ dk

+c(2)(l(2))el(2)−k
(

µ(2) + R(2)

µ(2) + R(2)e−σ(k−l(2))

)(1/σ)+1

‍�

(35)

For ‍(2) ≤ l(1) < k‍,

	﻿‍

c(2)(k) = c(1)(l(1))µ(1)e−(k−l(1))
(

µ(1)+R(1)

µ(2)+R(2) exp(−σ(k−l(2)))

)(1/σ)+1

ˆ k

l(2)

(µ(2) + R(2) exp(−σ(k − l(2))))1/σ

(µ(1) + R(1) exp(−σ(k − l(1))))(1/σ)+1 dk

+c(2)(l(1))e−(k−l(1))
(
µ(2) + R(2)e−σ(l(1)−l(2))

µ(2) + R(2)e−σ(k−l(2))

)(1/σ)+1

‍�

(36)

The integrals in (32)–(36) can be evaluated numerically. The result of the numerical computation 
is shown in Appendix 6—figure 1.

Appendix 6—figure 2a–d plots the glycan profile ‍ck vs. k‍ as one varies the enzyme specificity ‍σ‍, 
the reaction rates ‍R‍, and transport rates ‍µ‍, for two different values of ‍NE‍ and ‍NC‍. The results in the 
plots lead us to the following general observations:

i.	 Very-low-specificity enzymes cannot generate complex glycan distributions. Keeping 
everything else fixed, intermediate or high-specificity enzymes can generate glycan distribu-
tions of higher complexity by increasing ‍NE‍ or ‍NC‍ (Appendix 6—figure 2a and c).

ii.	 Decreasing the specificity ‍σ‍ or increasing the rates ‍R‍ increases the proportion of higher index 
glycans. Keeping everything else fixed, changes in the rate ‍R‍ have a stronger impact on the 
relative weights of the higher index glycans to lower index glycans. The relative weight of the 
higher index glycans increases with increasing ‍NE‍ and ‍NC‍ (Appendix 6—figure 2b–d).

iii.	 Keeping everything else fixed, decreasing enzyme specificity increases the spread of the distri-
bution around the peaks (Appendix 6—figure 2a and c).
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(a) (b)

(c) (d)

Appendix 6—figure 2. Glycan profile ‍{ck : k = 1, . . . , Ns}‍ as a function of specificity ‍σ‍ (a, c) and reaction rates 
‍R‍ (b, d). (a) ‍NE = NC = 1, (R = 50,µ = 1, l = 10)‍. ck decreases exponentially with ‍k‍ for very low and very high ‍σ‍; 
however, the decay rate is lower at low ‍σ‍. For intermediate values of ‍σ‍, the distribution has exactly two peaks, one 
of which is at ‍k = 0‍, and eventually decays exponentially. The width of the distribution is a decreasing function of 
‍σ‍. (b) ‍NE = NC = 1, (σ = 0.1,µ = 1, l = 10)‍. At low ‍R‍, ck is concentrated at low ‍k‍. The proportion of higher index 

glycans in an increasing function of ‍R‍. (c) ‍NE = NC = 2, (R = 40,µ = 1, [l(1)
1 , l(1)

2 , l(2)
1 , l(2)

2 ] = [10, 30, 50, 70])‍. 
As ‍σ‍ increases, the distribution becomes more complex – from a single-peaked distribution at low ‍σ‍ to a 
maximum of four-peaked distribution at high ‍σ‍. The peaks gets sharper, and more well defined as ‍σ‍ increases. 

(d) ‍NE = NC = 2, (R = 40,µ = 1, [l(1)
1 , l(1)

2 , l(2)
1 , l(2)

2 ] = [10, 30, 50, 70])‍. As in the plots in (b), increasing ‍R‍ shifts 
the peaks towards higher index glycans and the proportion of higher index glycan increases.
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Appendix 7
Extended distortion model shows lack of apparent symmetry
The results in Figure 4 seem to imply that there is an approximate ‍NE − NC‍ symmetry in the model, 
that is, increasing either ‍NE‍ or ‍NC‍ affects the fidelity, optimal enzyme specificity, and the sensitivity 
in approximately the same way. This is a consequence of the distortion model we are using for 
calculating the binding probabilities of substrates with enzymes, which allows every enzyme ‍α‍ to 
in principle catalyze any reaction in any cisterna. This allowed for the ideal enzyme length ‍l

(j)
α ‍ in 

Equation 3 to vary across the cisternae in an unconstrained manner, leading to simplification in the 
calculation. We now find that by changing this aspect of the model the apparent symmetry between 
‍NE − NC‍ is lifted. A more reasonable model for the ideal enzyme length is given by

	﻿‍ ℓ
(j)
α = ℓ(0)

α + δℓ
(j)
α , δℓ

(j)
α ∈ [−ℓ

(j)
b , ℓ(j)

b ],‍�

that is, the nominal length ‍ℓ
(0)
α ‍ can be distorted in a cisterna by a correction ‍δℓ

(j)
α ‍ but within a specified 

bound ‍ℓ
(j)
b ‍ that is not subject to optimization. One can render some enzymes inactive in certain 

cisternae by choosing appropriate values of ‍ℓ
(0)
α ‍ and ‍δℓ

(j)
α ‍. For small values for the bound ‍ℓb‍, for 

example, ‍lb/Ns ≤ 0.2‍ (here, ‍Ns − 1‍ is the number of enzymatic reactions), the decrease in ‍̄D‍ on 
increasing ‍NC‍ is small compared to increasing ‍NE‍ (see Appendix 7—figure 1). On the other hand, 
for large ‍ℓb‍, for example, ‍lb/NS ≥ 0.3‍, there is an approximate symmetry between ‍NE‍ and ‍NC‍ (see 
Appendix 7—figure 1). Here, we have taken the bounds to be compartment independent, that is, 

‍ℓ
(j)
b = ℓb‍.

(a) ��∕�� = 0.01 (b) ��∕�� = 0.1 (c) ��∕�� = 0.5

Appendix 7—figure 1. Optimum fidelity ‍̄DKL‍ as a function of ‍(NE, NC)‍ for different values of ‍ℓb/Ns‍, where 

‍ℓb‍ bounds the deformation in the ideal length ‍ℓ
(0)
α ‍ of an enzyme ‍α = 1, . . . , NE‍. Small values of ‍ℓb‍ restrict all 

enzymes from working in all cisternae and all substrates, where large value of ‍ℓb‍ removes this constraint.
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Appendix 8
Redundancies and non-convexity of the optimization
Validation of the numerical optimization scheme
In order to test whether our numerical optimization procedure is able to converge to the global 
minimum, we run the following test. We generate 100 random values of ‍(µ, R, L,σ)‍ within their 
respective ranges for a problem instance with ‍(NE = 2, NC = 2)‍. The sampled value for ‍(µ, R, L,σ)‍ 
is used to generate concentration profiles that are then used as the target distribution for the 
optimization. Since the target distribution is achievable, the optimal value of the constrained 
Optimization B for these sampled targets is ‍̄D = 0‍. We solve the constrained Optimization B using 
our numerical scheme. The average optimal value ‍̄D‍ across all sampled values was 9.1835e-07, 30 
out of 100 values were exactly zero, and the highest ‍̄D‍ was 1.1761e-05. Therefore, the optimization 
scheme was able to recover the concentration profiles almost exactly. Next, we ask whether the 
optimization problem recovers the value of ‍(µ, R, L,σ)‍ that was used to create the particular target 
distribution. We were able to recover ‍σ‍ exactly, except in cases where the concentration profile was 
almost a delta function at the first glycan (see Appendix 8—figure 1). This is because ‍σ‍ decides 
the typical width of the empirical distribution, and hence the optimal ‍σ‍ is determined by the typical 
width of the target distribution, except in the pathological case of a concentration profile that is 
almost a delta function at the first glycan – such a concentration profile can be made produced for 
any value ‍σ‍ by simply making transport ‍µ‍ very fast as compared to the reaction rates.

Appendix 8—figure 1. Recovering the ‍σ‍ values for different target distribution. Note that barring four data points 
all other optimized ‍σ‍ values (red dots) exactly overlap with the corresponding target ‍σ‍ (diamonds).

We note that the optimization in ‍(µ, R, L)‍ is not convex and leads to many equally good minimas 
corresponding to different values of ‍(µ, R, L)‍. The resulting redundancies in the model and their 
importance are discussed next.

Degeneracy in the model
Recall that in equation 7, we defined

	﻿‍
Reff(j, k) =

∑
α R(j)

α exp(−σ|k − l(j)α |)
µ(j) ‍�

In terms of these renormalized rates, the steady-state glycan concentration can be written as

	﻿‍
c̄(j)

k =
Reff(j, k)c̄(j)

k−1 + c̄j−1
k

1 + Reff(j, k)
,
‍�

(37)
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that is, the concentration is only a function of ‍Reff(k, j)‍. Thus, any combination of ‍(µ, R, L,σ)‍ that maps 
to the same value of ‍Reff ‍ will result in the same concentration profile and will be indistinguishable from 
the perspective of the objective function. Additionally, the mapping from ‍Reff ‍ to the concentration 
profile ‍̄c‍ also has degeneracy. We show these redundancies in the schematic below, which shows a 
systematic reduction in dimension to 1 (scalar), which is the quantity we optimize,

	﻿‍

R, L, µ, σ −→ Reff −→ c̄ −→ F

NC + 2NENC + 1 NC(NS − 1) NS − 1 1 ‍�

Since ‍F(cT||̄c) = 0‍ if and only if ‍cT = c̄‍, it follows that the last mapping does not have redundancy. 
Some of the sources of degeneracies in the mapping from ‍(µ, R, L,σ)‍ to ‍Reff ‍ are as follows:

i.	 For fixed ‍(σ, L)‍, setting ‍R
(j)
α ← γR(j)

α ‍ and ‍µj ← γ−1µj‍ leaves ‍Reff ‍ invariant.
ii.	 Permutations in the ‍α‍ index leave ‍Reff ‍ invariant. Thus, there are at least ‍(NE!)NC‍ distinct minima 

that map to the same value of ‍Reff ‍, and therefore, the same concentration ‍̄c‍.

Additionally, there are degeneracies coming from the optimization which depend on the target 
distribution ‍cT ‍. Having discussed the sources of degeneracies of the optimized solution, we now 
discuss the distribution of the optimized solutions.

Distribution of minima
To study the behaviour of the optimization algorithm for different initial points, we numerically 
investigate the distribution of function values at different local minima. Since the dimension of the 
optimization problem is ‍NC + 2NENC + 1‍, which is large, we divide the optimization space into a grid 
of ‍I = n(NC+2NENC+1)

p ‍ points. We did this numerical experiment for ‍(NE, NC) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}‍. 
The value of ‍np = 3‍ for ‍(NE, NC) = (2, 2)‍ and ‍np = 4‍ for the rest. The target distribution for all the cases 
is a single Gaussian with mean 20, standard deviation 5, with support on ‍1 ≤ k ≤ 20‍. The results of 
this numerical experiment are summarized in Appendix 8—figure 2 and Appendix 8—table 1, from 
which we deduce the following:

i.	 A large fraction of the initial starting points converge to a set of degenerate minima with 
objective function value exactly equal to the global minimum. These minima are a result of the 
degeneracies of the optimization problem.

ii.	 There are other local minima with objective value very close to (but not equal) the global 
minimum. Most initial points converge to one of these two sets of minima.

iii.	 Finally, there are a small set of local minima with significantly higher objective values. These 
correspond to minima with ‍σ = 0‍. The fraction of initial points that converge to such minima 
reduces as the dimension of the optimization space increases.

Appendix 8—table 1. Distribution of local minima.

‍NE‍ ‍NC‍ ‍min D̄KL‍ ‍max D̄KL‍

Fraction of initial conditions 
within  ‍̄DKL ≤ 0.0228‍

1 1 0.0228 0.44 0.56

2 1 0.0081 0.44 0.73

1 2 0.0051 0.29 0.70

2 2 1.17e-4 0.29 0.84
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(a) �� = 1, �� = 1 (b) �� = 2, �� = 1

(c) �� = 1, �� = 2 (d) �� = 2, �� = 2

Appendix 8—figure 2. ‍̄D‍ for various initial conditions, sorted in increasing order for clarity. This clearly shows the 
fraction of initial conditions for which the optimized ‍̄D‍ is small (see Appendix 8—table 1).
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Appendix 9
Robustness of optimization to small perturbations
We analyse the sensitivity to small perturbations around the optimal point by calculating the Hessian 
of the KL divergence,

	﻿‍
H(i, j) = ∂2

∂Xi∂Xj
F

∣∣∣∣∣
Xmin‍�

(38)

Here, ‍X =
[
µ, R, L,σ

]
‍ denotes the entire set of optimization variables (note that the entries in ‍X ‍ 

are normalized by their respective range and do not carry physical dimensions). We calculated the 
eigenvalues, denoted by ‍λi‍, and eigenvectors, denoted by ‍Vi‍, of the Hessian matrix to identify the 
stiff and sloppy directions (Gutenkunst et al., 2007; Machta et al., 2013) in the optimization space. 
The eigenvectors of the Hessian matrix can be grouped in ‍R, L,µ‍, and ‍σ‍ directions by looking for the 
most dominant component in the eigenvector. We find that most of the eigenvectors have significant 
entries along the direction of only one of the optimization variables ‍µ, R, L,σ‍ , for example, in 
Figure 6a, the eigenvectors 21–36 have significant entries only in the ‍L‍ directions. There is, however, 
a small number of eigenvectors that have entries over more than one optimization direction, for 
example, the eigenvector with ‍σ‍ dominant direction has some ‍µ‍ component as well (Figure 6a).

Stiff and sloppy directions
We find that the eigenvalues of the eigenvectors dominated by ‍σ‍ and some ‍µ‍, ‍L‍ directions are 
orders of magnitude higher than for those dominated by the ‍R‍ directions (see Figure 6b). This 
suggests that ‍̄D‍ has a valley-like structure around the optimal, with ‍R‍ and some ‍L‍ being the flat or 
sloppy directions.

The fact that enzyme specificity ‍σ‍ and some of the ‍L‍ directions are stiff should not be surprising 
since the typical width and position of peaks in the synthesized distribution are primarily controlled 
by ‍σ‍ and ‍L‍. We have already shown that ‍̄D‍ is a sharp convex function of ‍σ‍ for low values of ‍(NE, NC)‍ 
(see Figure 3), which gradually flattens out as we increase ‍(NE, NC)‍.

The fact that transport rate ‍µ‍ is a stiff direction is surprising! The stiffness in ‍µ‍ is due to the fact 
that the optimal ‍µ‍ is always at the lower bound, and with even slight increase in ‍µ‍, the transport 
becomes too fast for the reactions to be able to produce the intermediate products. For the 

‍(R, L)‍-dominated eigenvectors, there are bands of sloppy direction and stiff directions. We define 
the average stiffness in ‍µ, R, L‍, and ‍σ‍ by a weighted average of eigenvalues, where the weight is 
given by the strength of the corresponding components of the eigenvector.

	﻿‍
⟨λ⟩µ = ln

(∑
i

w(µ)
i λi

)
, ⟨λ⟩R = ln

(∑
i

w(R)
i λi

)
, ⟨λ⟩L = ln

(∑
i

w(L)
i λi

)
, ⟨λ⟩σ = ln

(∑
i

w(σ)
i λi

)

‍�

Here, ‍w
(µ)
i =

∑
j∈µ |Vi,j|/

∑
j |Vi,j|‍, ‍w

(R)
i =

∑
j∈R |Vi,j|/

∑
j |Vi,j|‍, ‍w

(L)
i =

∑
j∈L |Vi,j|/

∑
j |Vi,j|‍ and 

‍w
(µ)
i =

∑
j∈σ |Vi,j|/

∑
j |Vi,j|‍.

Figure 6c  shows ‍⟨λ⟩µ‍, ‍⟨λ⟩R‍, ‍⟨λ⟩L‍, and ‍⟨λ⟩σ‍ as a function of ‍NC‍ for fixed ‍NE = 4‍. The average 
stiffness in ‍R‍ directions, ‍⟨λ⟩R‍, is considerably lower than the average stiffness in ‍σ‍, ‍µ‍ and ‍L‍ directions. 
‍σ‍ is the stiffest direction but the stiffness decreases on increasing the ‍NC‍. Interestingly, the stiffness 
along ‍L‍ directions increases on increasing ‍NC‍.

We now define the total average stiffness ‍⟨λ⟩ = log(
∑

λi
NC+2NENC+1 )‍, that is, log of the sum of the 

eigenvalues divided by the dimension of the optimization problem, in the space of ‍NE, NC‍ . We find 
that the average stiffness is higher for low values of ‍(NE, NC)‍ as compared to higher values of ‍(NE, NC)‍, 
with a few exceptions; and eventually, the average stiffness settles to a fixed low value (Figure 6d).
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Appendix 10
Insensitivity of diversity to threshold cth
Since the threshold ‍cth‍ used to count the number of glycan species in the definition of diversity is 
arbitrary (see section ‘Strategies to achieve high glycan diversity’), we here show that the qualitative 
results we obtain are independent of this choice (Appendix 10—figure 1).

(a) ��ℎ = 1
��

(b) ��ℎ = 1
2��

(c) ��ℎ = 1
4��

Appendix 10—figure 1. Diversity vs. ‍NC‍ for different values of ‍σ‍ keeping ‍NE = 1‍ fixed, for three different values 
of the threshold, ‍cth = 1

Ns
, 1

2Ns
, 1

4Ns ‍. Changing the value of the threshold ‍cth‍ only changes the saturation value of 
the diversity curve.
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Appendix 11
Table of symbols used in the article (Appendix 11—table 1)

Appendix 11—table 1. Table of symbols and their definitions.

Symbol Definition

‍c
(j)
k ‍ Concentration of ‍k ‍th glycan in ‍j‍th compartment

‍µ
(j)

‍ Transport rate from ‍j‍th to ‍j + 1‍ compartment

‍σ‍ Specificity of the enzymes

‍ℓ
(j)
α ‍ Ideal substrate length for αth enzyme in ‍j‍th compartment

‍M(j, k,α)‍ Enzyme parameter related to the Michaelis constant ‍KM ‍

‍V(j, k,α)‍ Enzyme parameter related to ‍Vmax‍

‍R(j,α)‍ Reaction parameter for Optimization B

‍D(c∗∥c)‍ KL divergence between ‍c∗‍ and ‍c‍

‍F(c∗||c)‍ Fidelity, KL divergence normalized by the entropy of the target ‍c∗‍

‍̄D(σ, NE, NC, c∗)‍
‍minµ,R,LF(c∗||c)‍ 

‍Reff(j, k)‍ Effective reaction rate of ‍k ‍th reaction in ‍j‍th compartment

https://doi.org/10.7554/eLife.76757
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