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A B S T R A C T

Study region: The European alpine space.
Study focus: Despite the advancements in hydrological modeling, there is a lack of com-

parative studies quantifying the performance differences between local and large-scale models,
particularly in the context of drought and low flow assessment. This study addresses this gap by
designing a framework to evaluate the European Flood Awareness System (EFAS), a continental
system, in simulating low flow events across 101 alpine stations from 1999–2018, with detailed
comparisons to two local systems — GR6J in France and PREVAH in Switzerland — at 34 of
these stations.

New hydrological insights for the region: The results show that the local systems, PREVAH
and GR6J, generally outperform the continental system EFAS for almost all stations. The
performance gap between the systems increases as low flow conditions intensify, highlighting
the importance of local systems for extreme low flow events. Despite EFAS not being specifically
set up for low flows, it has shown an overall acceptable performance compared to the local
hydrological systems, especially at locations that are not calibrated within the EFAS system,
indicating its potential in ungauged areas. This study lays a foundation for understanding how
a continental hydrological system like EFAS can complement local systems or fill the gap when
a local system is unavailable to provide reliable predictions of low flow conditions.

1. Introduction

The European Alps have experienced a notable shift in hydrological patterns, particularly a change in the frequency and severity
of low flow events since the end of the 20th century (Brunner et al., 2023; Bard et al., 2015). Such events exert critical pressure
on ecosystems and present challenges for cross-border and local water management in the alpine region, as many economic sectors
rely on water availability, including hydropower production, navigation and transportation, agriculture, and tourism. As a result,
there is an increasing need for decision-makers to have access to accurate simulations and early warnings tailored to local low flow
conditions.
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The landscape of hydrological modeling has evolved significantly from the first widely used rainfall-runoff model (the Rational
Method) to conceptual models and physics-based models (Beven, 2012). The field of hydrology has also embraced the advancements
of machine learning (ML) and artificial intelligence (AI) with ongoing developments to incorporate ML and AI into hydrological

odeling, especially using long short-term memory (LSTM) network (Kratzert et al., 2018) as well as hybrid (AI + process-informed)
ystems (Slater et al., 2023; Ng et al., 2023; Wei et al., 2024).

Physics-based hydrological models are typically informed by static physiogeographical input and time-varying meteorological
bservations or weather—climate model outputs to provide simulations of streamflow at different time scales (typically from hourly
o annual) and spatial resolutions (from lumped models at the catchment scale to fully-distributed pixel-based models) (Beven,

2012). Unlike meteorological or climate models, which are needed at global scales to provide boundary conditions for regional
models and which rely heavily on global information, most hydrological models are set up locally at the catchment scale or regional
level. The development of global hydrological models began in the late 1980s, aiming to map the global water balance at large
scales. However, these early models lacked the accuracy required for local-scale water management and decision-making. Over
time, improvements in meteorological and hydrological modeling, particularly the integration of ensemble prediction systems (EPS),
advancements in precipitation forecasting, and increased computational power, led to the development of numerous continental and
global hydrological systems. Several reviews provide valuable insights into the development and application of these large-scale
hydrological models. For instance, Sood and Smakhtin (2015) examined the evolution of 12 global hydrological models (GHMs),
highlighting structural differences, limitations in model uncertainty, data scarcity, integration with remote sensing data and spatial
resolution, while Bierkens et al. (2015) provides an overview of 14 global-scale and 4 continental-scale models, illustrating the
breadth of hydrological forecasting tools available. Emerton et al. (2016) investigated six state-of-the-art operational large-scale
lood forecasting systems (two global and four continental) and analyzed their capability to produce coarse-scale discharge forecasts
n the medium-range. In a comparison study, Crochemore et al. (2020) found comparable performance between the continental

model E-HYPE and local model GR6J when forecasting seasonal streamflow anomalies. In another comparison study with local
applications, Kolling Neto et al. (2023) showed that with simple corrections, weekly streamflow forecasts from continental-scale
models can achieve competitive skill as those issued by local operators for Brazilian hydropower plants. Today, systems such as
he World-Wide HYPE (WWH) model (Arheimer et al., 2019), the Global Flood Awareness System (GloFAS) (Alfieri et al., 2013;

Harrigan et al., 2020), the NOAA Water National Water Model WRF-hydro (Johnson et al., 2023), and the African Flood and Drought
Monitor (AFDM) (University of Southampton, 2024), simulate streamflows in both gauged and ungauged catchments operationally
t various centers or agencies.

These advancements highlight how large-scale modeling systems offer several advantages, such as providing extensive coverage
of hydrological conditions over large areas and offering longer forecast lead times, making them particularly useful for early warning
systems. Their wide coverage, especially in ungauged areas, has the potential to significantly enhance the effective implementation of
initiatives like Early Warnings for All (World Meteorological Organization, 2023, 2024), which aims to deliver early warning systems
globally, particularly in regions lacking local infrastructure. However, their coarse spatial resolution often limits their accuracy,
especially in complex terrains like the European Alps (Brunner et al., 2019). In contrast, local models can perform data assimilation
more easily to improve accuracy, run faster with higher-resolution setups, and provide a more in-depth understanding of local-scale
hydrological processes and responses to meteorological forcings and human activities. However, local systems may lack the flexibility
to incorporate Earth observations or global datasets and may not have the capacity to cover large spatial domains (Emerton et al.,
2016).

Although different model setups (e.g., local vs. global models) offer distinct advantages and limitations, making the selection
of an appropriate model important, Addor and Melsen (2019) highlights a strong tendency towards legacy-driven model selection.
This reflects a preference among institutions and modelers for familiar or previously implemented models, even when alternative
models might offer comparable or competitive performance or be more suitable for specific project purposes. The reluctance to
adopt new systems is driven by familiarity and previous use, as well as the challenges in conducting comprehensive comparative
analyses of model outputs. In fact, despite the advancements in hydrological modeling, there is a lack of comparative studies that
quantify the performance differences between local and large-scale models, particularly in the context of drought risk assessment.
This prevalence of legacy in model selection can lead to missed opportunities to improve forecasting systems, thus (Addor and
Melsen, 2019) calls for more model intercomparison studies as they can provide guidance for model selection and improve model
dequacy. Both Addor and Melsen (2019) and Emerton et al. (2016) advocate for a more flexible multi-model setup as the way

forward to further advance hydrological forecasting. Such approaches could combine the strengths of local and large-scale models,
providing more comprehensive and accurate hydrological forecasts for a variety of applications.

This paper presents a comparative analysis of three hydrological systems operating at both continental and local scales — the
uropean Flood Awareness System (EFAS) covering Europe and the local systems GR6J and Precipitation-Runoff-Evapotranspiration
RU Model (PREVAH) operating in France and Switzerland, respectively. Our particular focus is on evaluating and contrasting the

modeling systems’ capabilities in simulating low flow conditions for the European alpine region (Fig. 1). The aim is to quantify the
differences in performance between the continental-scale EFAS system and the locally set-up GR6J and PREVAH systems. Identifying
the strengths and limitations of each modeling system will help us understand how they can complement each other in developing
a robust low flow forecasting system for the alpine region, thereby contributing to a path towards better assisting regional and
local water resource management in their decision-making. By conducting a detailed comparative analysis of model simulations,
this study establishes an effective framework for evaluating different local and continental hydrological systems. As outlined in
Fig. 1, this workflow enhances our understanding of the different systems’ performance under low flow conditions and provides
a structured methodology for future studies to evaluate and select appropriate model systems for hydrological simulations across
various geographical settings.
2 
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Fig. 1. Illustration of the study framework. The study area, outlined by the red line on the map, encompasses the European alpine regions of Italy (IT),
France (FR), Switzerland (CH), Germany (DE), Austria (AT), and Slovenia (SI). 101 EFAS reporting stations are selected, distinguished by the calibration status
within EFAS. This study carries out (1) a threshold analysis to determine the low flow event thresholds, (2) log KGE’ and CSI analyses to evaluate the system
performance, (3) duration and magnitude analyses, and (4) case studies at two selected stations with a focus on hits, misses and false alarms. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

2. Modeling system overview

Continental system - EFAS

In Europe, the European Flood Awareness System (EFAS, https://confluence.ecmwf.int/display/CEMS/European+Flood+Awa
eness+System), part of the European Union (EU) Copernicus Emergency Management Service (CEMS), has been operated by

the Joint Research Centre (JRC) and four operational centers: the hydrological data collection center (Ghenova Digital), the
meteorological data collection center (KISTERS AG and Deutscher Wetterdienst), the dissemination Centre (Swedish Meteorological
and Hydrological Institute, Rijkswaterstaat and Slovak Hydro-Meteorological Institute), and the computational center (European
Centre for Medium-Range Weather Forecasts, ECMWF), since 2012 to provide hydrological simulations and forecast twice a day at
3 

https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System
https://confluence.ecmwf.int/display/CEMS/European+Flood+Awareness+System


A.Y.-Y. Chang et al.

f
y

o

u
y
p

E

o
m
f

m

A

o

t

Journal of Hydrology: Regional Studies 56 (2024) 102056 
6-hourly and kilometer scales over European river basins. EFAS has originally been designed to support and complement national
lood forecasting services, in particular at trans-boundary catchments (Thielen et al., 2009), and has expanded gradually over the
ears including to cover flash-floods (Alfieri et al., 2013) and to simulate long-range low flow predictions (Arnal et al., 2018).

Currently, EFAS delivers an extensive assessment of flood risk and issues flood notifications to the EFAS partners with a forecast
lead time of up to 15 days. Based on an ensemble of state-of-the-art meteorological forecasts, EFAS hydrological simulations are
btained from the LISFLOOD model — a continental-scale, fully-distributed, physics-based hydrological model (De Roo et al., 2000).

For simplicity purposes, hereafter the term ‘‘EFAS’’ is used to denote both the LISFLOOD model and its generated streamflow data
product. The EFAS v4.0 is the version investigated in this study. It was calibrated at 1137 stations in 215 different catchments,
sing data from nearly 3000 river gauging stations. Calibration is performed on catchments larger than 500 km2, with at least four
ears of discharge data within the calibration period (1990–2017), and a preference for 6-hourly data. Calibration in EFAS v4.0 is
erformed on 14 parameters using an evolutionary optimization algorithm (EA). The objective function for EFAS calibration is the

modified Kling-Gupta Efficiency (KGE’, see Section 3.4), tailored towards better flood simulation (Kling et al., 2012). Approximately
50% of the calibration stations achieve a KGE’ value greater than 0.75, indicating high system performance. The accuracy of EFAS
outputs and the system’s performance are evaluated regularly, showing consistent improvements (CEMS, 2023).

The EFAS hydrological model runs continuously in time and, therefore, despite being initially developed to capture flood events,
FAS has also been investigated with respect to its ability to simulate low flow situations and capture large-scale droughts at sub-

seasonal to seasonal time scales covering the range from two weeks to 3 months. Arnal et al. (2018) investigated the propagation
f skill from meteorological seasonal forecasts to EFAS’ seasonal forecasts. Their findings indicate that EFAS shows skill for the first
onth of lead time for low flow conditions. Performance analyses demonstrated the ability of EFAS seasonal outlooks to capture low

low anomalies with the example of capturing the drought that happened in Sweden in 2017 (Arnal et al., 2018). Wetterhall and Di
Giuseppe (2018) found that EFAS, when forced with the merged seasonal forecast system (SEAM), shows an improved prediction of
low flow conditions, with the example of the 2003 extreme low flow event. Despite these efforts, the potential of using EFAS for low
flow simulation remains under-investigated, especially in the context of the changing hydrological landscape of the European Alps,
as well as its gap and complementary added value to operational models already locally set up and running for low flow prediction
and risk-based decision-making.

Local systems - PREVAH & GR6J

The two ‘‘local systems’’ we have selected to compare with EFAS are the GR6J and PREVAH models. The GR6J model is one of the
models included in the operational low flow forecasting tool PREMHYCE (Nicolle et al., 2020; Tilmant et al., 2023) covering France,

anaged by France’s National Research Institute for Agriculture, Food and Environment (INRAE). The model is a lumped, conceptual
model, calibrated against local observations over the period of 1963–2020, and designed to improve accuracy in low flow prediction,
while maintaining simplicity in capturing the rainfall–runoff relationship, in particular, in medium-size catchments (Nicolle et al.,
2014, 2020; Pushpalatha et al., 2011). PREVAH, operated by the Swiss Federal Institute for Forest, Snow and Landscape Research
(WSL) in Switzerland, is a semi-distributed, process-based model (Gurtz et al., 1999; Viviroli et al., 2009). It is specifically designed
for high-resolution simulations in mountainous areas, making it adept at handling the complex hydrological dynamics of the Swiss

lps. The model PREVAH, calibrated over the period of 1984–1996, is operational and responsible for providing hydrological
outlooks on the open platform drought.ch (Zappa et al., 2014; Speich et al., 2015). Unlike EFAS, which is used for flood monitoring
and forecasting, both local systems are currently used operationally for low flow and drought monitoring and predictions. With
their local focus by design, for operations in their respective countries, the local systems are expected to provide a more targeted
calibration or a more in-depth understanding of the local-scale hydrological processes than EFAS and therefore better accuracy.

Configuration comparison

Besides the different geographical coverage, the modeling systems analyzed in this study also differ from one another in terms
f model structure, temporal and spatial resolution, calibration strategy, meteorological input datasets, and other configurations

(see Table 1 for a comparison), which can all contribute to differences in their performance. In this study, we do not focus on
the comparisons of every aspect of the systems. However, bearing these differences among the three systems in mind, we take a
pragmatic approach to compare their ability to reproduce observed patterns in streamflow during low flow periods, with a focus on
understanding the performance gaps between the local and the continental systems.

3. Methodology

The methodology to evaluate model performance used in this study follows the workflow outlined in Fig. 1. We first select
stations based on the availability of observational streamflow data and evaluate EFAS’ ability to capture their overall hydrological
behavior. At those stations in France and in Switzerland where local systems are available, we start by conducting a percentile
analysis to determine the low flow event thresholds and investigate the duration and magnitude of these events in EFAS and the
respective local systems. We use different verification metrics to evaluate the performance of each system by comparing model
simulations with observations. We conclude the study with two case studies on one station in the French dataset and one station in
he Swiss dataset for a closer look at how the systems perform in terms of hits, misses, and false alarms.
4 
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Table 1
Summary of the main features of the EFAS, PREVAH and GR6J systems.

EFAS PREVAH GR6J

Operated by CEMS-Flood WSL INRAE
Version 4.0 Extracted on airGR 1.7.0

16.03.22
Type Full-distributed, Semi-distributed, Lumped,

physics-based process-based process-based
Temp. Resol. 6-h Daily Daily
Spatial Resol. 5 km × 5 km 500 m × 500 m Catchment-scale
Coverage Europe Switzerland France
Calibration metric modified KGE’ NSE KGE, NSE
Meteo inputs European Meteorological Observations (EMO5)

(Thiemig et al., 2022)
MeteoSwiss (Speich et al., 2015) Météo-France SAFRAN

(Quintana-Seguí et al.,
2008; Vidal et al.,
2010)

3.1. Data and station selection

To perform system comparisons between EFAS and the two local systems, PREVAH and GR6J, we use historical streamflow
imulation data from these models along with observational streamflow data. The selected study period is from 1999 to 2018.

We extract historical streamflow simulations at EFAS reporting stations, which are gauged locations with streamflow measurements
n the CEMS-Flood database. While all model calibrations in EFAS are carried out at reporting stations, not all reporting stations
re calibrated. This depends on the quality of the observation data and the catchment area as described in the section above. Our
election of stations is primarily dictated by the availability of continuous observational streamflow data with no missing data for
onger than seven consecutive days. There are more than 500 EFAS reporting stations within the European Alpine space, and our
election process results in a total of 101 stations: 1 in Italy (IT), 12 in France (FR), 22 in Switzerland (CH), 29 in Germany (DE),
6 in Austria (AT), and 11 in Slovakia (SI). Among these, 73 stations are calibrated while 28 stations are not calibrated within
FAS. Focusing on the region where we have the local systems, one out of the 12 stations in France and 15 out of the 22 stations
n Switzerland are calibrated in EFAS. Finally, we note that all stations selected in France (Switzerland) are calibrated in the GR6J
PREVAH) system.

To retrieve daily observational streamflow data at these reporting stations, we use several databases, including the Alpine
rought Observatory (Žun et al., 2022), the Global Runoff Data Centre (GRDC) (Global Runoff Data Centre (GRDC), 2023), and the

HydroPortail in France (Dufeu et al., 2022). In addition to EFAS historical streamflow data, we extract daily streamflow simulations
from the local systems PREVAH and GR6J for the selected stations in Switzerland and France, respectively. The EFAS data are
publicly available on the Copernicus Climate Change Service (C3S) Climate Data Store (CDS), and the GR6J and PREVAH data are
vailable upon request.

For EFAS, we first transform the 6-hourly dataset into a mean daily streamflow time series. For all data, we apply a 7-day moving
average to reduce random variations in the data. This approach improves the day-to-day consistency of the time series, allowing for
clearer detection of extended low flow periods for the evaluation of the system (Caillouet et al., 2017). The moving window is set
to 7 days to match the weekly streamflow cycle as many catchments are influenced by hydropower production regulations (Meile
et al., 2011).

3.2. Study area

The study area encompasses the European Alpine space (outlined by red border in Fig. 1), featuring a diverse range of catchments
in terms of size, elevation, and other hydrological characteristics. This region provides an ideal setting to evaluate the performance
of continental and local hydrological models across varying conditions. Tables S1 to S3 in the Supplement provide summaries of
the main characteristics of the selected catchments in the study area. The catchment size ranges from 75 to 101,800 km2, with the
elected catchments in Switzerland showing a wide range, from 1150 to 35 800 km2, and catchments in France up to 2,038 km2.
iven the wide range of the upstream areas of the catchment, for comparison purposes, daily streamflow is converted to specific

discharge normalized by area and has a unit of mm. With the study area located in a mountainous region, the stations vary in height
ith median elevations starting from 98 m up to 1078 m. The highest station is the station Martinsbruck on river Inn, at the border
f Switzerland and Austria. This elevation diversity contributes to diverse climatic conditions and results in different hydrological
egimes within the study area, including nival (snow-dominated) and pluvial (rainfall-dominated) systems, which are discussed in
ore detail in the section below.

3.3. Climatology and low flow thresholds

A streamflow climatology is computed to gain insights into the typical patterns and variations of streamflow over time, as well
as to establish criteria defining low flow periods. To create this climatological distribution, we first select, for each day of the year
within the 20-year period (1999–2018), all the (7-day smoothed) daily streamflow data within a 31-day window that is centered on
5 
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that day, spanning 15 days before and after the central day (Brunner et al., 2022). By comparing the climatologies of the catchments
in France and Switzerland, we observe a distinct difference in hydrological regimes. Catchments in Switzerland typically exhibit a
nival regime (snow-fed), where streamflows are predominantly driven by snow and ice melt. This nival regime is characterized by a
bell-shaped hydrograph, with streamflow increasing from early in the year, peaking around June or July due to snowmelt, and then
gradually decreasing towards year-end (an example can be found in Fig. 5a). On the other hand, catchments in France in our sample
are more typically influenced by a pluvial regime (rain-fed), where rainfall is the primary driver of streamflow. These catchments
experience higher flows during winter and fall, attributed to increased rainfall, and lower flows during spring and summer, reflecting
the seasonal precipitation patterns (an example can be found in Fig. 5b).

We compute low flow thresholds for each day of the year based on specific percentiles of the climatological distribution, focusing
n streamflows within the lower 25th, 15th, and 5th percentiles of this distribution (Hisdal et al., 2024). These thresholds are used
o identify and characterize low flow occurrences. For any given day, if the streamflow falls below the threshold, it is marked as

a low flow day. Each day is analyzed individually without applying any persistence criterion or pooling of events. We distinguish
between observational climatology, derived from historical observed data, and model climatology, derived from simulations, each
providing distinct criteria for defining low flow events. Defining low flow events using the respective climatology allows us to
capture the onset of these events and the deficit relative to each system (either the model simulation or the observations). With
this approach, we can focus on evaluating the models’ systematic errors, like their tendency to overestimate or underestimate low
flows. This method effectively isolates the biases of the models but may not fully account for random errors or the exact matching
of low flow magnitudes.

3.4. Verification metrics

To evaluate model performance, we employ two established goodness-of-fit measures. The first one is the log modified Kling-
upta Efficiency (KGE’) for the entire time series. The second metric is the critical success index (CSI) for low flow events
nly.

Modified Kling–Gupta efficiency (KGE’)
Introduced by Gupta et al. (2009), KGE is a widely accepted hydrological model evaluation metric that addresses some limitations

ssociated with the traditional Nash–SutcliffeEfficiency (NSE) (Schaefli and Gupta, 2007). Kling et al. (2012) introduced a modified
version of this index (KGE’) to prevent cross-correlation between the bias and the variability ratios. The KGE’ is calculated using
the following formula:

𝐾 𝐺 𝐸′ = 1 −
√

(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (1)

𝛽 =
𝜇𝑠
𝜇𝑜

, (2)

𝛾 =
𝜎𝑠∕𝜇𝑠
𝜎𝑜∕𝜇𝑜

, (3)

where 𝑟 is the Pearson correlation coefficient, and hence 𝑟 evaluates the linear correlation between the observed and simulated flows
nd provides an indication of how well the pattern of the simulated sequence of flows matches the pattern of the observed flow over
ime. 𝛽 is the bias ratio of the mean simulated flow to the mean observed flow, and it assesses the model’s accuracy in estimating
he flow magnitude. Lastly, 𝛾 is the ratio between the coefficient of variances of the simulated flow and that of the observed flow,
nd it ensures that the model adequately represents the range of flow variations. The KGE’ provides a comprehensive assessment
y simultaneously considering correlation, bias, and variability in the model outputs compared to observed data.

Studies have suggested the use of log-transformed streamflow data to compute the verification metric when evaluating low
flow conditions (Krause et al., 2005; Pechlivanidis et al., 2014). Here we apply a logarithmic transformation to both observed and
imulated flow data before calculating the KGE’. This transformation amplifies the differences in smaller values, making it more

effective than the regular KGE’ in low flow analysis by emphasizing the lower range of the flow spectrum. For this reason, only log
KGE’ is applied in this study.

The ideal value for each of the KGE’ components is 1 and the range of log KGE’ values is between −∞ to 1. A value of 1 indicates
a perfect match between the logarithms of the observed and simulated data, indicating an optimal model performance. The further
away from a value of 1, the bigger the discrepancy is between the observed and simulated data. We consider a log KGE’ value greater
than −0.41 to be acceptable and indicative of model performance better than the mean flow benchmark, as suggested by Knoben
et al. (2019). While using the mean flow as a benchmark with a KGE’ value of −0.41 may not represent a particularly challenging
threshold, Knoben et al. (2019) demonstrated that negative KGE values do not necessarily indicate worse model performance than
the mean flow, despite the common use of zero as the threshold for acceptable performance. Knoben et al. (2019) shows that using
a mean flow benchmark yields a KGE’ value of approximately −0.41 (KGE′

clima = 1 − √

(1 + 0 + 1) = −0.41), where the correlation
coefficient is zero, 𝜇𝑠 = 𝜇𝑜, and the standard deviation of mean flow is also zero. These assumptions are valid in the case of the log
ransformation. Additionally, the same benchmark was employed to evaluate GloFAS in Harrigan et al. (2020), providing further
recedent for its use in this study.
6 
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Critical success index (CSI)
The Critical Success Index (CSI) (Schaefer, 1990) is another commonly used metric to evaluate the accuracy of a model to detect

vents. Different from KGE’ or log KGE’, which evaluates the continuous time series, the CSI was developed to evaluate the predictive
ower of dichotomous events. In our case, we use the CSI to assess the low flow event identification ability of a simulation with

reference to observations, where events are grouped into four combinations of simulations and observations, based on the frequency
f simulation and occurrences in the observations. The four combinations are:

• ‘‘hit’’ - event simulated to occur, and also observed;
• ‘‘false alarm’’ - event simulated to occur, but not observed;
• ‘‘miss’’ - event simulated not to occur, but observed;
• ‘‘correct negative’’ - event simulated not to occur, and also not observed.

The CSI is defined as:

𝐶 𝑆 𝐼 = hits
hits + false alarms + misses (4)

The value of CSI ranges from 0 to 1, with 1 indicating perfect simulation/predictive power, and 0 indicating no power. A key
trength of the CSI is that it accounts for both false alarms and misses, providing a balanced evaluation. In addition, the CSI disregards

the correct simulation of non-events (or ‘‘correct negatives’’), which takes up the majority of the occurrences. Hence, the CSI is a
uitable metric for investigating rare and extreme events. We consider a CSI of 0.5 as an acceptable value because it implies that
he number of hits equals the combined number of misses and false alarms. The CSI values are computed for thresholds at 25th,
5th, and 5th percentiles.

To complement CSI and to have a deeper understanding of what contributes to a high or low CSI value at a given station, we
also compute the probability of detection (POD) and the false alarm rate (FAR):

𝑃 𝑂 𝐷 = hits
hits + misses (5)

𝐹 𝐴𝑅 = false alarms
hits + false alarms (6)

3.5. Duration and magnitude

Duration and magnitude are important aspects when evaluating low flow events. The duration of a low flow event is the number
of days between the first day and the last day where the streamflow is below the threshold. Based on duration, we categorize events
into six categories: shorter than 3 days, between 3 days and a week, longer than a week but shorter than 2 weeks, longer than 2
weeks but shorter than 3 weeks, longer than 3 weeks but shorter than 4 weeks, and longer than 4 weeks. These duration categories
are selected considering the usefulness of the information to decision-makers; for example, events that are shorter than 3 days can
be considered occurrences that do not have an impact on the major operational decisions.

For each low flow event, we also compute the magnitude, which is the total amount of water in deficit (also known as severity)
elative to the threshold, divided by the duration of the event. For comparison purposes across different catchments, we compute
ow flow severity in units of mm, and magnitude in units of mm/day

3.6. Case study analyses

We examine two distinct stations: Rheinhalle in Switzerland and L’Ognon à Pesmes in France (see red arrows in Fig. 2a). Their
main characteristics are summarized in Table 2. Both stations are representative of the typical flow regimes in their region, as
escribed earlier, that is, a nival regime (governed by snow melt) for station Rheinhalle in Switzerland (see Fig. 5a), and a pluvial
egime (governed by rainfall events) for station L’Ognon à Pesmes in France (see Fig. 5b). We choose the station Rheinhalle for its

trans-national location at the border of Switzerland, Germany, and France and its important economic role in transportation and
avigation on the River Rhine. The station L’Ognon à Pesmes represents a small catchment station, with its area aligning closely
ith the 25th percentile of catchment sizes within the study.

4. Results

4.1. Overall performance assessment with log KGE’

We first evaluate the entire time series of simulated flows (1999–2018) at all 101 stations using log KGE’ to capture a holistic view
f EFAS’ ability to simulate the observed hydrological behavior, with more weight on low flows. The spatial distribution of log KGE’

values across the study region (see Fig. 2a) shows a heterogeneous pattern of model performance. While most locations exhibit
high log KGE’ values (with a median of 0.81) indicating very good model fit, a few stations show poor performance, suggesting
challenges in simulating flows at these specific catchments.

Notably, four stations display log KGE’ values lower than −0.41 (colored in orange in Fig. 2a), suggesting that the model is
performing more poorly than a simple mean flow prediction at these catchments (Knoben et al., 2019). These four stations are:
7 
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Table 2
Summary of the main characteristics of the selected stations Rheinhalle (Switzerland) and L’Ognon à
Pesmes (France).

Rheinhalle L’Ognon à Pesmes

EFAS ID #353 #3228
Country Switzerland France
River Rhine Ognon
Area (km2) 35,897 2,038
Station elevation (m) 246 185
Mean annual specific discharge 𝑄𝐴 (mm) 932 305
25th percentile annual specific discharge (mm) 834 265
15th percentile annual specific discharge (mm) 809 243
5th percentile annual specific discharge (mm) 722 208

• Neudorf bei Ilz on river Ilzbach (EFAS ID #2139, AT, area: 150 km2, elevation: 278 m),
• Imbach on river Krems (EFAS ID #2141, AT, area: 375 km2, elevation: 231 m),
• Neuenstadt on river Brettach (EFAS ID #2152, DE, area: 75 km2, elevation: 159 m),
• Martinsbruck on river Inn (EFAS ID #2564, CH, area: 2025 km2, elevation: 1076 m).

These stations are not calibrated within EFAS and are geographically dispersed, suggesting that poor performance is not confined
o a particular area. The strongly negative log KGE’ values are likely due to the log transformation, as no KGE’ values without the
og transformation fall below the −0.41 threshold (not shown).

Visual inspection of Fig. 2a shows no consistent relationship between log KGE’ values and catchment position along rivers or EFAS
calibration status. Stations in close proximity tend to exhibit similar performance irrespective of their calibration (e.g. two clusters
of stations with high performance in south-eastern Germany and northern Switzerland and a cluster of stations with reduced model
performance in eastern Austria), implying that large-scale processes or features like lakes and dams may influence EFAS performance
more than calibration at individual stations. Additionally, regional landscape and geological characteristics could further impact
the model’s performance by affecting processes that might not be well-represented in the system, thus contributing to the observed
variations in model accuracy (Horton et al., 2022).

Fig. 2b takes a closer look at the 34 stations located in France and Switzerland, comparing their log KGE’ values in EFAS with
those in the local systems GR6J and PREVAH. Generally, the local systems outperform EFAS; however, at a few stations, EFAS
performs comparably or even better than the local models, irrespective of its calibration status. These stations include:

• Thun on river Aare (EFAS ID #339, CH, area: 2650 km2, elevation: 548 m),
• Diepoldsau on river Rhine (EFAS ID #354, CH, area: 6275 km2, elevation: 410 m),
• Soyans on river Roubion (EFAS ID #2069, FR, area: 317 km2, elevation: 200 m),
• Saint-Hippolyte on river Dessoubre (EFAS ID #3237, FR, area: 550 km2, elevation: 380 m).

The median of the log KGE’ differences calculated at each station indicates that EFAS’s performance is approximately 12.5%
oorer than that of the local systems. At six stations, the local systems outperform EFAS by more than 50%, particularly at non-
alibrated EFAS stations, highlighting the impact of calibration on model performance. Analysis of KGE’ components (Figure S1
n the Supplement) suggests that biases in mean flow (Beta component) and variability (Gamma component) contribute to EFAS’s
ower log KGE’ values at these stations. Overestimation of mean flow and streamflow variability leads to discrepancies between
imulated and observed flows.

Grouping the stations by EFAS calibration status (Fig. 2c) shows greater variability in log KGE’ among non-calibrated EFAS
stations compared to the local systems, suggesting that EFAS’s performance is more sensitive to catchment characteristics when not
calibrated. Nevertheless, some non-calibrated EFAS stations achieve log KGE’ values comparable to those of the local systems (refer
to panel (b)), indicating EFAS’s potential utility in ungauged or data-sparse regions. Furthermore, although all local system stations
are calibrated, their log KGE’ values are generally higher at EFAS-calibrated locations than at non-calibrated ones. This implies that
factors other than calibration — such as catchment characteristics — are influencing performance at these stations within the local
systems.

4.2. Low flow detection assessment with CSI

To assess the performance of the different systems in simulating low flows, we analyze the CSI values at the selected stations in
France and Switzerland for EFAS and the local systems at low flow thresholds of the 25th, 15th, and 5th percentiles (see Fig. 3). As
expected, model performance deteriorates for all systems as the threshold lowers from the from 25th to 5th percentiles, with more
tations falling below the CSI benchmark of 0.5, indicating decreased ability to simulate extreme low flow events. This trend may
lso be influenced by fewer available data points at lower thresholds, potentially leading to less stable CSI statistics.

Consistent with the log KGE’ analysis (Fig. 2), the CSI analysis shows that local systems outperform EFAS at most stations.
owever, at certain stations, EFAS performs much more poorly than the local system based on the log KGE’ evaluation, exhibiting
egative values, but the performance gap is less pronounced in the CSI metric. This is likely due to that CSI assesses the model’s
bility to capture the occurrence of events rather than focusing on flow bias and variability (see Section 4.1 for the breakdown of

KGE’ components). These stations include:
8 
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Fig. 2. Log KGE’ analyses from 1999–2018: (a) Log KGE’ values of EFAS simulation at all 101 selected stations in the Alpine space. Stations with a local system
available for further comparisons are entirely located in France and Switzerland. Calibrated EFAS stations are denoted by dots (73), and non-calibrated EFAS
stations are denoted by triangles (28). The red outline defines the boundary of the alpine space. Red arrows indicate the two case study stations: Rheinhalle in
Switzerland and L’Ognon à Pesmes in France. (b) Log KGE’ of the EFAS simulation at 34 selected stations in Switzerland and France, in comparison with those
of the local systems PREVAH and GR6J, respectively. (c) Log KGE’ comparison for the same 34 stations in panel (b) but grouped based on EFAS calibration
status. 16 stations are calibrated (labeled ‘‘TRUE’’) and 18 are non-calibrated (labeled ‘‘FALSE’’) in EFAS. Note that all stations at these locations in the local
systems are calibrated. Outliers are not shown. Log KGE’ range: −∞ to 1. Perfect score: 1. Acceptable Log KGE’ values: > −0.41 (Knoben et al., 2019). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• Porte du Scex on river Rhone (EFAS ID #371, CH, area: 5300 km2, elevation: 377 m),
• Souspierre on river Jabron (EFAS ID #2070, FR, area: 75 km2, elevation: 298 m),
• Martinsbruck on river Inn (EFAS ID #2564, CH, area: 2025 km2, elevation: 1076 m).

As the low flow threshold lowers from 25th to 5th percentiles, EFAS’s performance deteriorates at a slightly higher rate than
hat of the local systems, resulting in a larger performance gap for more intense low flow conditions. The increasing performance

difference suggests the need for a local system with a more detailed calibration strategy and more precise meteorological forcing data
hen it comes to capturing more intense low flow events. Notably, the local systems tend to also perform poorly at stations where
FAS has poor performance (e.g. stations #345, #2564, #355, #372, and #371). Fig. 3 further indicates that model performance
oes not systematically vary with catchment size, nor do the differences in performance between the models.

Grouping stations by EFAS calibration status (Fig. 3b, d, and f) shows that at the 25th percentile threshold, EFAS can achieve a
median CSI value just above 0.5, even for the non-calibrated stations. At a lower threshold of 15th percentile, only the calibrated
tations have a median CSI value of 0.5, and at the 5th percentile threshold, neither calibrated nor non-calibrated EFAS stations
each a median CSI of 0.5. Nevertheless, at all thresholds, at least 25% (top IQR) of EFAS stations have CSI values within the range
f the local systems, suggesting EFAS’s potential utility even at non-calibrated stations.

For further analysis, we select the 15th percentile threshold to define low flow events, as model errors are expected to change
ystematically with threshold levels. Complementary results for POD and FAR are provided in Figures S2 and S3 in the Supplement.

The generally higher CSI values of the local systems result from higher POD and lower FAR. While EFAS does not outperform the
ocal systems, it achieves POD and FAR levels within the range of the local systems, even at non-calibrated stations.
9 
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Fig. 3. Panels (a, c, e) - CSI values of EFAS simulation at 34 selected stations in Switzerland and France, in comparison with those of the local systems PREVAH
and GR6J, respectively. Panels (b, d, f) - CSI comparisons at the same 34 stations, but grouped based on EFAS calibration status. 16 stations are calibrated
(labeled ‘‘TRUE’’) and 18 are non-calibrated (labeled ‘‘FALSE’’). CSI range: 0 to 1. Perfect score: 1. Top panel: 25th percentile threshold, middle panel: 15th
percentile threshold, bottom panel: 5th percentile threshold.

4.3. Event duration & magnitude

Capturing the duration and magnitude of low flow events is crucial for accurate hydrological evaluations and decision-making.
In Fig. 4, we compare the number of occurrences and mean magnitudes of events with different durations for EFAS, local systems,
and observations.

Stations in Switzerland (Fig. 4a): EFAS simulates more events than observed in most duration categories other than events shorter
than 3 days and longer than 4 weeks. EFAS better simulates shorter events (less than one week) compared to PREVAH but is less
accurate than PREVAH for longer durations, where PREVAH aligns more closely with observations. Notably, at the 15th percentile
threshold, PREVAH captures long events up to 154 days (observed: 158 days), while EFAS’s longest simulated event is 90 days.
Regarding magnitudes, excluding events shorter than 3 days, EFAS matches observed magnitudes for events less than 2 weeks.
However, for events longer than 2 weeks, EFAS begins to overestimate magnitudes, with discrepancies increasing as event duration
increases. PREVAH exhibits similar behavior but starts overestimating at the 3-week duration. Compared to EFAS, the discrepancies
between PREVAH and observations are smaller (except for 2-week events) and remain relatively consistent across all durations.

Stations in France (Fig. 4b): The difference between EFAS and GR6J is more pronounced. EFAS simulates more short events
less than 2 weeks) than both GR6J and observations. For 3-week events, both systems simulate similar numbers as observed. For

events longer than 4 weeks, GR6J closely matches observations, while EFAS underestimates the occurrences (about half of observed
long events). The lack of calibration in EFAS at these stations in France may contribute to its lower performance. GR6J effectively
captures the number of longer events, with its longest event at 165 days (observed: 156 days), whereas EFAS’s longest event is
82 days. EFAS’s high number of short events results from false alarms and misses that fragment long events into shorter ones (see
example in Fig. 7). Examining magnitudes at stations in France, EFAS overestimates magnitudes for events up to 2 weeks compared
o observations. EFAS simulates events with relatively consistent magnitudes for events lasting more than one week, but the observed
agnitudes increase significantly from 2 to 3 weeks, leading to a large discrepancy in the 3-week (15–21 days) category. Compared

o EFAS, GR6J maintains a more consistent gap with observations across all event durations.

4.4. A closer look: Case studies for selected stations

For the two selected stations, Rheinhalle in Switzerland and L’Ognon à Pesmes in France, Fig. 5 shows the differences between
the climatology-based low flow event threshold at 25th, 15th, and 5th percentiles of the EFAS system (yellow lines) and the local
systems (dark magenta for PREVAH in panel a and light magenta lines for GR6J in panel b), against the observed climatology in
he blue background.
10 
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Fig. 4. Comparison of occurrences for events of different durations from 1999–2018, and the corresponding mean magnitudes in units of mm/day, the specific
discharge normalized by area. (a) catchments in Switzerland and the local system is PREVAH. (b) catchments in France and the local system is GR6J. Low flow
threshold: 15th percentile. Note the different scales in the two sub-figures.

Fig. 5. 25th, 15th, and 5th percentile climatological low flow thresholds in panel (a) at Station Rheinhalle (35,897 k m2) for observations in shaded blue
background, EFAS in yellow lines and PREVAH in dark magenta lines; in panel (b) at station L’Ognon à Pesmes (2,038 k m2) for observations in shaded blue
background, EFAS in yellow lines and GR6J in light magenta lines. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

At both stations — Rheinhalle and L’Ognon à Pesmes — EFAS and the local systems capture the general patterns of observed
streamflow but exhibit contrasting tendencies in simulating low flows. At Rheinhalle, EFAS underestimates flows in winter and
early spring and overestimates low flows in summer and autumn, while PREVAH aligns more closely with observations, showing
11 
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Fig. 6. Case study at station Rheinhalle (35,897 k m2, Switzerland). (a) and (b) mark the false alarms (FA, dark purple), hits (H, green), misses (M, light purple),
and correct negatives (CN, light gray) for each day of the year from 1999–2018, for EFAS and PREVAH, respectively. Low flow threshold: 15th percentile. (c)
Climatological percentile of daily streamflows for observations and model simulations in 2003. The gray dashed line indicates the low flow threshold at the 15th
percentile. The boxed area highlights the long-lasting summer low flow event. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the opposite pattern. At L’Ognon à Pesmes, EFAS thresholds are generally below observations with notable deviations with an
exceptionally high peak in late spring/early summer for the 25th percentile threshold, whereas GR6J thresholds are generally above
observations except for the 5th percentile during mid-summer to late autumn. These differences highlight the contrasting responses
of EFAS and the local models to the hydrological regimes at each station, reflecting their varying abilities to simulate low flow
dynamics.

Figs. 6 and 7, depict the daily classification of hits (green), misses (light purple), false alarms (dark purple), or correct negatives
(light gray) for EFAS in panel a and for the local system in panel b throughout the study period (1999–2018). These visuals effectively
illustrate the models’ abilities to capture observed low flow periods.

At Rheinhalle (Fig. 6), both EFAS and PREVAH generally simulate low flows well, with more hits than misses or false alarms,
and effectively capture wet or drought-free periods (prevalence of correct negatives). However, they exhibit different distributions
of misses and false alarms without a consistent seasonal pattern, likely due to the moving threshold used to define low flows (by
construction, exactly 15% of the periods are classified as low flow/droughts). During the severe heatwave and drought of summer
2003 (Fig. 6c), EFAS fails to simulate most low flow days, displaying a ‘‘flashy’’ behavior and missing the long-lasting low flow
event. In contrast, PREVAH captures the event’s duration with a slight (3-day) delay at the onset but has more misses towards the
end of the highlighted summer period.

At L’Ognon à Pesmes (Fig. 7), the differences between EFAS and the local system are more pronounced than at Rheinhalle station.
EFAS generates more false alarms and misses compared to GR6J. Similar to the comparison at Rheinhalle, EFAS simulates the long-
lasting low flow period more poorly compared to the local system. Since the analysis is based on relative low flow conditions,
the systems are not penalized for simulating flows lower than the observations, as long as they accurately capture the timing when
12 
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Fig. 7. Same as Fig. 6 but for station L’Ognon à Pesmes (2,038 k m2, France). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

observations fall below their threshold. During the summer period of 2003, while both models capture the timing of observed peaks,
EFAS has more difficulty in capturing the correct flow percentile magnitudes, resulting in more misses. Both systems perform better
in autumn and winter than in spring and summer; during the latter seasons, EFAS overestimates flow percentiles, whereas GR6J
underestimates them.

Interestingly, despite the different climatologies and hydrological regimes, both catchments exhibit similar patterns in low flow
occurrences and model performance. This suggests that certain challenges in simulating low flow events are consistent across
different hydrological settings.

4.5. Specific analysis of dry years

In the previous section, we investigate how the systems behave during the long-lasting low flow event in 2003 at two selected
stations. To gain a broader understanding of system performance during dry years across all stations, we now present an analysis
focusing on the driest years of our study period for all selected catchments. For each year from 1999 to 2018, we assess the total
number of days when observed daily streamflow fell below the 15th percentile threshold at each station. Based on this analysis
(Figure S4 in the Supplement), we select the years 2003, 2011, and 2018 for an in-depth examination, as they exhibited the most
extensive low flow periods across the majority of stations. The results in Fig. 8 show that for the three selected dry years, the local
systems generally simulate fewer false alarms, more hits, and fewer misses than EFAS (Fig. 8).

To further understand the models’ behavior during dry years, we analyze the standard deviation of streamflow percentiles, as
shown in Figures S5 and S6 in the Supplementary Material. In the three selected dry years (2003, 2011, and 2018), EFAS exhibits a
higher standard deviation of streamflow percentiles compared to observations and the local systems. In Switzerland, this increased
variability is most notable in 2003, while in France, EFAS shows higher standard deviations in all three years, especially in 2003
13 
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Fig. 8. Number of false alarms (FA), hits (H), and misses (M) associated with the EFAS simulations in comparison to the two local systems PREVAH (left panel)
and GR6J (right panel), in the three selected dry years of 2003, 2011, and 2018 combined. Low flow threshold: 15th percentile.

and 2018. This analysis explains why the differences between local and EFAS models are larger in the catchments in France than in
Switzerland. The higher variability indicates EFAS’s ‘‘flashy’’ behavior, particularly in pluvial catchments during dry months, where
the model simulates sudden fluctuations in streamflow not observed in reality, which could be attributed to precipitation input or
representation of the soil water storage capacity in the model.

5. Discussion

Building upon our findings in Section 4, we further analyze the performance differences between the continental system (EFAS)
and local systems, focusing on catchment size, event duration, calibration status, and hydrological regime type.

5.1. Large vs. small catchments

In general, one expects model performance to improve as the catchment size increases, partly because smaller catchments are
less likely to have a rain gauge within the catchment, reducing the accuracy of precipitation forcing (Michelon et al., 2021). In the
ase of EFAS, the system has been shown to perform better in larger catchments for floods (Alfieri et al., 2014). However, from our
nalysis, there is no clear link between catchment size and system performance in terms of its overall ability to simulate flows as
easured through the log KGE’ criteria (Fig. 2), and more specifically for low flow conditions in Fig. 3. There is a slight indication

that the performance gap between EFAS and the local systems decreases with increasing catchment size, suggesting the need for a
more locally set up system for smaller catchments while a continental system like EFAS can provide reasonably good simulations for
larger catchments. Nevertheless, the model performance gap does not change at a consistent level for the catchments investigated,
suggesting that catchment size is likely not a dominant factor influencing the model performance gap.

5.2. Long vs. short low flow events

Overall, EFAS tends to correctly capture short low flow events at the expense of displaying more false alarms compared to local
ystems. It is, however, less capable of simulating long-lasting events, compared to the local systems, due to its flashy behavior
s shown in Section 4.4. Although we only present results for two catchments in detail, with the additional dry year analysis in

Section 4.5, the flayshy behavior of these two catchments is representative of the selection stations, especially in pluvial catchments.
his flashy behavior could be attributed to differences in the implementation or the calibration of the degree-day snow melt model
sed by EFAS, which only considers air temperature without accounting for the energy balance. While the two local systems also
mplement the degree-day approach (Viviroli et al., 2009; Valery, 2010), EFAS might misclassify precipitation as snow during winter
when it is actually rain) and melt it more slowly (due to the lack of energy storage), thus extending the melting period into late

summer. However, this is not the case in the pluvial catchments in France, and yet EFAS exhibits similar flashy behavior where the
model responses sensitively to precipitation and exaggerates streamflow peaks. Other potential reasons for this behavior include
the forcing data, which may produce small peaks not present in locally observed precipitation data, or the routing equation in the
model, which dominates the shape of the hydrograph recession curve at the end of the model structure.

From a water management perspective, a 2-month low flow event can trigger a very different operation strategy than a 2-week
low flow event, making it important to improve EFAS’ flashy low flow behavior in the future. Having said that, we should also note
that, if for this hypothetical 2-month event, EFAS predicts two one-month events with a small gap of missed days in between with
14 
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its seasonal outlook, the system can still provide valuable information for decision-makers, especially when local systems are not
et up to provide extended range probabilistic forecasts of low flows, as EFAS could provide.

The ability to simulate the severity or the magnitude of low flows in EFAS varies with event duration but without a clear pattern.
lthough EFAS does not simulate event magnitudes as accurately as the local systems in most stations considered in this study,

uture studies could explore applying a correction factor derived from duration-dependent magnitude analysis to EFAS outputs.
his adjustment could enhance the confidence level of decision-makers relying on EFAS.

5.3. Calibrated vs. non-calibrated stations

While all stations in the local systems are calibrated, 18 of the 34 stations are not calibrated in EFAS. The lack of calibration at
these stations on the one hand contributes to the performance gap between EFAS and the local systems. On the other hand, the overall
acceptable performance of EFAS, with performance values within the range of the values obtained with local systems, is a strong
indication that EFAS can provide useful information in ungauged catchments or regions with poor or insufficient streamflow data
for low flow predictions, especially since they are indistinguishable in Figs. 2 and 3. Stations displaying the lowest CSI values within
FAS also show similarly low CSI values in local systems. Notably, the majority of these stations with the lowest CSI values within
FAS are non-calibrated. This mirrored low performance suggests that the predictive limitations might be due to the complexities of

the catchments’ response during low flow periods, rather than being inherent to the scale of the model, whether it is a continental
or a local modeling system.

5.4. Nival vs. pluvial regimes

All selected stations in Switzerland follow a nival regime, while those in France follow a pluvial regime. Two representative
case studies of each regime are analyzed in detail in this paper. The results show that EFAS is able to capture the climatological
patterns of both regimes. However, the discrepancies between EFAS simulations and observations vary depending on the regime.
In general, in the nival catchment, the EFAS system is drier than observed in winter and spring, but wetter in summer and autumn
(e.g. Fig. 5a). In the pluvial catchment, EFAS is drier than observed throughout the year, but has the smallest discrepancy in the
summer months (e.g. Fig. 5b). The overestimation of streamflow in EFAS for a nival regime could be attributed to the degree-day
snow melt model as described in Section 5.2. For the discrepancy in streamflow simulation of EFAS in pluvial regimes, one possible
cause might be the forcings used in the system, which may not accurately reflect observed precipitation and evapotranspiration
conditions. The EFAS Meteorological Observation maps, available on the CEMS-flood confluence website, show that the rain gauge
network in France (pluvial catchments) is sparse compared to Switzerland (nival catchments) (CEMS, 2023).

6. Conclusions

This study provides a comprehensive comparison of EFAS, as an example a continental hydrological system, with two locally
calibrated systems, GR6J in France and PREVAH in Switzerland, to assess their ability to simulate low flows in the European
Alps. Analyzing 34 catchments over a 20-year period, we focus on overall performance and the simulation of low flow periods
using threshold-based events defined via time-varying climatological percentiles. Our findings show that the local systems generally
outperform EFAS across almost all stations, with the performance gap becoming more pronounced during more intense low flow
events. Specifically, EFAS tends to simulate lower streamflows than observations in late winter and early spring but overestimates
nd exhibits a flashier behavior during summer, leading to shorter simulated low flow events compared to observed long-lasting
onditions, especially for pluvial catchments.

Despite being outperformed, the performance of EFAS is not out of range relative to the local systems, with about a 12.5%
reduction in performance based on the log KGE’ metric. Notably, stations with poor performance in EFAS also exhibit lower
performance in the local systems, and the performance difference between EFAS and local systems at non-calibrated EFAS locations
s comparable to that at calibrated locations. This suggests that EFAS has the potential to provide low flow simulations in ungauged
r non-calibrated catchments, highlighting its utility as a continental-scale system for low flow prediction. Our work contributes to
 better understanding of the low flow simulation capabilities of continental-scale systems and presents an evaluation framework
hat can be applied to other regions where performance analysis is needed before operational implementation.

While our study offers valuable insights and a practical evaluation framework, it is important to acknowledge several limitations
that need to be considered.

• Low flow threshold: Low flow events are identified using time-varying thresholds based on climatology from 1999–2018.
Different time periods may produce different thresholds. While we expect the general conclusions to hold, future studies could
carry out sensitivity tests using other time periods or thresholds.

• Verification metrics: The log KGE’ and CSI metrics used have known limitations. Log KGE’ has issues with zero flows, flow
units, and mean flow dependency, as discussed by Santos et al. (2018). CSI, being dichotomous, does not penalize discrepancies
in deficit magnitude but focuses on timing. Future work could explore alternative transformations or metrics.

• Data size: The dataset here is relatively small, with two local systems and 34 stations within them. Expanding the analysis to
other alpine regions would provide a broader perspective. However, GR6J and PREVAH are state-of-the-art, locally calibrated
systems that in operation for low flow/drought monitoring, and their use as benchmarks strengthens our findings. Despite
the small number of stations, the dataset includes a range of catchment sizes, elevations, and hydrological regimes, ensuring
robust results.
15 
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Although local systems demonstrate higher accuracy in simulating low flows — particularly during prolonged and severe low
low events — continental systems like EFAS offer unique advantages that can significantly contribute to hydrological modeling and
ater resource management. EFAS provides continuous pan-European coverage, including transboundary catchments, and delivers

seasonal streamflow predictions using state-of-the-art probabilistic forecasts. These features offer opportunities to extend EFAS’s
application from flood to drought prediction, enhancing early warning systems and contributing to initiatives like the WMO’s Early
Warnings for All.

Moreover, EFAS can supply gridded pan-European historical simulation datasets needed for training ML models, which benefit
rom extensive data coverage. Integrating EFAS outputs with local systems or ML techniques presents an interesting pathway for
uture research and operational developments. Such integration could enhance operational decision-making and low flow prediction
apabilities, especially in regions lacking well-established local models. By combining the strengths of both continental-scale and

local systems, the hydrological community can work towards more accurate and reliable predictions.
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