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ABSTRACT

In French dairy sheep, Fourier transform infrared 
(FTIR) milk spectral data routinely predict the major 
milk components used in national genetic evaluations. 
The direct influence of genetic and environmental fac-
tors on milk FTIR spectra has been widely studied in 
dairy cattle, with relatively little focus on dairy ewes. 
In this study, 36,873 milk test-day records were avail-
able for 4,712 French Lacaune ewes farmed on 8 com-
mercial farms. Our main goals were to provide the first 
description of spectral data and estimate the genetic 
parameters of French Lacaune dairy sheep during lacta-
tion. Principal component analysis results demonstrated 
the impact of lactation period on specific wavenumbers, 
allowing the identification of FTIR spectra collected at 
early (mo 2–4) and late (mo 5–7) lactation stages. The 
average estimated heritability (± mean SE) of the FTIR 
milk spectra from 2,971 to 926 cm−1 (446 wavenumbers) 
was 0.29 ± 0.02, ranging from 0.13 ± 0.01 to 0.42 ± 0.02. 
Furthermore, the heritabilities of spectra collected at the 
beginning or end of lactation changed at each point of the 
spectrum. However, at each wavenumber, the genomic 
correlation of transmittance values between these 2 lac-
tation periods was high (>0.77), indicating the absence of 
a genotype–environment interaction. The genomic cor-
relations between spectral regions and milk production 
traits (i.e., daily milk yield, fat and protein content, SCS) 
varied from moderate to high. The results suggested that 
the most heritable areas of the spectrum were also geneti-
cally associated with dairy traits. Finally, the genomic 
correlations observed between the ewes’ feed efficiency 
traits and the FTIR spectrum were moderate to high, 
whereas the genomic correlations between the change in 
body condition score and spectral data were rather low to 

moderate. This study confirmed that spectral data from 
Lacaune ewe milk were heritable, evolved phenotypical-
ly and genetically during lactation, and were genetically 
correlated with traits included in breeding goals or traits 
of interest to the dairy industry.
Key words: dairy sheep, mid-infrared spectra, 
heritability, genomic correlation, feed efficiency

INTRODUCTION

Fourier transform infrared (FTIR) spectroscopy is the 
preferred global method for routine dairy product quality 
control, as this method provides thorough information 
on the chemical composition and molecular structure of 
milk (Pereira et al., 2020). The spectral data come from 
the interaction of an infrared beam with milk molecules, 
resulting in absorbance values at different wavelengths, 
which are subsequently converted into an infrared spec-
trum using Fourier transformation (Ghosh and Jayas, 
2009). This method enables rapid, high-throughput 
(100–600 sample analyses per hour), and nondestruc-
tive quantification of milk composition using prediction 
equations, avoiding the need for reference methods that 
are costly and time-consuming (Pereira et al., 2020; Soy-
eurt, 2023).

In French dairy sheep, FTIR spectra derived from 
individual milk samples are used to predict the fat and 
protein contents (FC and PC) of milk. These traits have 
been routinely used in national genetic evaluations since 
the 1980s for the Lacaune breed (Barillet et al., 2001a; 
Duchemin et al., 2012). Quality control of individual or 
flock (tank sample) milk using FTIR spectra is also car-
ried out for milk payment to the farmer and for flock 
management purposes. The milk FTIR spectral data have 
only been routinely stored and standardized since 2019 
for the French Lacaune breed. The correction of spectral 
variability observed between different spectrometers and 
over time, originally developed for cows, consisted of 
normalizing spectral data from sheep milk using standard 
cow milk.
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Milk FTIR spectral data have been used for a wider 
range of prediction applications for milk-derived traits. 
The most accurate prediction equations can be used 
routinely for field applications (Coppa et al., 2010). In 
dairy sheep, prediction equations have been developed 
to predict milk fatty acid (Ferrand-Calmels et al., 2014; 
Lužová et al., 2014; Caredda et al., 2016; Correddu et al., 
2021) and protein profiles (Ferrand et al., 2012), as well 
as cheese-making properties (Ferragina et al., 2017; Cel-
lesi et al., 2019; Manuelian et al., 2019). More recently, 
FTIR spectra from dairy sheep have been shown to be a 
potential tool for predicting non-milk-derived traits, such 
as dietary regimens (Molle et al., 2021), methane emis-
sion (Correddu et al., 2023), and individual feed intake 
(Ledda et al., 2023).

Despite the accessibility of data, spectral informa-
tion has been underused, primarily employed indirectly 
through predictive models of FC and PC for breeding 
purposes (Soyeurt et al., 2010; Dagnachew et al., 2013a; 
Du et al., 2020). Calculating heritability estimates for 
milk wavenumbers serves several purposes. First, it en-
ables us to determine if genetic variability exists across 
the entire spectrum or is concentrated in specific regions. 
This helps us identify which parts of the spectrum are 
more genetically variable and if these regions are corre-
lated with traits that are challenging to measure directly. 
A highly heritable wavenumber that predicts a difficult-
to-measure trait can serve as a proxy, facilitating evalua-
tion and selection. Second, a better understanding of the 
genetic determinism of milk spectra could clarify their 
relationship with the milk composition traits included 
in breeding programs and how these selected traits are 
influenced by genetic factors (Dagnachew et al., 2013a; 
Congiu et al., 2024).

Understanding the heritability of wavenumbers may 
guide the use of spectral data to improve animal evalu-
ation methods. The studies of Dagnachew et al. (2013b) 
and Bonfatti et al. (2017) showed that more accurate es-
timated breeding values can be calculated using genetic 
components of milk FTIR spectra (latent traits from prin-
cipal component analysis [PCA]) compared with milk 
components single-trait animal models. Dagnachew et al. 
(2013b) applied this direct approach for determining milk 
component traits in dairy goats, and Bonfatti et al. (2017) 
adapted the approach for determining the fine composi-
tion and technological properties of milk in Simmental 
cows. To improve the accuracy of dairy cow evaluation 
methods, milk FTIR spectra have also been used to bet-
ter capture environmental variance in genomic models 
for unpredicted traits such as milk yield and SCS (Tiezzi 
et al., 2022). Finally, the use of spectral data instead of 
genomic data to assess individual similarities, focusing 
on wavenumbers with significant genetic variability, has 
been studied mainly in plants (Rincent et al., 2018).

The genetic variability of the FTIR spectra of milk has 
been mainly explored in dairy cattle, which showed mod-
erate to high heritabilities (Soyeurt et al., 2010; Bittante 
and Cecchinato., 2013; Rovere et al., 2019). In dairy 
goats, Dagnachew et al. (2013a) also presented a similar 
pattern of heritability of FTIR milk spectra. Recently, 
Congiu et al. (2024), presented low to high heritability 
estimates ranging from 0.03 to 0.62, depending on spec-
tral regions, in Italian Sarda dairy sheep breed. Certain 
heritable wavenumbers of cow and goat milk spectra 
have been reported to be phenotypically associated with 
milk fatty acids, proteins, and lactose (Bittante and Cec-
chinato, 2013; Dagnachew et al., 2013a; Zaalberg et al., 
2019; Du et al., 2020). Thus, genetic correlations between 
FTIR spectra and milk composition traits, along with the 
heritabilities of the milk spectra, can help determine if 
the same highly heritable wavenumbers are also geneti-
cally associated with important economic traits. Congiu 
et al. (2024) revealed that the more absorbance related to 
chemical groups of a component, the more heritable the 
wavenumber, as it could be related to the heritability of 
the component in sheep milk. Our study was part of the 
European project Horizon 2020 Small Ruminants breed-
ing for Efficiency and Resilience (H2020 SMARTER), 
providing multiple rich datasets to characterize animal 
feed efficiency. This project provides the opportunity to 
study the genetic parameters of milk spectra during lacta-
tion and estimate genomic correlations between spectral 
data and new original traits that are difficult and costly 
to record on sheep farms, such as feed efficiency. There-
fore, the objectives of this study were to (1) provide the 
first description of FTIR spectra of ovine milk in the 
French Lacaune breed, (2) estimate the heritabilities of 
FTIR spectra of ovine milk at each wavenumber, (3) esti-
mate genomic correlations of transmittance at individual 
wavenumbers between lactation stages, and (4) estimate 
genomic correlations between milk FTIR spectra and 
dairy traits, feed efficiency, and changes in body reserve 
dynamics.

MATERIALS AND METHODS

Milk and Spectral Data

The original data were provided by the European 
H2020 SMARTER project (2018–2023). The study pop-
ulation consisted of 4,712 French Lacaune dairy ewes, 
including 32% primiparous ewes, from 8 commercial 
farms located in southern France. The data were collected 
during 2 milk production years from September 2019 to 
September 2021, over several months of lactation. Lacta-
tion month defined the time gap between lambing and 
test day (in months). The criteria used to select the data 
were as follows: (1) the observation period was from 31 
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to 210 DIM, i.e., from the second to the seventh month of 
lactation (milking started one month after lambing, when 
the suckling period ended); (2) outliers revealed by the 
PCA were removed; and (3) sires had at least 3 offspring. 
After data editing, 36,873 milk records from 4,712 dairy 
ewes were available.

Milk samples were taken during the morning milk-
ing with a target of a 6-mo test day (lactation mo 2 to 
7 after lambing, one test day per month and flock). The 
predicted FC and PC (g/L) and spectral information were 
determined by 2 MilkoScan FT+ analyzers (Foss, Hill-
erød, Denmark) using mid-infrared (MIR) spectrometry 
with defined routine Fourier transform MIR analyses 
at Agrolab’s laboratory (Aurillac, France). The FTIR 
spectra of the milk samples contained 1,060 individual 
spectral points (wavenumbers), which were based on 
transmittance. Wavenumbers were included in the near- 
and mid-infrared regions between 5,012 and 926 cm−1 
with a spectral resolution of 3.85 cm−1. The acquisition of 
each spectrum was carried out in duplicate and then aver-
aged by the constructor. For each analysis of milk test 
days, spectra were standardized by the piecewise direct 
standardization method proposed by Wang et al. (1991) 
and then developed by Grelet et al. (2015) to reduce 
the spectral variability between instruments and over 
time. No pretreatments were applied to the standardized 
spectra. In our study, analyses were performed by omit-
ting 3 regions of the FTIR spectra (5,012–2,975 cm−1, 
2,431–2,276 cm−1, and 1,713–1,547 cm−1), following the 
manufacturer’s recommendations (Foss, 1998). These 
spectral areas corresponded to water absorption charac-
terized by strong instrumental noise or the absence of 
chemical bonds associated with a pure baseline (Bittante 
and Cecchinato, 2013; Grelet et al., 2015). These same 
spectral regions were not used to develop the prediction 
equations (Ferrand et al., 2011; Sanchez et al., 2019). 
Finally, the remaining 446 wavenumbers were selected.

The daily milk yield (DMY, L/d) was estimated by 
correcting the morning milk yield for the evening and 
morning differences using the ratio between the total vol-
ume of milk produced by the whole flock at 2 milkings 
(ICAR, 2018). Milk SCC (cells/L) was measured by flow 
cytometry at Agrolab’s laboratory (Aurillac, France), and 
SCS was defined as SCS = log2 (SCC/100) + 3, with 
bounded values from 0 to 9 (Rupp et al., 2011).

Diet and Feed Efficiency Data

Feeding systems varied from flock to flock, with 
a diet based on grass, alfalfa or maize silage, hay, and 
concentrates in the sheepfold for the first months of 
lactation, after which the ewes were put out on pastures 

and supplemented with concentrates during the last part 
of their lactations, from the fourth to the sixth lactation 
months (Hassoun et al., 2018). On each test day, the ap-
proximated lactation feed conversion ratio (LFCR) and 
residual energy intake (REI) were calculated and con-
sidered lactation net energy feed efficiency traits. The 
LFCR reflects the portion of the energy input provided 
by feed and body reserves variation used to produce milk. 
The REI represents the difference between the energy 
provided by feed and the theoretical energy requirements 
estimated from the milk production level, body reserve 
dynamics and BW of the animals. Based on the LFCR and 
REI definitions, efficient animals had an upper LFCR but 
negative REI values. Residual energy intake is expressed 
in UFL/d, where one unité fourragère lait (UFL) is the 
net energy requirement for lactation equivalent to 1 kg 
of standard air-dried barley (Jarrige et al., 1986). Farm 
systems cannot provide individualized feed distribution, 
particularly for forage, so it was assumed that a large part 
of the ewes’ diet was common on a given farm (Mache-
fert et al., 2023). The on-farm approximated individual 
dry matter intake was calculated from the average of the 
fodder and part of the concentrates distributed collec-
tively to the flock, which were added to another part of 
the concentrates distributed individually in the milking 
parlor. The average of collective feed intake (forages and 
concentrates) was calculated as the total amount of dry 
matter divided by the number of ewes per farm, assuming 
a 10% refusal for forages offered ad libitum (De Boissieu 
et al., 2019). Concentrate distribution in the milking par-
lor was adjusted based on various animal subcategories 
per farm, including factors such as productivity, age, BW, 
and season. Each subcategory received a consistent feed 
allocation without accounting for any refusals. For the 
grazing part, De Boissieu et al. (2019) suggested estimat-
ing pasture intake based on the duration of presence per 
ewe: 2 h = 0.4 kg DM, 4 h = 0.8 kg DM, 6 h = 1 kg DM. 
Without specific weights, ewes were assigned a parity-
dependent reference BW (65 kg for primiparous and 75 
kg for multiparous) based on technician expertise. The 
change in BCS (BCSΔ) is the difference between 2 suc-
cessive BCS values and reflects body reserve dynamics. 
Body condition scores were evaluated from 0 (emaciated) 
to 5 (very fat) at targeted physiological stages throughout 
the lactation period (at the end of suckling, on the first 
test day, and before and after mating). Due to missing 
data, the copy mean longitudinal imputation method was 
applied to the BCS data using the kml package within 
R software 4.1.1 (http: / / christophe .genolini .free .fr/ kml; 
Genolini and Falissard, 2011). A detailed description of 
the database and calculation is available at Machefert et 
al. (2023).
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Genotypes

Among the 4,712 ewes with FTIR spectra, 1,794 ewes 
were genotyped with the Illumina Sheep LD consortium 
array (Illumina Inc., San Diego, CA), followed by im-
putation to obtain 38,523 SNPs that were retained for 
genomic evaluation of the French Lacaune dairy sheep 
breed. Quality control for a data set of 1,794 genotyped 
animals was performed. We removed SNPs with a minor 
allele frequency lower than 1% and a call rate lower than 
97%, as well as monomorphic SNPs. The Hardy‒Wein-
berg equilibrium for each SNP was also tested by calcu-
lating the associated chi-squared statistic. The SNPs with 
a P-value lower than 1.10−6 were removed (threshold of 
5% corrected for multiple testing, as in Teissier et al., 
2019). After quality control, 37,236 SNPs remained for 
further analysis.

Principal Component Analysis

We performed PCA on the 446 wavenumbers of the 
36,873 FTIR spectra included in the database. The data 
were centered and scaled. The obtained score plot was 
used to identify possible outliers. We removed 6 spectra 
determined as outliers in relation to their score value 
(Supplemental Figure S1, see Notes) before running the 
PCA presented in this study. The PCA was carried out 
using the function prcomp in the stats package and the 
procedure fviz pca in the factoextra package (Kassam-
bara and Mundt, 2020) implemented in R software.

Models for Genetic Analyses

Estimates of genetic parameters were obtained by fit-
ting an animal model using an average information REML 
algorithm implemented in airemlf90 software (https: / / 
nce .ads .uga .edu/ wiki/ doku .php ?id = readme .aireml & s[] 
= airemlf90). For each of the 446 FTIR wavenumbers, 
heritability and repeatability were estimated with a 
single-trait repeatability animal mixed model including 
pedigree and genomic relationship matrices. This animal 
model is commonly referred to as single-step GBLUP 
(Legarra et al., 2014). The pedigree consisted of 17,665 
animals extracted from 6 generations. The model was 
defined as follows:

 y = Xβ + Zu + Wp + e, [1]

where y is the vector of transmittances for one wavenum-
ber and X is the incidence matrix relating environmental 
fixed effects (β) to the individuals. The fixed effects 
considered were flock × year × lactation month and par-
ity (1, 2, 3, 4+). Z is the design matrix allocating obser-

vations to the vector of random additive genetic effects 
(u) normally distributedN u0 H, ,σ2( )





 H is the genetic re-
lationship matrix based on pedigree data and SNP infor-
mation, σu

2  is the additive genetic variance, W is the de-
sign matrix allocating observations to the vector of ran-
dom permanent environmental effects (p) N p0 I, ,σ2( )





 and 
σp
2 is the permanent environmental variance; e is the 

vector of random normal errors N e0 I, ,σ2( )





 and σe
2 is the 

residual variance, with I being the identity relationship 
matrix. Matrix H is the genetic relationship matrix com-
bining SNP information and pedigree data, implemented 
as in Legarra et al. (2009):
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where A is a pedigree-based relationship matrix with 
indices of 1 for ungenotyped animals and 2 for geno-
typed animals, and G is the genomic relationship matrix 
(VanRaden, 2008).

The heritability (h2) of the transmittance at each wave-
number was calculated as follows:

 h2
2

2 2 2
=

+ +
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u p e

. 

Repeatability (t) was calculated on the basis of variance 
estimates obtained from heritability analyses:
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2 2 2
. 

The genetic variability of part of the FTIR spectrum was 
then studied by dissociating lactation stage periods. The 
heritabilities and genomic correlations at each of the 446 
selected wavenumbers between transmittance values 
obtained for 2 lactation stage groups, from the second 
to the fourth and from the fifth to the seventh lactation 
months, were estimated using a bivariate repeatability 
animal mixed model including pedigree and genomic 
relationship matrices. The following model was applied:
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where y1 and y2 are vectors of observations for traits 1 
and 2, respectively (one spectral point from 2 lactation 
stage groups); b1 and b2 are vectors of environmental 
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fixed effects, such as flock × year and parity (1, 2, 3, 
4+); and X1 and X2 are associated incidence matrices; 
u1 and u2 are vectors of random additive genetic effects; 
Z1 and Z2 are associated incidence matrices; p1 and p2 
are vectors of random permanent environmental effects; 
W1 and W2 are the associated incidence matrices; and 
e1 and e2 are vectors of random residuals. The following 
variance‒covariance structure was assumed:

 var
u
p
e

G H
P I

R I












=

⊗
⊗

⊗











0 0
0 0

0 0
p

e



, 

where G is the genetic variance‒covariance structure of 
traits 1 and 2; H is the genetic relationship matrix based 
on pedigree data and SNP information; P is the perma-
nent environmental variance‒covariance structure of 
traits 1 and 2; Ip and Ie are identity matrices; and R is the 
diagonal matrix of residual variances for traits 1 and 2.

In addition, genomic correlations between FTIR spec-
tra and milk yield, milk components, feed efficiency 
traits, and body reserve changes were estimated. For 
the estimation, bivariate models were used with each 
wavenumber (n = 446) as trait 1 (y1) and trait 2 (y2) 
consisting of each of the following traits: DMY, FC, 
PC, SCS, LFCR, REI, and BCSΔ. For wavenumber (y1), 
the fixed effects considered (b1) were flock × year × 
lactation month and parity (1/2/3/4+). The fixed effects 
considered for the other traits (b2) included parity × 
lactation month, litter size (single/multiple) × lactation 
month, lambing period (start/end according to parity) 
× lactation month, mating mode (animal insemination/
natural breeding) × lactation month, and flock × year × 
lactation month. The same random effects (u1, u2, p1, 
p2, e1, and e2) and variance‒covariance structures as 
defined in model 2 were used, except for the residual 
matrix R, where covariance was assumed between traits 
1 and 2.

RESULTS

Descriptive Statistics

The descriptive statistics (mean, SD, minimum, and 
maximum) for the studied traits measured over the lacta-
tion period (mo 2–7) in the edited data set are given in 
Table 1. The mean transmittance value (± SD) for the 
FTIR spectra of ovine milk samples, including the 446 
selected wavenumbers, was 0.9 ± 0.2. The mean values 
(± SD) for the dairy traits were 2.1 ± 0.8 L/d for DMY, 
72.7 ± 14.1 g/L for FC, 60.1 ± 8.8 g/L for PC, and 2.9 ± 
1.6 for SCS. The average values (±SD ) of feed efficien-
cy-related traits were 0.9 ± 0.3 for LFCR, −0.002 ± 0.305 
UFL/d for REI, and 0.01 ± 0.03 for BCSΔ.

Figure 1 shows the average transmittance over the 
lactation period for the full FTIR spectra (1,060 wave-
numbers, Figure 1A) and for the 446 selected wavenum-
bers (Figure 1B) in Lacaune sheep milk. The overlap of 
the corresponding 36,873 full FTIR spectra is plotted in 
Supplemental Figure S2 (see Notes). As expected, 2 of 
the nonselected regions between 5,012 and 2,975 cm−1 
and between 1,713 and 1,547 cm−1 showed greater varia-
tion than the other regions due to the absorption peak 
of water. The phenotypic variability of spectral zones in 
the 446 wavenumbers was rather low along the spectra; 
however, greater variability was observed for transmit-
tance peaks.

The PCA score plot of the 446 wavenumbers presented 
in Figure 2 indicated that the first 2 principal compo-
nents (PC1 and PC2) explained 86% of the spectral vari-
ability (59.5% for PC1 and 26.5% for PC2). Moreover, 
the first 4 principal components explained 98% of the 
total variance. The low number of principal components 
explaining almost all of the spectral variability indicated 
that the wavenumbers were highly correlated with each 
other (Supplemental Figure S3, see Notes). On the score 
plot, 2 groups of observations with distinct sizes can be 
distinguished (Figure 2): a small group of data on the 
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Table 1. Descriptive statistics of the infrared wavenumbers, milk production and quality traits (DMY, FC, PC, 
SCS), approximated feed efficiency (LFCR, REI), and BCSΔ in French Lacaune dairy sheep1

Trait (unit) No. Mean SD Minimum Maximum

Transmittance (n = 446 wavenumbers) 36,873 0.9 0.2 0.1 1.7
DMY (L/d) 36,317 2.1 0.8 0.1 6.3
FC (g/L) 36,261 72.7 14.1 25.1 139.2
PC (g/L) 36,261 60.1 8.8 37.0 104.9
SCS 34,499 2.9 1.6 0.06 9.0
LFCR 27,691 0.9 0.3 0.07 1.9
REI (UFL/d) 27,691 −0.002 0.305 −0.891 1.577
BCSΔ 27,691 0.01 0.03 −1.25 1.25
1DMY = daily milk yield; FC = fat content; PC = protein content; LFCR = lactation feed conversion ratio; REI = 
residual energy intake; UFL = unité fourragère lait; BCSΔ = change in body condition score.
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bottom left of the figure (below PC1: −18 and PC2: −31) 
and a larger group of data centered on the point (0, 0). 
Then, an overlapping stratification, indicating how the 
groups were distributed across different lactation stage 
classes, could be described by principal component 1. 
The larger group included spectra collected at the be-
ginning and end of lactation at a ratio of 53% to 47%, 
whereas the small group was 90% composed of spectra 
collected at the end of lactation (mo 5–7). The first prin-
cipal component was also strongly related to additional 
dairy traits, with DMY as opposed to the milk com-
ponents, i.e., FC and PC. The additional SCS variable 
possibly highlighted the division of scores into a small 
group separate from the rest of the individuals. The SCS 
seemed to be moderately related to the first 2 princi-
pal components. The mean values (± SD) of DMY, FC, 
PC, and SCS for the larger group were 2.1 ± 0.8, 72.7 ± 
14.1, 59.9 ± 8.7, and 2.9 ± 1.6, respectively. In contrast, 
the small group exhibited mean values (± SD) of 1.6 ± 
0.7, 76.7 ± 13.6, 67.5 ± 7.3, and 3.1 ± 1.7 for the same 
parameters. The additional traits of feed efficiency and 
change in body reserves were not related to these 2 main 
principal components. The second principal component 
showed a wider dispersion of the scores presented by 
FTIR spectra collected at the end of lactation than at the 
beginning of lactation.

The eigenvector (loading) plot of the 446 wavenumbers 
is presented in Figure 3. Some areas of the FTIR spec-
trum were strongly linked to the structuring of scores on 
the 1–2 plane of the PCA. Loadings for the first principal 
component showed peaks in the region between 2,971 
cm−1 and 2,840 cm−1 and between 1,770 cm−1 and 1,150 
cm−1, as well as a large contribution between 2,500 cm−1 
and 1,790 cm−1. Loadings for the second principal com-

ponent showed a greater contribution in the 2 infrared 
areas between 2,840 cm−1 and 2,600 cm−1 and between 
1,500 cm−1 and 1,100 cm−1.

Heritabilities of FTIR Spectra

The heritabilities and repeatabilities of the transmit-
tance for 446 individual wavenumbers in the FTIR region 
from 2,971 to 926 cm−1 are presented in Figure 4. The av-
erage heritability (± mean SE) of the 446 wavenumbers 
was 0.29 ± 0.02, ranging from 0.13 ± 0.01 to 0.42 ± 0.02. 
The repeatability estimates showed a pattern similar to 
heritability, with values between 0.15 and 0.53 (average 
of 0.39) for 446 wavenumbers, and between 0 and 0.53 
(average of 0.29) for 1,060 wavenumbers. Describing 
more precisely the values of the estimates for the 446 
wavenumbers starting from 2,971 cm−1, both parameters 
have very high values (heritability greater than 0.40 and 
repeatability greater than 0.50) and then decrease sharply 
to lower values (0.13 and 0.15 for both estimates) around 
the wavenumber 2,600 cm−1. The estimates on either 
side of the 2,000 cm−1 (2,300–1,800 cm−1) wavenumber 
became stable again (heritability from 0.31 ± 0.02 to 
0.34 ± 0.01 and repeatability from 0.39 to 0.44), with 
a major difference. Below 1,800 cm−1, heritability and 
repeatability appeared to be irregular, with average (± 
mean SE) values of 0.30 ± 0.09 and 0.41, respectively. 
The same estimates for the full spectra (1,060 individual 
wavenumbers) in the FTIR region from 5,012 to 926 
cm−1 have been reported in Supplemental Figure S4 (see 
Notes). The average heritability (± mean SE) of the 1,060 
wavenumbers was 0.20 ± 0.01, ranging from 0.00 ± 0.00 
to 0.42 ± 0.02. In total, 421 spectral points had estimated 
heritabilities between 0.10 and 0.20, 179 spectral points 
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Figure 1. Average transmittance for (A) 1,060 infrared wavenumbers and (B) the corresponding 446 selected spectral points from FTIR milk 
spectra in French Lacaune dairy sheep. The black lines refer to the average transmittance, and the gray lines refer to the average transmittance ± 2 SD.
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had estimated heritabilities between 0.20 and 0.30, and 
296 spectral points had estimated heritabilities greater 
than 0.30. The 164 wavenumbers with very low or null 

heritability were located in the water absorption areas 
between 1,671 and 1,624 cm−1 and between 3,662 and 
3,083 cm−1.

Machefert et al.: GENETIC PARAMETERS OF OVINE MILK SPECTRA

Figure 2. Score plot for the first 2 principal components (PC1 and PC2) of the PCA performed on 446 wavenumbers from the FTIR spectra of 
French Lacaune sheep milk belonging to 2 different classes of lactation months. The additional variables related to milk and feed efficiency were 
associated with the individuals. DMY = daily milk yield; FC = fat content; PC = protein content; LFCR = lactation feed conversion ratio; REI = 
residual energy intake; BCSΔ = change in body condition score.

Figure 3. Eigenvector plot from the first 2 principal components (PC1 
and PC2) of a PCA linked to spectral regions, performed on 446 wave-
numbers from the FTIR spectra of French Lacaune sheep.

Figure 4. Heritabilities (solid line) and repeatabilities (dotted line) 
for the transmittance of 446 individual spectral points in the infrared 
region from 2,971 to 926 cm−1 from French Lacaune dairy sheep milk. 
The SE for heritabilities ranged from 0.00 to 0.02.
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The heritabilities of transmittance for 446 wavenum-
bers estimated separately for each group of lactation 
stages (mo 2–4 and mo 5–7) are presented in Figure 5. 
Analysis by lactation stage group revealed a wider range 
of heritabilities, ranging from 0.07 ± 0.001 to 0.48 ± 
0.02, than pooling all the data together (ranging from 
0.13 ± 0.01 to 0.42 ± 0.02 for the commonly selected 
wavenumbers; see Figure 4). The heritability profiles of 
the FTIR spectra from the early and late lactation stage 
groups were similar for some of the spectral regions, 
with a notable difference in the level of estimated values. 
From 2,971 to 2,800 cm−1, heritability estimates started 
with moderate to high values for all stages of lactation 
(from 0.20 ± 0.001 to 0.41 ± 0.02). Up to 2,800 cm−1, the 
estimated values decreased with a stronger slope specifi-
cally for the late lactation stages (minimum heritability 
was 0.14 ± 0.00 for mo 2–4 and 0.07 ± 0.00 for mo 5–7). 
From 2,276 to 1,800 cm−1, the estimated heritabilities of 
wavenumbers were considered stable, with a difference 
between the 2 groups (average (± mean SE) of 0.25 ± 
0.01 for mo 2–4 and 0.35 ± 0.01 for mo 5–7). The last 
part of the studied spectrum, from 1,543 to 926 cm−1, 
showed large variability in heritability estimates for the 
first months of lactation (from 0.21 ± 0.01 to 0.48 ± 0.02) 
and for the last months of lactation (from 0.20 ± 0.01 to 
0.46 ± 0.003). The genetic variance estimated across the 
446 wavenumbers of the FTIR spectrum became increas-
ingly high during lactation, with mean variances rang-
ing from 0.006 for mo 2 to 0.02 for mo 7 (Supplemental 
Figure S5, see Notes). The 2 groups of lactation stages 
differed in the residual variance and, to a lesser extent, 
in the permanent environmental variance, which were 
greater for the late lactation stages (the mean values for 
residual and permanent environmental variances were 

0.012 and 0.002 for mo 2–4 and 0.019 and 0.004 for mo 
5–7, respectively).

Genomic Correlations of FTIR Spectra Between 
Lactation Stages

The estimated genomic correlations between trans-
mittances for 446 individual spectral points from FTIR 
spectra of milk measured in 2 different lactation stage 
groups (mo 2–4 and mo 5–7) are presented in Figure 6. 
The genomic correlations at all wavenumbers along the 
spectra were positive and high, ranging from 0.77 ± 0.003 
to 0.99 ± 0.01. From 2,971 to 2,830 cm−1, the estimated 
values decreased from 0.90 ± 0.05 to 0.82 ± 0.02. In the 
2,830 to 2,470 cm−1 wavenumber region, high and in-
creasing genomic correlations were observed from 0.82 
± 0.02 to 0.99 ± 0.01. The highest genomic correlations 
were found in the area between 2,550 and 2,470 cm−1 
(from 0.96 ± 0.00 to 0.99 ± 0.01). Over a specific length 
of the spectrum, from 2,276 to 1,800 cm−1, strong and 
stable genomic correlations ranging from 0.89 ± 0.01 to 
0.91 ± 0.001 were observed. The lowest genomic correla-
tion was observed at wavenumber 1,771 cm−1, with an 
estimated value of 0.77 ± 0.003. Between 1,543 and 926 
cm−1, the genomic correlations ranged from 0.83 ± 0.02 
to 0.93 ± 0.01.

Genomic Correlations Between FTIR Spectra  
and Milk- and Feed Efficiency-Related Traits

The average heritability estimates (± mean SE) for 
milk-related traits were 0.15 ± 0.02 for DMY, 0.32 ± 0.02 
for FC, 0.39 ± 0.02 for PC, 0.09 ± 0.01 for SCS, and 0.29 
± 0.02 for all 446 wavenumbers of the FTIR spectra. The 
mean heritabilities (± mean SE) of approximated feed 
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Figure 5. Heritabilities of transmittance for 446 individual spectral 
points in the MIR region for milk samples collected at early (mo 2–4, 
red line) or late (mo 5–7, blue line) lactation stages from French Lacaune 
dairy sheep. The gray lines indicate SE ranging from 0.00 to 0.07.

Figure 6. Genomic correlations estimated for each of the 446 indi-
vidual spectral points in the MIR region between milk samples collected 
at early (mo 2–4) or late (mo 5–7) lactation stages from French Lacaune 
dairy sheep. The gray lines indicate SE ranging from 0.00 to 0.05.
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efficiency-related traits were lower, at 0.09 ± 0.01 for 
LFCR, 0.11 ± 0.01 for REI and 0.04 ± 0.01 for BCSΔ.

The estimated genomic correlations of transmittance 
for 446 individual spectral points of the FTIR milk spec-
tra and the DMY, FC, PC, or SCS traits are presented in 
Figure 7. Fat content and PC showed strong and similar 
genomic correlation patterns with the transmittance val-
ues of the milk FTIR spectra, as opposed to the pattern 
observed for DMY, which had a lower amplitude. Ge-
nomic correlations between the SCS and transmittances 
were lower, with predominantly positive values. The es-
timated extreme genomic correlation values ranged from 
−0.57 ± 0.04 to 0.61 ± 0.05 for DMY, from −0.99 ± 0.001 
to 0.98 ± 0.002 for FC, from −0.98 ± 0.003 to 0.90 ± 0.01 
for PC, from −0.16 ± 0.08 to 0.28 ± 0.08 for SCS, and 
from 2,971 to 926 cm−1 for the FTIR milk spectra. Over 
the same spectral range, the average absolute genomic 
correlations (± mean SE) and transmittances obtained 
were 0.41 ± 0.06 for DMY, 0.66 ± 0.02 for FC, 0.60 ± 
0.02 for PC, and 0.09 ± 0.08 for SCS. From 2,971 to 
2,850 cm−1, the genomic correlations between FC or PC 
and wavenumbers were high and negative (−0.96 for FC 
and −0.76 for PC, on average), whereas the values were 
close to a positive correlation of 0.5 for DMY and close 
to 0 for SCS. At 2 specific wavenumbers, at 2,850 and 
2,650 cm−1, the genomic correlation profiles tended to 
change for the dairy traits studied. For example, genomic 
correlations between milk spectra and FC were close to 
−1 before suddenly increasing to zero from wavenumber 
2,850 cm−1 and then reaching positive correlations at 
approximately 1 from wavenumber 2,650 cm−1. Within 
the spectral area from 2,276 to 1,800 cm−1, the genomic 
correlations estimated were very stable, with highly dif-

ferentiated values between the 4 dairy traits and trans-
mittances, with values close to 1 for FC, 0.8 for PC, 0 for 
SCS, and −0.5 for DMY. Between 1,543 and 926 cm−1, 
the genomic correlations showed erratic trends, with es-
timated values ranging from −0.43 ± 0.05 to 0.59 ± 0.05 
for DMY, from −0.95 ± 0.01 to 0.98 ± 0.002 for FC, from 
−0.98 ± 0.003 to 0.77 ± 0.02 for PC, and from −0.01 ± 
0.07 to 0.28 ± 0.08 for SCS, from the 446 wavenumbers.

Genomic correlations between transmittance for 446 
wavenumbers of the FTIR milk spectra and approximated 
feed efficiency-related traits are presented in Figure 8. 
The regions of the spectra had strong genomic correla-
tions with the REI (from −0.75 ± 0.04 to 0.67 ± 0.04), 
modest correlations with the LFCR (from −0.35 ± 0.08 
to 0.44 ± 0.07), and weak correlations with the BCSΔ 
(from −0.31 ± 0.1 to 0.22 ± 0.1). Over the spectral range 
studied, the average absolute genomic correlations (± 
mean SE) were 0.46 ± 0.06 for REI and 0.15 ± 0.09 for 
LFCR and BCSΔ for the transmittances. Similarities can 
be observed between the genomic correlation profiles for 
approximated efficiency traits and those studied for dairy 
traits. The pattern of genomic correlations between REI 
and transmittance along wavenumbers was very close to 
that between PC and transmittance, with a difference in 
value levels.

DISCUSSION

Change of the FTIR Spectrum During Lactation

In this study, we carried out an initial description of 
French Lacaune dairy sheep spectra before genetic anal-
ysis. The original spectral data used presented a wider 
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Figure 7. Genomic correlations between 446 individual spectral points in the MIR region and 4 milk-related traits with (A) DMY, (B) FC, (C) 
SCS, and (D) PC from French Lacaune dairy sheep milk. The gray lines refer to the SE. DMY = daily milk yield; FC = fat content; PC = protein 
content. 
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range of lactation stage variability compared with that 
routinely recorded on farms in the national recording 
system (ICAR, 2018); this allowed us to study spectral 
variability over the entire exclusive lactation period. The 
spectral data were described using PCA to represent the 
set of individuals initially in a 446-dimensional space 
(wavenumbers selected as the most informative by the 
manufacturer) in a lower-dimensional space (Figures 
2 and 3). The 86% of the total spectral variance of the 
446 wavenumbers was explained by the first 2 princi-
pal components. When very few principal components 
explained much of the total variability, we found a high 
correlation among the wavenumbers. High correlations 
between adjacent spectral points were observed on the 
heatmap with more or less large windows of strongly 
correlated neighboring wavenumbers, illustrating the 
redundancy between the variables (Supplemental Figure 
S3). A similar heatmap with strong correlations between 
wavenumber absorbances was observed by Nan et al. 
(2023) in their study of milk from Chinese Holstein cows. 
The authors linked this heatmap structure with a division 
of the spectrum into 5 parts, each of which is charac-
teristic of particular chemical events. The subdivision of 
the FTIR spectrum reflected regions devoid of chemi-
cal bond absorbance peaks linked to water absorption, 
milk fatty acids, and proteins (Bittante and Cecchinato, 
2013; Rovere et al., 2019; Nan et al., 2023). In our re-
sults, the first principal component enabled us to clearly 
distinguish milk samples from the first part of lactation 
and those from the second part of lactation (Figure 2). 
In Holstein dairy cows, Du et al. (2020) showed that 
the lactation stage had significant effects on most of the 
wavenumbers linked to lactose (from 1,200 to 926 cm−1), 

proteins (1,600 to 1,240 cm−1), and fat molecules (3,015 
to 2,800 cm−1 and 1,770 to 1,680 cm−1), and a few wave-
numbers related to water absorption regions. The strati-
fication of spectral data by lactation period highlighted 
by the first principal component in our study was also 
directly related to the FC and PC. Primary changes in 
dairy sheep milk over time were observed, notably with 
FC being influenced by a concentration-dilution effect 
due to decreasing milk yield during lactation. Moreover, 
PC exhibited less variation, and lactose remained a rela-
tively stable component (Hassoun et al., 2018; Oravcová 
et al., 2018; Inostroza et al., 2020; Tatar et al., 2022). 
The loadings on PC1 showed large contributions across 3 
spectral ranges: between 2,971 and 2,840 cm−1, between 
2,500 and 1,790 cm−1, and between 1,770 and 1,150 cm−1 
(Figure 3). These regions provide specific chemical in-
formation about the fat, protein, and lactose composition 
of milk (Bittante and Cecchinato, 2013; Dagnachew et 
al., 2013a; Du et al., 2020). A study of the loadings of 
FTIR spectra in dairy goats by Dagnachew et al. (2013a) 
showed very similar results to those presented in our 
study. In particular, the specific regions from 3,000 to 
2,800 cm−1 and from 1,760 to 1,720 cm−1 revealed sig-
nificant contributions to PC1. These regions, which were 
also observed in the goat study for the first latent trait, 
were crucial for determining FC.

In Lacaune French dairy sheep, the transition from an 
indoor to an outdoor feeding system during mid-lactation 
can lead to confusion in the interpretation of our results 
studied throughout lactation. The effects of the stage of 
lactation and the feed have been studied more closely 
on the milk composition than directly on spectral data. 
Tatar et al. (2022) maintained a constant type of diet in 
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Figure 8. Genomic correlations between 446 individual spectral points in the MIR region and between approximated feed efficiency traits and 
(A) LFCR, (B) REI, and (C) BCSΔ from French Lacaune dairy sheep milk. The gray lines refer to the SE. LFCR = lactation feed conversion ratio; 
REI = residual energy intake; BCSΔ = change in body condition score.
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the Lacaune breed and revealed significant increases in 
fat, casein, total protein, and most mineral content of 
milk throughout the lactation period. Due to the dairy 
sheep management system, confusion between lacta-
tion stage and environment can often be observed. For 
example, Correddu et al. (2021) observed that in Sarda 
ewes, the influence of the mid-to-late lactation stage on 
the milk fatty acid composition did not distinctly sepa-
rate physiological stage from pasture quality. The effects 
of pasture on milk fatty acid contents were reviewed in 
dairy sheep by Nudda et al. (2014) and in dairy cows 
by Coppa et al. (2019). Increased pasture availability 
combined with lower hay intake has increased the con-
tent of certain fatty acids in sheep milk, e.g., α-linolenic 
acid and CLA in Latxa sheep (de Renobales et al., 2012; 
Nudda et al., 2014). The results reported by Coppa et al. 
(2019) showed a seasonal influence on milk constituents, 
with dairy cow milk being richer in PUFA and CLA cis-
9 during the outdoor period. The spectral stratification 
observed during lactation in our study could be linked to 
changes in milk composition on pasture, particularly for 
unsaturated fatty acids.

Finally, observing the spectral data based on their 
scores and eigenvectors, the smallest group was sepa-
rated from the largest by the second principal compo-
nent with high contribution in lactose infrared region 
(from 1,500 to 1,100 cm−1) and from 2,840 to 2,600 cm−1 
(Figure 3). In addition, the supplementary variable SCS, 
which is a good indicator of udder mastitis in ruminants, 
allowed the 2 groups to be dissociated. Gruber et al. 
(2023) predicted bovine clinical mastitis based directly 
on FTIR spectra (5,000 to 925 cm−1) and obtained mod-
erate validation specificities (0.597–0.653) and sensi-
tivities (0.525–0.567) using various statistical methods. 
The authors identified a few important wavenumbers 
across the entire spectral range for predicting mastitis, 
attributed to specific chemical bonds corresponding to 
lactose, carbohydrates, casein, specific lipids, and water 
in the literature. A possible hypothesis for the dissocia-
tion of the small group from the rest of our data set was 
that the spectra collected came from sick ewes suffering 
from mastitis. However, the mean (± SD) SCS values of 
each group were similar (2.9 ± 1.6 for the larger group 
and 3.1 ± 1.7 for the small group). The majority of the 
spectra included in the small cluster were collected at 
the end of lactation (90%). Nevertheless, Kaskous et 
al. (2022) reported conflicting results in small ruminant 
studies, with however a strong tendency to observe an 
increase in SCC toward the end of lactation due to a 
decrease in milk production in the ovine studies cited. 
In the French Lacaune breed, according to Barillet et al. 
(2001b), the SCS increased during lactation (from 3.08 
to 3.43).

Genetic Parameters of FTIR Ovine Milk Spectra

To our knowledge, little investigation has focused 
on the genetic variability of wavenumbers in the FTIR 
spectra of dairy sheep. In the present study, moderate to 
high heritabilities (from 0.13 ± 0.01 to 0.42 ± 0.02) were 
estimated for 446 of the wavenumbers selected from the 
FTIR spectra of Lacaune dairy ewes, excluding areas of 
water absorption, whose heritability was close to zero 
(Figure 4, Supplemental Figure S4). A lower average 
(0.13 ± 0.06) and a different pattern of heritabilities, with 
water spectral zones having nonzero heritabilities, were 
reported for the 1,060 wavenumbers milk absorbance 
spectra in the Sarda dairy sheep breed (Congiu et al., 
2024) compared with our result (average of 0.20 ± 0.01). 
A difference in milk composition, particularly in fatty ac-
ids, can be observed between dairy ewe breeds, with the 
French Lacaune breed showing a higher saturated fatty 
acid content of 74.22 g/100 g of fat compared with 67.72 
g/100 g in the Italian Sarda breed (Ferrand-Calmels et 
al., 2014; Cesarani et al., 2019). Overall, a greater differ-
ence in milk composition was observed between sheep, 
goat, and cattle species than between the 2 sheep breeds. 
However, our heritability results were closer to those 
already known for dairy cows and dairy goats in terms 
of patterns and levels. In dairy cattle, heritabilities for 
wavenumbers of FTIR milk spectra ranged from 0.00 to 
0.42 in first-parity Belgian Holstein cattle (Soyeurt et al., 
2010), from 0.00 to 0.27 in Brown Swiss cattle (Bittante 
and Cecchinato, 2013), from 0.00 to 0.63 in first-parity 
Holstein Friesians in the Netherlands (Wang et al., 2016), 
and from 0.00 to 0.31 in Danish Holstein cattle and 0.00 
to 0.30 in Danish Jersey cattle (Zaalberg et al., 2019). 
Lower estimates were reported in Chinese Holstein cattle, 
with values ranging from 0.00 to 0.11 (Du et al., 2020). 
In Norwegian dairy goats, the estimated heritabilities of 
spectral variables ranged between 0.02 and 0.41 (Dag-
nachew et al., 2013a). In summary, our results indicated 
that 45% of the wavenumbers across the entire spectrum 
(1,060 wavenumbers) have a heritability above 0.20, 
compared with the range of 0.20 to 0.60 that Wang et al. 
(2016) reported for most variables, and the low averages 
of 0.04 and 0.09 reported by Du et al. (2020) and Bittante 
and Cecchinato, (2013), respectively.

Our study examined the genetic variability of FTIR 
spectra over the entire lactation period and then fo-
cused on determining whether the genetic variability 
of wavenumbers changed over time. The PCA results, 
as discussed earlier, revealed a distinct stratification of 
scores corresponding to the lactation period between the 
beginning and end of lactation. Moreover, heritability for 
a given wavenumber varied between early lactation (mo 
2–4) and late lactation (mo 5–7), as illustrated in Figure 5. 
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Rovere et al. (2019) investigated the heritability profiles 
of FTIR spectra in Holstein cows, categorizing them by 
parity and lactation month. We found significant differ-
ences between the first month of lactation and the other 
months at most of the wavenumbers studied. From the 
third to the sixth month, the heritability profiles showed 
minimal contrast. Comparison of the results of Rovere et 
al. (2019) with our own shows that common spectral re-
gions were used to distinguish the lactation period from 
heritability estimates, which were located between 2,971 
and 2,800 cm−1 (alkyl chain of fatty acids) and between 
2,546 and 2,526 cm−1 (amino acids cystine and cysteine 
present in whey protein). The region from 2,276 to 1,800 
cm−1 clearly distinguished the heritability patterns from 
early- and late-lactation milk samples in our study, which 
were highlighted only for primiparous cows. However, 
our findings demonstrated robust and strong genomic 
correlations of FTIR milk spectra between the 2 lacta-
tion periods (Figure 6), indicating negligible genetic-
environmental interactions (Mulder and Bijma, 2006). 
The lowest genomic correlation observed at wavenumber 
1,771 cm−1, with an estimated value of 0.77 ± 0.003, was 
included in the spectral region linked to fatty acids (Bit-
tante and Cecchinato, 2013).

In our study, genetic analyses linking the FTIR spec-
trum to another trait focused first on the dairy traits inte-
grated into the breeding goals of dairy ewes (Figure 7), 
i.e., DMY, FC, PC, and SCS (Barillet et al., 2001a). The 
milk spectra were moderately to highly genetically cor-
related with DMY. Daily milk yield, which had negative 
genetic correlations of −0.50 ± 0.05 with FC and −0.62 ± 
0.05 with PC (Machefert et al., 2023), showed an oppo-
site and lower amplitude pattern of genomic correlations 
with wavenumbers than milk quality traits. As FC and 
PC were predicted by FTIR spectroscopy, high genomic 
correlation values were expected between these milk 
components and milk spectra. Du et al. (2020) reported 
a very similar pattern with a slightly lower amplitude of 
genetic correlations between common wavenumbers and 
milk fat and protein percentages in Holstein dairy cows. 
The authors reversed the patterns by using absorbance 
(A) data, whereas we used transmittance (T) values, 
which are connected by the equation A = −log10T (Bit-
tante and Cecchinato, 2013). The spectral region reflect-
ing proteins of milk, called the protein region by Du et 
al. (2020), from 1,600 to 1,240 cm−1 was strongly geneti-
cally correlated with the protein percentage trait (from 
−0.42 to 0.94) in Holstein cows. The same observation 
could be made for fat regions from 3,015 to 2,800 cm−1 
and 1,770 to 1,680 cm−1 and fat percentage traits (genetic 
correlations from −0.88 to 0.80) in dairy cattle (Du et 
al., 2020). In our study, wavenumbers located in the fat 
and protein spectral regions, defined by Du et al. (2020), 
were strongly genetically correlated with FC and PC, and 

few spectral points had a low estimate. The genomic cor-
relations between the FC and transmittance values within 
fat regions ranged from −0.99 ± 0.001 to 0.92 ± 0.01, and 
those between the PC and transmittance values within 
protein regions ranged from −0.79 ± 0.01 to 0.80 ± 0.02. 
Combining these results with spectral heritability in our 
study showed that some areas of spectra that exhibited 
large heritability were also strongly genetically corre-
lated with DMY, FC, and PC. More specifically, 3 highly 
heritable spectral peaks (>0.40) observed on Figure 3 
around wavenumbers 2,971 (fat region), 1,458 (protein 
region), and 1,242 cm−1 (close to lactose-region) were as-
sociated with milk yield and milk composition with high 
genomic correlations (>|0.5| for DMY and >|0.7| for FC 
and PC). Compared with the other studied dairy traits, 
SCS was weakly genetically correlated with the FTIR 
spectra. The study of the most informative wavenumbers 
for predicting mastitis by Gruber et al. (2023) in dairy 
cows revealed spectral regions similar to those strongly 
genetically correlated with SCS. Three genomic correla-
tion peaks were observed in Figure 7 for SCS and pointed 
out in the study in dairy cows as being the 1% most im-
portant variables of interest for mastitis prediction in the 
infrared region from 1,700 to 926 cm−1 for 2 of them and 
from 3,000 to 2,500 cm−1.

The determination of feed efficiency traits requires 
precise individual measures that are unavailable on 
commercial dairy sheep farms with collective feeding 
strategies and pastures. Moreover, the proposed approxi-
mated feed efficiency traits in our study were weakly 
heritable, with values of 0.10 ± 0.01 for LFCR and 
0.11 ± 0.01 for REI (Machefert et al., 2023). If strong 
genomic correlations were observed between traits that 
were difficult to measure and traits that were easier to 
assess, then the prediction of feed efficiency trait us-
ing spectra will be facilitated. To compare, there have 
been very few reports on genetic correlations between 
milk spectra and feed efficiency. Toledo-Alvarado et al. 
(2022) estimated the genetic correlations between FTIR 
spectra from bovine milk and residual feed intake (RFI) 
from individual daily feed intake measurements. In this 
study, RFI showed low to moderate genetic correlations 
along spectra ranging from −0.24 to 0.22, with the high-
est values between 3,048 and 1,701 cm−1. Some of these 
wavenumbers were located in 2 specific spectral regions 
related to the chemical structure of the fat molecules (Lei 
et al., 2010; Dagnachew et al., 2013a; Du et al., 2020). 
Our results revealed a greater range of genomic correla-
tions between FTIR spectra and the 2 approximated feed 
efficiency traits studied, ranging from −0.35 to 0.44 for 
the LFCR and from −0.75 to 0.67 for the REI. Previous 
results showed that LFCR and REI traits, measured in 
the commercial farm context imposing collective feed 
intake collection, were phenotypically and genetically 
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dependent on milk production traits (the genetic correla-
tions between LFCR and DMY, FC and PC were 0.74 ± 
0.04, 0.11 ± 0.07, and −0.18 ± 0.07, respectively, and 
between REI and DMY, FC, and PC were −0.79 ± 0.04, 
0.46 ± 0.06, and 0.75 ± 0.04, respectively) and strongly 
influenced by environmental factors (Machefert et al., 
2023). Despite the lower accuracy of the estimation of 
efficiency traits in our study, the genomic correlation 
profile between REI and transmittances was similar, 
with a larger amplitude than that obtained between RFI 
and absorbances in the study of Toledo-Alvarado et al. 
(2022). For a trait unrelated to milk measurement, such 
as BCSΔ, with very low heritability (0.04 ± 0.01), our 
results revealed modest genomic correlations depend-
ing on the targeted spectral region (from −0.31 ± 0.1 to 
0.22 ± 0.1). However, McParland et al. (2015) in Irish 
Holstein-Friesian cows, showed high phenotypic correla-
tions between BCSΔ and the same predicted trait using 
FTIR spectra (from 0.63 to 0.76). Although this trait had 
a low heritability (0.07 ± 0.02), these authors suggested 
the development of reliable calibration predictions BCSΔ 
from milk spectra to generate estimates of genetic breed-
ing values at the routine level.

CONCLUSIONS

The study demonstrated that the transmittance of indi-
vidual FTIR bands in Lacaune ewe milk was heritable, 
with a different evolution of the genetic variability of the 
spectrum during lactation. This study revealed moder-
ate to strong genomic correlations between dairy traits 
included in breeding goals and wavenumbers. More im-
portantly, specific wavenumbers that were highly heri-
table were also strongly genetically associated with eco-
nomically important dairy traits. FTIR spectral data also 
represent a useful source of information for the study of 
complex traits, such as the proposed feed efficiency traits. 
However, it would be interesting to confirm our results 
with more precisely phenotyped feed efficiency traits at 
the individual level. Further analyses, such as genomic 
association studies, are needed to identify the specific 
regions of the genome that contribute to the genetic vari-
ability of the transmittance along milk FTIR spectra and 
feed efficiency traits to better understand their genetic 
relationships. The present study highlighted the impor-
tance of routinely phenotyping the FTIR spectrum.
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