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HIGHLIGHTS 

• Uncertainty analysis on the pesticide outputs of STICS-MACRO model was performed 

• Climate, agricultural practices, soil and pesticide properties were considered 

• Influential factors were climate temporal variability, Kf, hydraulic conductivity 

• Small spatial variation in rainfall led to high variation in pesticide concentrations 

• The results help to improve environmental management and decision-making processes  
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ABSTRACT  

Modelling of pesticide leaching is paramount to managing the environmental risks associated with the chemical 

protection of crops, but it involves large uncertainties in relation to climate agricultural practices, soil and pesticide 

properties. We used Latin Hypercube Sampling to estimate the contribution of these input factors with the STICS-

MACRO model in the context of a 400 km2 catchment in France, and two herbicides applied to maize: bentazone 

and S-metolachlor. For both herbicides, the most influential input factors on modelling of pesticide leaching were 

the inter-annual variability of climate, the pesticide adsorption coefficient and the soil boundary hydraulic 

conductivity, followed by the pesticide degradation half-life and the rainfall spatial variability. This work helps to 

identify the factors requiring greater accuracy to ensure better pesticide risk assessment and to improve 

environmental management and decision-making processes by quantifying the probability and reliability of 

prediction of pesticide concentrations in groundwater with STICS-MACRO.  
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1. Introduction 

Modelling the leaching of pesticides can help prevent and manage groundwater contamination as groundwater 

protection is a key issue for human health and resources sustainability. However, the prediction of pesticide 

leaching by process-based models is fraught with considerable uncertainties (Vanderborght et al., 2011). Key 

sources of uncertainties include (i) primary data (basic physical, chemical and environmental properties either 

directly fed into a model or used to derive input parameters) because of spatial and temporal variability of 

environmental variables, sampling procedures in the field and analysis in the laboratory, (ii) procedures to derive 

some input parameters for lack of experimental data (although the latter are recommended in general): use of first-

order kinetics to derive DT50 values, use of pedotransfer functions…, and (iii) modelling (model error i.e. 
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structural error or model inadequacy, non-inclusion or inappropriate representation of significant processes in the 

model, modeller subjectivity…) (Dubus et al., 2003a). Understanding the type and degree of uncertainties 

identified in the assessment helps to characterise the level of risk to the recipients and is, therefore, essential for 

informed decision-making (EFSA, 2016; Sohrabi et al., 2002). 

One of the objectives of sustainable agriculture is to reduce the risks and impacts of pesticide use on the 

environment by encouraging the development of new cropping systems relying on integrated pest management or 

low input programmes (Directive 2009/128/EC, 2009; Hossard et al., 2016). Reliable information on the 

sustainability of each potential new system can be obtained from field experiments. For example, crop residues 

management and tillage practices were shown to have strong effects on water percolation and pesticide leaching: 

the presence of a mulch could increase soil water content so water percolation and pesticide leaching, and 

conventional tillage generally decreases pesticide leaching compared to no-till (Alletto et al., 2010; Lammoglia et 

al., 2017b). However, there are a wide diversity of possible combinations of crops, agricultural practices (tillage, 

organic matter management, mulch…), soils, and climates. It is, therefore, time-consuming and expensive to carry 

out comprehensive in situ experiments of each potential new system especially since results are site-specific. 

Consequently, models such as RZWQM (Malone et al., 2004), STICS-Pest (Queyrel et al., 2016) or STICS-

MACRO (Lammoglia et al., 2017a) have been developed as potentially effective and inexpensive tools to assess 

numerous options and to identify the best cropping systems. The STICS-MACRO model combines the 

performances of an agro-ecosystem model (STICS, Brisson et al., 1998; Brisson et al., 2009) and of a pesticide 

fate model (MACRO, Larsbo and Jarvis, 2003). It allows to quantify the environmental impacts of pesticides (i.e. 

concentrations in soil and water) taking into account the effects of pedoclimatic conditions, agricultural practices, 

and cropping systems. Compared to RZWQM and STICS-Pest, STICS-MACRO (i) does not need calibration step, 

(ii) considers non-linear sorption which can be decisive to simulate the fate of pesticides in the environment 

(Beltman et al., 2008), (iii) allows improvement of the simulation of crop growth that leads to better estimate of 

crop transpiration therefore of water balance, (iv) allows better estimate of pesticide interception by the crop, so 

of the amount of pesticide reaching the soil, which is crucial for the prediction of pesticide concentrations in water, 

(v) allows to consider some agricultural practices such as fertilization, mulch, crop residues management…, and 

(vi) allows to obtain various environmental outputs such as the dynamic of nitrogen compounds and crop yields 

(Lammoglia et al., 2017a; Lammoglia et al., 2017b). The ability of STICS-MACRO to accurately predict the crop 

growth and development, and to predict water and pesticides leaching, has been evaluated through a test of the 

model and a sensitivity analysis in different agro-pedoclimatic contexts (Lammoglia et al., 2017a; Lammoglia et 
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al., 2017b). The results showed that the performance of the model was acceptable although it depended on the 

pedoclimatic context (Lammoglia et al., 2017a).  

Uncertainty analysis is one of the most important elements in the development and implementation of 

models (Sohrabi et al., 2002). Uncertainty analysis permits to quantify how the uncertainties of some of the model 

components (inputs, parameters, equations) translate into uncertainties in model output of interest for the study. A 

complementary sensitivity analysis allows determining of the relative contribution of the different sources of 

uncertainty considered (Wallach et al, 2014). There are numerous techniques to propagate uncertainty in models 

such as differential analysis (e.g. Diaz-Diaz et al., 1999), Monte-Carlo analysis (e.g. Dubus and Brown, 2002), 

generalised likelihood uncertainty estimation-GLUE (e.g. Beven and Binley, 1992), or fuzzy logic (e.g. Freissinet 

et al., 1999). Some uncertainty analyses have been done on MACRO (Sohrabi et al., 2002; Steffens et al., 2013; 

Steffens et al., 2014; Stenemo and Jarvis, 2007). Uncertainties associated to some soil hydraulic and pesticide 

properties, and pedotransfer functions were shown to cause large variation in simulation results (Sohrabi et al., 

2002; Stenemo and Jarvis, 2007). Moreover, the parameter uncertainty can overshadow the effects of model 

structural error, due to equations, on predicted leaching losses (Steffens et al., 2013). Considering climate 

uncertainty through several expected future time series of climate data, Steffens et al. (2014) showed that the effect 

of parameter uncertainty was less important than climate uncertainty. However, the combined effects of 

uncertainties related to the spatial variability of climate at a small catchment scale, soil hydraulic properties, and 

pesticides properties on pesticide leaching have never been studied. Among the various climatic variables, rainfall 

is a key input for all models because it activates flow and mass transport (Chaubey et al., 1999; Lewan et al., 2009). 

Since rainfall is a driving force behind many kind of pesticide release and subsequent transport mechanisms, 

ignoring this property of rainfall in the application of models will put a limit on the accuracy of the model results 

(Chaubey et al., 1999).  

Uncertainty analyses performed on the STICS model mainly focused on the effects of climate variability 

on crop yields (Dumont et al., 2015; Jégo et al., 2015). To the best of our knowledge, no uncertainty analysis 

considering the other STICS input parameters such as those related to cropping practices has been done.  

Therefore, the objectives of this work were (i) to assess the effect of spatial and temporal rainfall variability on 

STICS-MACRO modelling of pesticide leaching (assessed through local concentrations in the leachate) at a 400 

km² catchment scale, (ii) to assess the effect of the uncertainties of rainfall, agricultural practices, and soil and 

pesticides properties on the modelling of pesticides leaching through an uncertainty analysis of the STICS-
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MACRO model, and (iii) to quantify the contribution of each input factor to the uncertainties in simulated pesticide 

leaching. This work will help to improve environmental management and decision-making processes.  

 

2. Materials and methods 

2.1. STICS-MACRO model 

MACRO (Larsbo and Jarvis, 2003) is a one-dimensional dual-permeability model of water flow and solute 

transport in macroporous soil. The water and solute are partitioned into two domains: micropores, where flow and 

transport occur, represented by the Richards and the convection-dispersion equations, and macropores, where 

gravity-driven flow occurs. Pesticide sorption is described using the Freundlich isotherm while degradation 

follows first-order kinetics and depends on soil temperature and moisture content. The representation of crop 

development is simply based on crops’ emergence and harvest dates, maximum leaf area index (LAI), maximum 

root depth and maximum crop height (as user defined input parameters). No agricultural practices such as mulching 

or tillage can be considered. Under conventional crop management, the performance of MACRO is known to be 

good enough to allow acceptable predictions of pesticides leaching (e.g. Marín-Benito et al., 2014).  

The STICS crop model (Brisson et al., 1998; Brisson et al., 2009) is a dynamic daily time-step model, 

which simulates plant growth, water dynamics, and C and N cycles over several growing seasons. STICS describes 

in details the physical and biological processes occurring in the soil-crop-environment system considering a broad 

diversity of crop varieties and management practices. STICS predicts many output variables related to the crop 

production (LAI, crop yield), to the environment (water, carbon, and nitrogen fluxes), and to the evolution of soil 

water and nitrate contents. STICS has been widely tested for a variety of cropping situations and was shown to be 

good to predict crop and soil variables, under various agricultural practices (Brisson et al., 2003; Coucheney et al., 

2015).  

STICS-MACRO results in the combined use of STICS and MACRO in order to simulate crop growth and 

pesticide fate in complex cropping systems (Fig. 1) (Lammoglia et al., 2017a). Dedicated R packages (R 

Development Core Team, 2016) were developed to automate the forcing of MACRO inputs with some STICS 

output variables. The packages allow to sequentially (1) import predefined STICS and MACRO parameterization 

sets (one for each model), (2) simulate the crop rotation, crop development, water, and nitrogen requirements under 

agricultural practices such as fertilization or crop residues management with STICS model, (3) extract from STICS 

output files the estimated potential evapotranspiration, as well as the estimated green and total LAI, the crop height 

and the maximum root depth (for each time step), (4) convert these to MACRO input file format and adapt 
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MACRO parameterization, (5) estimate the fraction of the sprayed pesticide intercepted by the crop based on 

STICS total LAI when the pesticide is sprayed, (6) run the MACRO model with crop shape variables and potential 

evapotranspiration coming from STICS, and finally (7) import MACRO simulation results into the R environment, 

i.e. water balance and pesticide concentrations in soils and water as a function of time. The results can either be 

analyzed and visualized in R or exported in different formats. Internally, the tools use existing command line 

modes of STICS and MACRO, but do not use the graphical user interfaces of the two models. As indicated above, 

the performance of STICS-MACRO to simulate the fate of pesticides under different cropping systems was shown 

to be acceptable although it depended on the pedoclimatic context: the performance of STICS-MACRO was found 

to be better in a clayey calcic cambisol under average precipitation of 820 mm per year and average annual 

temperature of 11°C than in stagnic luvisol with 630 mm per year and 13.5 °C (Lammoglia et al., 2017a). 

 

 

Fig. 1. Combined use of STICS crop model and of MACRO pesticide fate model to simulate pesticides leaching 

in cropping systems (From Lammoglia et al., 2017a). 

 

2.2. Climate, soil and pesticides characteristics 

This work is based on a geographic area corresponding to the catchment of Auzeville which surrounds an 

experimental site of INRA (Southwest of France; 43°31’ N, 1°30’ E). The catchment area is defined as a square 

zone of 400 km2 (20 km  20 km) divided into grid cells of 1 km2 (1  1 km), imposed by the resolution of the 

rainfall data (see 2.2.1). The dominant land use is maize crop production sown from 1st April to 31st May. Maize 

monoculture has therefore been considered in this study also taking into account it is one of the most cultivated 

crop in France with a sowing area about 3.11 million ha (grain maize and forage maize) (Agreste, 2016). 
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2.2.1. Climate 

STICS-MACRO requires daily climatic inputs because despite MACRO can be run with hourly rainfall data, 

STICS cannot. Nevertheless, in MACRO, daily rainfall data are converted internally into hourly rainfall data 

(Moeys et al., 2012). The daily minimum and maximum air temperature, global solar radiation, relative humidity 

and wind speed were obtained from the INRA Auzeville meteorological station located close to the catchment 

(Climatik, 2016). Rainfall data were obtained from Meteo France: they correspond to radar C-band dual 

polarization data with a spatial resolution of 1  1 km and a temporal resolution of 5 minutes. The 5 minutes 

rainfall data were aggregated to daily values needed as input by the model. The daily meteorological variables 

used in the study cover the 2007-2013 period. 

 

2.2.2. Soil properties 

The loamy-clayey soil of the experimental site of Auzeville was selected as representative of the catchment. The 

soil textural characteristics such as sand, silt, clay, and organic carbon contents, bulk density and pH were 

measured (Table 1).  

RETC (RETention Curve) (van Genuchten et al., 1991) was used to estimate the soil hydraulic parameters 

as required in STICS-MACRO such as the water contents at wilting point (WILT) and field capacity (HCCF), and 

the water retention parameters (TPORV: saturated water content; XMPOR: boundary (i.e. between macropores and 

micropores) water content; RESID: residual water content, KSATMIN: saturated hydraulic conductivity, and 

ALPHA and n: van Genuchten’s soil-water retention parameters). The boundary soil water tension (CTEN) and 

the tortuosity/pore size distribution factor (ZN) were estimated from Beulke et al. (2002) (Table 1). The two soil 

parameters that were selected for the uncertainty analysis (see 2.4.1), the boundary hydraulic conductivity (KSM) 

and the diffusion pathlength (ASCALE), were estimated according to Steffens et al. (2013) and are shown in Table 

2. 

 

 

 

 

 

 

 



8 
 

Table 1  

Auzeville catchment reference soil physicochemical and hydraulic characteristics. 

Soil characteristic  Depth (cm) 

  0-30 30-60 60-90 90-120 

Clay (%)a  27.8 32.1 43.0 29.1 

Silt (%)a  39.7 40.7 42.9 51.6 

Sand (%)a  32.5 27.2 14.1 19.3 

Organic carbon (%)a  0.81 0.67 0.33 0.17 

pH (water)a  6.7 7.9 7.9 8.4 

Bulk density (g cm-3)a  1.4 1.5 1.5 1.5 

Soil water content at wilting point – WILT (m3 m-3)a  0.10 0.12 0.13 0.13 

Soil water content at field capacity – HCCF (m3 m-3)a  0.19 0.18 0.18 0.15 

Saturated water content – TPORV (m3 m-3)b  0.43 0.41 0.44 0.41 

Boundary water content – XMPOR (m3 m-3)b  0.41 0.39 0.41 0.40 

Residual water content – RESID (m3 m-3)b  0.076 0.079 0.090 0.078 

Alpha van Genuchten parameter – ALPHA (cm-1)b  0.0097 0.0105 0.0122 0.0079 

n van Genuchten parameter – n (-)b  1.49 1.44 1.37 1.52 

Saturated hydraulic conductivity – KSATMIN (mm h-1)b  4.25 2.33 2.13 2.52 

Boundary soil water tension – CTEN (cm)c  25 30 40 25 

Tortuosity/pore size distribution factor – ZN (-)c  4 4 4 4 

a Measured 

b Estimated with RETC (RETention Curve) (van Genuchten et al., 1991).  

c Estimated from Beulke et al. (2002) 
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Table 2  

Nominal and bounds values of the 9 input factors selected for the uncertainty analysis. Their distribution was 

assumed to be uniform. The nominal value, used for the analysis of the effects of rainfall spatial variation, was 

defined as a mean value of the range. 

Input factors  Bentazone  S-metolachlor 

Symbol Description Unit   Lower 

bound 

Nominal 

value 

Upper 

bound 

 Lower 

bound 

Nominal 

value 

Upper 

bound 

           

Kfa Freundlich adsorption 

coefficient 

-  1.20 1.55 1.90  0.30 2.50 4.70 

nfa Freundlich exponent -  1.000 1.005 1.010  1.000 1.005 1.010 

DT50a Degradation half-life days  8.0 55.0 102  7.6 22.6 37.6 

doseb Dose of pesticide g ha-1  750 1071 1392  1500 1711 1921 

datepestb Number of days from 

sowing to pesticide 

application 

days  +30 +55 +80  -5 +12 +30 

iplt0c Date of sowing  Julian day  91 121 151  91 121 151 

qresd Amount of organic 

residues added to soil 

t ha-1  0 15 30  0 15 30 

KSMe Boundary hydraulic 

conductivity 

mm h-1  0.001 1.250 2.500  0.001 1.250 2.500 

ASCALEe Effective diffusion 

pathlength 

mm  0.001 150 300  0.001 150 300 

a From PPDB (2016) and according to the following Freundlich equation: Qads = Kf  Cenf where Qads (mg kg-1) 

is amount of adsorbed herbicide in soil at equilibrium concentration, Ce (mg l-1) is herbicide equilibrium 

concentration in supernatant solution, and Kf and nf are Freundlich empirical adsorption coefficients. 

b From E-Phy (2016)  

c From Arvalis (2012) 

d From Ruget et al. (2002) 

e From Steffens et al. (2013)  
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2.2.3. Pesticides 

Two herbicides, bentazone and S-metolachlor, were selected because they are among the most used on maize crop 

for weed control and because they are frequently detected in groundwater (Alletto et al., 2013; Steffens et al., 

2013) (Table 2). S-metolachlor is used in pre-emergence and early post-emergence. Bentazone is used in post-

emergence; consequently, its interception by the crop canopy during spraying is higher than that of S-metolachlor. 

Sorption was assumed to be proportional to the soil organic carbon content. Degradation rates in the subsoil were 

corrected from those in the topsoil according to FOCUS (2000). Following the recommendations for application 

in France, bentazone and S-metolachlor were considered to be applied on maize at rates ranging from 0.750 to 

1.392 kg ha-1 and from 1.500 to 1.921 kg ha-1, respectively (Table 2). Bentazone was sprayed from 30 to 80 days 

after sowing. The earliest S-metolachlor application was done 5 days before the sowing date and the latest was 

done 30 days after the sowing date (Table 2). 

 

2.3. Assessment of the effects of spatial and temporal variability of rainfall on the modelling of pesticides leaching 

To assess the effects of spatial and temporal rainfall variability on the modelling of bentazone and S-metolachlor 

leaching, STICS-MACRO was run from 2007 to 2013, at every 1 km2 grid of the 400 km2 Auzeville catchment. 

From one grid cell to another, the rainfall time series varied while all other STICS-MACRO parameters were held 

constant, the uncertain parameters at their nominal values defined as mean values of the range (Table 2). The 

results were summarized for each year by their mean values over the catchment and their coefficients of variation 

(CV).  

 

2.4. Uncertainty analysis 

Following the assessment of the effects of rainfall variability on the modelling of pesticides leaching, the 

uncertainty analysis of STICS-MACRO combining uncertainties related to climate, agricultural practices, soil and 

pesticide properties was performed. To allow, within a reasonable calculation time, the characterization of the 

spatial variability of rainfall in the uncertainty analysis, four evenly-spaced grid cells were selected among the 400 

because they exhibited different ranges of annual rainfall (Fig. 2). Combining the seven rainfall series of the four 

selected grid cells for every climatic year from 2007 to 2013 led to 28 rainfall series that were used to study the 

effects of uncertainty related to spatial and temporal rainfall variability. 
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Fig. 2. Distribution of the annual precipitations during the year following pesticide applications in Auzeville 

catchment from 2007 to 2013. Boxplot for one year represents the variability among the whole 400 positions (◼) 

and among the 4 positions chosen in the 20 km  20 km area (◼) and the 2000 parameters values of the Latin 

Hypercube Sampling (LHS), including the application date. Each year corresponds to the year the pesticide was 

applied. The 1-year cumulative period starts at the pesticide application date which is considered as uncertain and 

influences the sum of precipitation.  

 

2.4.1. Selection of input factors  

Based on the results of previous sensitivity and uncertainty analyses carried out with STICS (Ruget et al., 2002; 

Varella et al., 2010), MACRO (Dubus and Brown, 2002; Dubus et al., 2003b; Larsbo and Jarvis, 2005; Roulier 

and Jarvis, 2003) and STICS-MACRO (Lammoglia et al., 2017b), seventeen input factors were first considered. 

These input factors have then been analyzed with the Morris screening method (Morris, 1991) to determine those 

that had a strong influence on the predictions of bentazone and S-metolachlor leaching. This step avoided spending 

a large effort to carefully characterize factors that have little impact on the uncertainty of STICS-MACRO outputs. 

Among the seventeen input factors, eight of them were found to have low or negligible impact on STICS-

MACRO outputs (data not shown). On the contrary, nine input factors were identified as influential (Table 2): the 

sowing date (iplt0), the amount of organic residues added to soil (qres), the pesticide application date (datepest), 

the pesticide dose (dose), the Freundlich adsorption coefficient (Kf), the Freundlich exponent (nf), the degradation 

half-life (DT50), the boundary hydraulic conductivity (KSM), and the diffusion pathlength (ASCALE). The nominal 

values, the lower and upper bounds of these input factors are presented in Table 2. Their distribution was assumed 

to be uniform (both for the uncertainty analysis and the sensitivity analysis, see 2.5). 
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2.4.2. Propagation of the uncertainties of the selected input factors  

Monte Carlo methods are often recommended to analyze the propagation of uncertainties through complex 

environmental models (Helton and Davis, 2003; Wallach et al., 2014). They are probabilistic methods based on 

the sampling of the output variable space. The deterministic output of the model is computed for the set of sampled 

inputs according to distribution functions. The model output uncertainty is defined by descriptive statistics such 

as mean, standard deviation and quantiles, which are computed based on the deterministic set of outputs (Helton 

and Davis, 2003).  

To limit computational cost, we used the Latin Hypercube Sampling (LHS) scheme (McKay et al., 2000) 

which guarantees that full coverage by stratification over the range of each input variable is represented. First, 

LHS uniformly divides the range of each input variable into disjoint intervals of equal probability. Then a value 

from each interval is randomly selected with respect to the specific probability density function in that interval. 

Finally, one of the random values for each input variable is randomly chosen to form a sampling element. Previous 

studies have shown that, for a given sample size or number of simulation, LHS can more exhaustively explore 

model parameter space than simple random sampling (Helton and Davis, 2003; McKay et al., 2000).  

When using Monte Carlo method, the sample size has to be carefully determined to obtain reliable results. 

The more samples are used, the more reliable the statistical inference will be made. On the other hand, an increase 

in sample size is accompanied by more computational cost which is a major limiting factor with our model. 

Therefore, the accuracy and the computational cost must be appropriately balanced (Helton and Davis, 2003; 

McKay et al., 2000). To investigate how the sample size affects the stability of the simulations and to choose the 

appropriate sample size for the uncertainty analysis, LHS was undertaken with several sample sizes of 100, 500, 

1000, 2000 and 5000 for the S-metolachlor case-study. The relationships between the concentrations of S-

metolachlor and the different sample sizes were visualized by presenting the 10 th quantile, the 90th quantile and 

the mean annual pesticide concentration (Cannual) (Fig. 3a) (see 2.4.3). This relationship has also been plotted with 

the logarithmic transformation of the Cannual of S-metolachlor (Fig. 3b) (this logarithmic transformation procedure 

is further explained in section 2.5). Following logarithmic transformation, the sample size was found to have little 

influence on the 10th and 90th quantiles (Fig. 3a and b), and a sample size of 500 seemed adequate. However, 

without this transformation, Fig. 3a shows that even with a sample size of 5000, the results of Cannual were not 

completely stable. Consequently, in order to keep an acceptable computing cost while minimizing potential sample 

size effects on the concentrations of S-metolachlor, a sample size of 2000 have been used. 
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Fig. 3. Effect of the Latin Hypercube Sampling (LHS) size on the mean annual concentration of S-metolachlor 

(Cannual) (a) and on the logarithmic transformation of Cannual of S-metolachlor (b).  

 

Using the ranges of variation assigned to the nine input factors (Table 2) and the 28 rainfall series (7 years 

 4 positions), the Monte Carlo simulation with LHS was performed by running STICS-MACRO with 2000 as 

sample size for both bentazone and S-metolachlor. This design resulted in 112 000 simulations (2 pesticides  

2000 samples  7 years  4 positions) which needed 25 days calculation (parallel computing on a quad core Xeon® 

processor at 3.06 GHz).  

 

2.4.3. Outputs  

The effects of the uncertainties were assessed on the following two outputs of STICS-MACRO, for each grid cell: 

(i) the arithmetic mean annual concentration of pesticide leached at 1 m depth Cannual (µg L-1), i.e. occurring during 

one year starting at the pesticide application date, named here as “annual concentration”; (ii) the maximum daily 

pesticide concentration at 1 m depth over one year period Cmax (µg L-1), starting at the pesticide application date:  

𝐶𝑎𝑛𝑛𝑢𝑎𝑙 =
1

365
∑

𝑀𝑛

𝑉𝑛

365
𝑛=1          (1) 

𝐶𝑚𝑎𝑥 =  𝑚𝑎𝑥 {
𝑀1

𝑉1
, … ,

𝑀365

𝑉365
}         (2) 

 

where n is the day after the pesticide application date, Vn (V1… V365) is the volume of percolated water on the day 

n (on day 1…365) (L), and Mn (M1… M365) is the mass of leached pesticide on the day n (on day 1…365) (µg).   

Then, the arithmetic mean of the Cannual, the 10th percentile and the 90th percentile of the distribution for 

all combinations of the 7 years, 4 spatial positions and 2000 parameters of LHS design were calculated. 
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Each of the seven selected climatic years was simulated independently from the others to study the effect 

of climate on pesticide leaching. Consequently, there is no residual amount of pesticide from the previous year in 

one simulation.  

 

2.5. Sensitivity analysis 

Once the uncertainties in STICS-MACRO outputs have been quantified, a sensitivity analysis has to be done to 

identify the input factors that contribute the most to uncertainties in the outputs. There are several sensitivity 

analysis methods that can be used and Wallach et al. (2014) recommend to implement several methods and to 

compare their results.  

The 112 000 simulations performed for the uncertainty analysis produced a high number of input-output 

pairs. Therefore, due to the high computational cost of STICS-MACRO, the sensitivity analysis explored those 

input-output pairs instead of running again STICS-MACRO with another sampling. 

First, the Pearson product moment correlation (PEAR) coefficients were determined for the nine input 

factors. The PEAR coefficient measures the degree of linear association between the variations of STICS-MACRO 

output (the Cannual was retained for these calculations) and the variation of the studied input factors. A correlation 

close to +1 or -1 indicates a strong influence of the input factor on pesticide concentrations while a correlation 

close to zero indicates that the input factor is not influential (Wallach et al., 2014). The PEAR coefficients were 

determined from the logarithmic transformation of concentrations (see below).  

Then, we built and used a meta-model of STICS-MACRO. A meta-model consists in a mathematical 

function built from a set of simulations of the original model over the domain of variation of the input factor. This 

approach has already been used in environmental modelling, permitting to apply powerful sensitivity methods 

(Faivre et al., 2013; Uusitalo, 2015). Linear regression is the most commonly used method for meta-model 

construction because of its simplicity, however it performs better when the relationship between inputs and outputs 

is approximately linear (Storlie et al., 2009). Therefore, we built the meta-model on the logarithmic transformation 

of the outputs to take into account low concentration values of bentazone and S-metolachlor using the linear 

regression function “lm” and the stepwise procedure “step” implemented in the R statistical software (R 

Development Core Team, 2016). We used the log(threshold+X) transformation, where X is Cannual or Cmax of 

bentazone and S-metolachlor as predicted by STICS-MACRO. The value of the threshold was set to 10-6 as a 

compromise to give weight to low concentrations, but not too much weight to very low values. The nine 

quantitative input factors presented in Table 2 were considered as quantitative variables, and the seven climatic 
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years (year) and the four spatial positions (pos) of the selected meteorological data were considered as qualitative 

input factors. We limited the model to the interactions of order 2. Thus, sensitivity indices were computed using 

ANOVA method which assesses the main contribution of each input factor to the total variance of the model 

outputs as well as the interactions between factors (Wallach et al., 2017). 

The performance of the meta-model was assessed performing new simulations with STICS-MACRO and 

with the meta-model with a new and independent LHS sample of size 100. Two statistical indices were calculated 

to assess this performance, the efficiency (EF) and the bias (B): 

𝐸𝐹 = 1 −
∑ (𝑆𝑖−𝑂𝑖)²𝑛

𝑖=1

∑ (𝑂𝑖−𝑂𝑚)²𝑛
𝑖=1

         (3) 

𝐵 =
∑ (𝑆𝑖−𝑂𝑖)𝑛

𝑖=1

∑ (𝑂𝑖)𝑛
𝑖=1

           (4) 

where Si is the concentrations simulated by the meta-model; Oi is the concentrations simulated by STICS-MACRO; 

Om is the mean of the simulations of STICS-MACRO; and n is the number of simulations. EF ranges from -∞ to 

1, with EF = 1 indicating a perfect match between STICS-MACRO and the meta-model. When the bias B = 0, it 

indicates a perfect match; if B > 0, it indicates an overestimation by the meta-model, while B < 0 indicates an 

underestimation by the meta-model. 

 

3. Results and Discussion 

3.1. Effects of the spatial and temporal variability of rainfall on the modelling of pesticides leaching 

The total annual amounts of rainfall on the period of one year after pesticide application were highly variable 

among the seven years with a mean value (averaged over the 400 km² area) ranging from 504 mm in 2010 to 1000 

mm in 2008 for bentazone, and from 488 mm in 2011 to 1062 mm in 2008 for S-metolachlor (Fig. 4, Table 3). 

These values are different from one pesticide to another because they are considered from the pesticide application 

date. The coefficients of spatial variation (CV) of annual rainfall ranged from 4.1% in 2008 to 6.9% in 2010 for 

bentazone, and from 3.9% in 2008 to 7.4% in 2007 for S-metolachlor (Table 3). The largest annual rainfall 

occurred in 2008 corresponding to the lowest variability over the catchment (CV = 4.1 and 3.9% for bentazone 

and S-metolachlor, respectively) (Table 3).  
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Table 3  

Mean annual rainfall from 2007 to 2013, and coefficients of variation (CV) over the Auzeville catchment for total 

mean annual rainfall and mean annual concentrations (Cannual) of bentazone and S-metolachlor. Each value is 

calculated on one year period starting from the pesticide application date. 

Pesticide   2007 2008 2009 2010 2011 2012 2013 

Bentazone Mean annual rainfall (mm)  798 1000 592 504 529 953 927 

 CV annual rainfall (%)  5.7 4.1 6.4 6.9 4.9 5.6 5.6 

 CV Cannual (%)  306 98 663 266 544 194 164 

          

S-metolachlor Mean annual rainfall (mm)  846 1062 622 495 488 898 988 

 CV annual rainfall (%)  7.4 3.9 6.2 6.8 6.5 5.2 5.2 

 CV Cannual (%)  199 68 347 140 207 95 78 

 

 

 

Fig. 4. Spatial variability of annual rainfall (a) and mean annual concentration (b) of bentazone and S-metolachlor 

for 4 contrasted years (2007, 2008, 2009, 2013) in the Auzeville catchment. Precipitations: Total annual amount 

of rainfall (mm), Cannual: Mean annual concentrations of bentazone and S-metolachlor (µg L-1), xpos and ypos: 

Spatial positions. 

 

For both bentazone and S-metolachlor, the influence of the spatial and temporal rainfall variabilities was 

analyzed by running STICS-MACRO at each of the 400 grid cells, from 2007 to 2013, while all other parameters 

were held constant.  
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Very large differences were found between the simulated annual concentrations (Cannual) of bentazone and 

S-metolachlor at 1 m depth (Fig. 4). The effects of rainfall uncertainty on the leaching of bentazone and S-

metolachlor were also found to be amplified through the STICS-MACRO model. The CV of the Cannual of 

bentazone and S-metolachlor were considerably larger than the corresponding ones for rainfall: from 98 to 663% 

for bentazone, and from 68 to 347% for S-metolachlor (Table 3). The biggest variations in the Cannual of bentazone 

and S-metolachlor occurred in 2009 when annual rainfalls were low whereas the smallest variations occurred in 

2008 when rainfalls were maximal (Table 3). Therefore, assuming a linear transfer of rainfall variability through 

the STICS-MACRO model would have led to underestimation of the concentrations of bentazone and S-

metolachlor. 

Bentazone is more mobile and more persistent than S-metolachlor (Table 2) so, as expected, its maximal 

concentrations Cmax were higher than those of S-metolachlor (Boesten and van der Linden, 1991) (Fig. 5). In 

general, the spatial variation of the concentrations of bentazone was also 2 times higher than that of S-metolachlor 

(Table 3). 

 

 

 

Fig. 5. Maximal concentrations (Cmax) of bentazone and S-metolachlor simulated at each of the 400 grid cells of 

the 400 km² Auzeville catchment for four contrasted climatic years. 

 

Finally, a significant positive correlation was found between the annual rainfall amounts and the 

logarithmic transformation of the concentrations of both bentazone and S-metolachlor at 1 m depth (r2 = 0.63 and 

0.45, respectively), meaning that pesticide leaching increases exponentially with annual rainfall. This is consistent 

with many results showing that pesticide leaching increases with increasing annual rainfall amounts (e.g. Tiktak 

et al., 2004).  
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Overall, this assessment of the influence of rainfall variability on leaching prediction reveals the non-

linear effects of annual rainfall on the concentrations of both herbicides, and the importance of taking into account 

the uncertainties related to spatial and temporal variability of annual rainfall for the estimation of pesticides 

concentrations in groundwater. 

 

3.2. Uncertainty analysis 

The results of the 112 000 simulations led to annual concentration (Cannual) at 1 m depth, ranging, over the seven 

years of simulation, from 0 to 570 µg L-1 for bentazone and from 0 to 750 µg L-1 for S-metolachlor, while the 

maximum concentrations (Cmax) were found to range from 0 to 2.0 105 µg L-1 for bentazone and from 0 to 2.5 105 

μg L-1for S-metolachlor (any value below the threshold of 10-6 has been considered as 0). For the 2007-2013 

simulated period, the average Cannual of bentazone was 0.287 µg L-1 and was lower than that of S-metolachlor of 

1.55 µg L-1, and the corresponding median values were 5.5 10-7 µg L-1 for bentazone and 3.3 10-6 µg L-1 for S-

metolachlor (Table 4). The average Cmax were high, 16.6 µg L-1 for bentazone and 65.2 µg L-1 for S-metolachlor, 

while the median values were lower: 1.0 10-5 µg L-1 and 5.7 10-5 µg L-1, respectively (Table 4).  

The logarithmic transformation of concentrations was found to be suitable to represent the distribution of 

the concentrations of bentazone and S-metolachlor (Fig. 6). It is of importance for meta-model building (see 3.3.2) 

and it avoids to give too much weight to values less than this threshold and thus to improve the quality of prediction 

for higher values. The concentrations of both bentazone and S-metolachlor were strongly skewed and did not fit 

any standard distribution (Fig. 6), among other things because of numerous null or quasi-null concentrations. The 

results predicted with 80% confidence that the Cannual of bentazone would be between 0 and 0.035 µg L-1, and that 

the Cannual of S-metolachlor would be between 0 and 0.414 µg L-1 (Table 4). However, the means of the 

distributions of the Cannual of bentazone and S-metolachlor are superior to the 90th percentile (Table 4), reflecting 

the sensitivity of the arithmetic mean to extreme values (here high concentrations). This result comes from a very 

non-linear response of the model on the variable of concentration. If the number of low concentrations is 10 times 

that of high concentrations, then the mean values are greater than the 90th percentile. It emphasizes the difficulty 

to estimate precisely extreme quantiles and even the simple mean with such models who require high 

computational time. To go further, it may be interesting to consider the existing correlations within the input 

factors, but it arises lots of questions on how to qualify these correlations which are poorly documented in the 

scientific literature and technical databases. Finally, these results mean that there is high probabilities that STICS-
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MACRO simulates concentrations lower than the mean of the distribution which will have some consequences on 

risk assessment because of underestimation of the average leached concentrations of pesticides.  

 

 

 

Fig. 6. Distribution of the mean annual concentrations of bentazone and S-metolachlor (Cannual) and of maximum 

daily concentrations of bentazone and S-metolachlor over one year period (Cmax) for all the combination of the 7 

years, the 4 spatial positions and the 2000 parameters of the Latin Hypercube Sampling design. Threshold: 10-6 µg 

L-1.  

 

Table 4  

Statistical parameters for mean annual concentrations (Cannual) and maximum daily concentrations (Cmax) of 

bentazone and S-metolachlor over one year period in the Auzeville catchment. These statistical parameters 

describe the distribution obtained after running STICS-MACRO during 7 independent years (2007 to 2013), at 4 

spatial positions, and sampling size of 2000 with the Latin Hypercube Sampling method. CV: Coefficient of 

variation; SD: Standard deviation; q10: 10th quantile; q90: 90th quantile. 

Pesticide STICS-MACRO 

output 

 Mean  

(µg L-1) 

Median 

(µg L-1) 

SD  

(µg L-1) 

CV  

(%) 

q10  

(µg L-1) 

q90 

(µg L-1) 

Bentazone Cannual   0.287 5.500 10-7 4.270 14.9 2.200 10-18 0.035 

 Cmax   16.6 1.000 10-5 898 54.2 7.470 10-17 0.414 

         

S-metolachlor Cannual  1.550 3.300 10-6 10.8 6.960 5.170 10-13 0.494 

 Cmax   65.2 5.700 10-5 1820 27.8 1.050 10-11 4.920 
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Finally, it was shown that the predicted annual concentrations of bentazone and S-metolachlor could 

exceed the regulatory threshold of 0.1 µg L-1 at 1 m depth (FOCUS, 2000; Commission Regulation (EU) 546/2011, 

2011) in 6% and 15% of the situations, respectively. Considering their maximal concentrations during the first one 

year following application, bentazone and S-metolachlor could exceed this regulatory threshold in 17% and 24% 

of the situations, respectively. 

 

3.3. Contribution of the different sources of uncertainty 

3.3.1. Correlation-based sensitivity analysis 

The PEAR coefficients were calculated to identify the correlations between Cannual of pesticides and the 9 input 

factors, using the 112 000 LHS Monte Carlo simulations. They were computed on the logarithmic values of the 

concentrations. 

The mean values of the PEAR coefficients and the sensitivity ranking were different for bentazone and 

S-metolachlor, and they varied from one climatic scenario to another (Table 5). For both pesticides, the Freundlich 

adsorption coefficient Kf and the boundary hydraulic conductivity KSM were found to be very influential, with a 

stronger influence of Kf for the pre-emergence herbicide S-metolachlor (Table 5). An increase in the values of Kf 

and KSM decreased the concentrations of both bentazone and S-metolachlor which is consistent with the findings 

of Dubus and Brown (2002), and may reflect the fact that the higher KSM, the less frequently preferential flow is 

triggered. However, KSM was found more important for the post-emergence herbicide bentazone, though 

preferential flow and related factors (KSM) are known to be more important in determining the leaching of more 

strongly sorbed pesticides (Dubus and Brown, 2002; Larsson and Jarvis, 2000). A possible explanation might be 

that a larger KSM values induces a relatively faster bulk transport in the soil matrix of mobile compounds such as 

bentazone. The degradation half-life DT50 was also influential, and an increase in the values of DT50 increased 

the concentrations of both bentazone and S-metolachlor. However, an increase in DT50 could also lead to a 

decrease in the concentrations of bentazone, depending on the climatic conditions (Table 5). The influence of the 

effective diffusion pathlength ASCALE on the concentrations of bentazone also seemed to be climate dependant, 

while this was not observed for S-metolachlor (Table 5). 

The other PEAR coefficients were low, but they may show that the crop management factor qres (amount 

of organic residues added to soil) could be more influent than the pesticide application date (datepest) and dose 

(dose) (Table 5). For both bentazone and S-metolachlor, an increase in the values of qres increased the 

concentrations, in agreement with the findings of Lammoglia et al. (2017b). Nevertheless, the qres and datepest 
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factors could have more influence on the concentrations of bentazone than those of S-metolachlor, and their 

influence could be increased by the climatic conditions. These differences between the ranking of bentazone and 

S-metolachlor can be explained by the interception of bentazone by the crop canopy as the application date of 

bentazone was 43 days later than that of S-metolachlor (Table 2). This effect seems to be reinforced with lower 

annual rainfall. 

 

Table 5  

Pearson Product Moment Correlation coefficient (PEAR) between input factors and the mean annual concentration 

(Cannual) averaged over the 28 climate scenarios (Mean) and ordered by decreasing importance for bentazone and 

S-metolachlor. The ranges of the PEAR coefficients (Range) were obtained amongst climate scenarios. The PEAR 

values were computed on the logarithmic values of the Cannual of bentazone and S-metolachlor for each climate 

scenarios (7 years  4 spatial positions). 

Bentazone  S-metolachlor 

Input factor (Unit) Mean Range  Input factor (Unit) Mean Range 

KSM (mm h-1) -0.4740 [-0.6770 ; -0.2750]  Kf (-) -0.5670 [-0.7970 ; -0.1830] 

Kf (-) -0.2460 [-0.6000 ; -0.0042]  KSM (mm h-1) -0.3530 [-0.4980 ; -0.2520] 

DT50 (days) 0.1480 [-0.0217 ; 0.4160]  DT50 (days) 0.1230 [0.0263 ; 0.2290] 

nf (-) 0.0761 [0.0276 ; 0.1330]  nf (-) 0.0672 [0.0393 ; 0.0962] 

ASCALE (mm) 0.0578 [-0.0040 ; 0.1200]  ASCALE (mm) 0.0612 [0.0392 ; 0.1060] 

qres (t ha-1) 0.0422 [0.0038 ; 0.0653]  iplt0 (Julian day) -0.0299 [-0.1970 ; 0.0597] 

datepest (days) -0.0360 [-0.1230 ; 0.0174]  qres (t ha-1) 0.0272 [0.0100 ; 0.0627] 

iplt0 (Julian day) -0.0119 [-0.1140 ; 0.0419]  datepest (days) -0.0144 [-0.0903 ; 0.0503] 

dose (g ha-1) 0.0085 [-0.0248 ; 0.0486]  dose (g ha-1) -0.0112 [-0.0282 ; 0.0028] 

KSM: Boundary hydraulic conductivity; Kf: Freundlich adsorption coefficient; DT50: Degradation half-life; nf: 

Freundlich exponent; ASCALE: Effective diffusion pathlength; qres: Amount of organic residues added to soil; 

datepest: Days from sowing to pesticide application; iplt0: Sowing date; dose: Dose of application. 

 

3.3.2. Quantitative meta-model-based sensitivity analysis 

Based on the logarithmic transformations of the predicted concentrations of bentazone and S-metolachlor, a meta-

model of STICS-MACRO was built. The quality of the prediction of this meta-model was evaluated on an 
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independent LHS sample of size 100 (Fig. 7). For bentazone, the stepwise procedure selected a model with 129 

parameters (instead of 154 parameters with the complete model) and an adjusted r2 of 0.88. The quality of the 

prediction was quite satisfying with an efficiency EF of 0.66 and a bias B of 0.015. For S-metolachlor, the stepwise 

procedure selected a model with 124 parameters (instead of 154) and an adjusted r2 of 0.84. The quality of the 

prediction was also satisfactory with EF = 0.64 and B = -0.008. For both bentazone and S-metolachlor, the meta-

model underestimated the annual concentrations (Cannual) for some dry years (for years 2009, 2010, 2011) (Fig. 7, 

Table 3). 

 

 

 

Fig. 7. Comparison of the mean annual concentrations (Cannual) (µg L-1) of bentazone and S-metolachlor predicted 

by STICS-MACRO and its meta-model. 

 

The ANOVA, computed on these meta-models, explained 81% and 80% of the total variability of the 

concentrations of bentazone and S-metolachlor, respectively (Fig. 8). The total amount of annual rainfall (year), 

the Kf and the KSM were the three most influencing factors for modelling of the concentrations of both bentazone 

and S-metolachlor with STICS-MACRO. For the weakly sorbed herbicide bentazone, the annual rainfall (year) 

was the most influential factor, it explained 49% of the total variability of the concentrations of bentazone (Fig. 

8). However, the annual rainfall only explained 27% of the total variability of the concentrations of S-metolachlor 

while the Kf explained 34% (Fig. 8). The effects of the Kf were less important for the leaching of bentazone (7.3%). 
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The three most influent factors (year, KSM, Kf) are followed by the DT50 and the rainfall spatial variability (pos) 

(Fig. 8). The rainfall spatial variability (pos) contributed to the variability of the predicted concentrations more 

than the pesticide properties (nf), the crop management properties (qres, iplt0, dose, datepest), and the soil property 

(ASCALE). These results agree with those of Steffens et al. (2014) who indicated that uncertainty in model 

parameters was less important for the prediction of pesticide leaching than climate uncertainty. 

 

 

 

Fig. 8. Main effects and interaction effects on the concentration of bentazone and S-metolachlor calculated for 

each factor with the ANOVA method based on the meta-model. The horizontal lines represent the explanatory 

capacity of the meta-model. year: Climatic year (7 contrasted years); KSM: Boundary hydraulic conductivity (mm 

h-1); Kf: Freundlich adsorption coefficient (-); DT50: Degradation half-life (days); pos: Spatial position (4 

positions); nf: Freundlich exponent (-); ASCALE: Effective diffusion pathlength (mm); qres: Amount of organic 

residues added to soil (t ha-1);  datepest: Days from sowing to pesticide application (days); iplt0: Crop sowing day 

(Julian day); dose: Dose of pesticide application g ha-1). 

 

The qualitative and quantitative sensitivity analysis methods led to the same conclusions except that, for 

S-metolachlor, the PEAR coefficient emphasized higher influence of the Freundlich exponent nf than of ASCALE 

contrary to the results obtained with the meta-model (Table 5, Fig. 8). In line with the results obtained for the 

PEAR coefficients (Table 5), the KSM had higher influence on the variability of the concentrations of bentazone 

than of S-metolachlor: 16% and 13%, respectively.  

The interactions between the factors were found to be important between annual rainfall (year), and 

pesticide properties (Kf) and soil properties (KSM) (Fig. 8). The interactions effect were very small for the crop 
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management properties (qres, iplt0, dose, datepest) despite previous studies found interaction effects between 

climate variables, pesticide application scenarios and pesticide use (Steffens et al., 2014; Steffens et al., 2015).  

Since the sum of the total effects is high (81% for bentazone and 80% for S-metolachlor), the input factors 

have major additive effects on the logarithmic values of the concentrations of bentazone and S-metolachlor. This 

indicates that STICS-MACRO behaved as an additive model with important parameter interactions when the 

predicted concentrations are logarithmically transformed. However, it is worth remembering that the results of this 

study only stand in the bounds defined for each input factor and are specific to the soil-crop conditions and the 

climate characteristics of the catchment assessed.  

 

5. Conclusion 

The objective of this work was to study the effects of the uncertainties related to climate, agricultural practices, 

soil and pesticide properties on the prediction of pesticides leaching with STICS-MACRO. First, the effect of 

spatial and temporal rainfall variability on mean annual pesticides concentrations was assessed. The interactions 

between the concentrations of bentazone and S-metolachlor and the annual rainfall were shown to be non-linear, 

and the variability of the concentrations was higher than that in the annual rainfall amounts (spatial coefficients of 

variation of annual rainfall ranging from 4 to 7% produced 68 to 663% of variation in the concentrations). These 

results suggest that the spatial and temporal heterogeneity are paramount when defining representative rainfall 

data for pesticide leaching prediction. Then, using a Monte Carlo method with Latin Hypercube Sampling, the 

uncertainties of input factors related to climate, agricultural practices, and soil and pesticide properties were 

propagated through STICS-MACRO. There was a high probability of predicting concentrations of both bentazone 

and S-metolachlor lower than the means of their respective distributions because the distributions of their 

concentrations were strongly skewed and showed mean values superior to the 90th percentile. This has to be 

considered in risk assessment because of the probable underestimation of the average leached concentrations of 

pesticides. Even if bentazone is more mobile and persistent than S-metolachlor, there are half less risks that the 

annual concentrations of bentazone exceed the regulatory threshold of 0.1 µg L-1 because of higher interception of 

bentazone than of S-metolachlor by crop canopy. Then a sensitivity analysis was done based on the Pearson 

coefficient and on the ANOVA method using a meta-model of STICS-MACRO. The climate temporal variability, 

the Freundlich adsorption coefficient and the boundary hydraulic conductivity, followed by the degradation half-

life and the rainfall spatial variability have been identified by both sensitivity analysis methods as the main input 

factors involved in the uncertainties in the prediction of the leaching of bentazone and S-metolachlor. The leaching 
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of S-metolachlor used in pre-emergence and early post-emergence was mostly affected by the parameter related 

to adsorption. Factors related to agricultural practices were most influential on the leaching of the post-emergence 

pesticide, bentazone. STICS-MACRO also showed non-linear but additive effects on the logarithmic values of the 

concentrations of bentazone and S-metolachlor. These results depend on the specific soil-crop-climate 

characteristics considered. Nevertheless, they confirm the strong effects of the uncertainties in climate, pesticide, 

soil and agricultural practices input factors on the uncertainties in the prediction of pesticides leaching. Extending 

this uncertainty analysis to other crops, soil types, and different catchment scale will provide additional guidance 

and information that should be taken into account when using the STICS-MACRO model to predict pesticides 

leaching in innovative cropping systems. This identification is a valuable indication for model users which may 

choose to fix little relevant parameters to their nominal values while focusing efforts on measuring the parameters 

that have shown the strongest impact. 

 

Acknowledgments 

The authors are grateful to Dr Robert Faivre (INRA) for his help in building the meta-model and for constructive 

discussions and to Dr Eric Justes (INRA) for providing soil data. This work was supported by the French Ecophyto 

plan, managed by the ONEMA, through two French research programs: “For the Ecophyto plan (PSPE1)” 

managed by the Ministry in charge of Agriculture (Perform project), and “Assessing and reducing environmental 

risks from plant protection products” managed by the French Ministry in charge of Ecology (Ecopest project). 

Sabine-Karen Lammoglia was supported by INRA (SMaCH metaprogram) and by the Perform project.  

 

References 

Agreste, 2016. Statistique agricole annuelle. http://agreste.agriculture.gouv.fr/IMG/pdf/saa2016sdT2bspca.pdf. 

(Accessed 28 September 2017). 

Alletto, L., Benoit, P., Bolognési, B., Couffignal, M., Bergheaud, V., Dumény, V., Longueval, C., Barriuso, E., 

2013. Sorption and mineralisation of S-metolachlor in soils from fields cultivated with different conservation 

tillage systems. Soil Tillage Res. 128, 97-103. 

Arvalis, 2012. Résultats variétés 2012. Maïs grain. https://www.arvalis-

infos.fr/file/galleryelement/pj/93/be/4e/9b/choisirmais_sud_2012_4-varietes6513141374714407804.pdf. 

(Accessed 28 September 2017). 

http://agreste.agriculture.gouv.fr/IMG/pdf/saa2016sdT2bspca.pdf


26 
 

Beltman,W.H.J., Boesten, J.J.T.I., van der Zee, S.E.A.T.M., 2008. Spatial moment analysis of transport of 

nonlinearly adsorbing pesticides using analytical approximations. Water. Resour. Res. 44, W05417 

Beulke, S., Renaud, F., Brown, C., 2002. Development of Guidance on Parameter Estimation for the Preferential 

Flow Model MACRO 4.2. Final Report of the DEFRA project PL0538. Cranfield Centre for EcoChemistry, 

University of Cranfield, UK. 

Beven, K., Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. 

Hydrol. Process. 6, 279-298. 

Boesten, J., van der Linden, A.M.A., 1991. Modeling the influence of sorption and transformation on pesticide 

leaching and persistence. J. Environ. Qual. 20, 425-435. 

Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M.H., Ruget, F., Nicoullaud, B., Gate, P., Devienne-Barret, F., 

Antonioletti, R., Durr, C., Richard, G., Beaudoin, N., Recous, S., Tayot, X., Plenet, D., Cellier, P., Machet, J.M., 

Meynard, J.M., Delécolle, R., 1998. STICS: a generic model for the simulation of crops and their water and 

nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18, 311-346. 

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., 

Bussière, F., 2003. An overview of the crop model STICS. Europ. J. Agronomy 18, 309-332. 

Brisson, N., Launay, M., Mary, B., Beaudoin, N., 2009. Conceptual Basis, Formalisations and 

Parameterization of the STICS Crop Model. Quæ, Versailles. 

Chaubey, I., Haan, C.T., Salisbury, J.M., Grunwald, S., 1999. Quantifying model output uncertainty due to spatial 

variability of rainfall. J. Am. Water Resour. Assoc. 35, 1113-1123. 

Climatik, 2016. https://internet.inra.fr/climatik/ (Accessed 28 September 2017). 

Commission Regulation (EU) 546/2011, 2011. Commission Regulation (EU) No 546/2011 of 10 June 2011 

implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform 

principles for evaluation and authorisation of plant protection products. Off. J. Eur. Union, L 155/127. 

Coucheney, E., Buis, S., Launay, M., Constantin, J., Mary, B., García de Cortázar-Atauri, I., Ripoche, D., 

Beaudoin, N., Ruget, F., Andrianarisoa, K.S., Le Bas, C., Justes, E., Léonard, J., 2015. Accuracy, robustness and 

behavior of the STICS soil-crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-

environmental conditions in France. Environ. Model. Softw. 64, 177-190. 

Diaz-Diaz, R., Loague, K., Notario, J.S., 1999. An assessment of agrochemical leaching potentials for Tenerife. J. 

Contam. Hydrol. 36, 1-30. 

https://internet.inra.fr/climatik/


27 
 

Directive 2009/128/EC, 2009. Directive of the European Parliament and of the Council of 21 October 2009 

establishing a framework for community action to achieve the sustainable use of pesticides. Off. J. Eur. Union, 

L309/71. 

Dubus, I.G., Brown, C.D., 2002. Sensitivity and first-step uncertainty analyses for the preferential flow model 

MACRO. J. Environ. Qual. 31, 227-240. 

Dubus, I.G., Brown, C.D., Beulke, S., 2003a. Sources of uncertainty in pesticide fate modelling. Sci. Tot. Environ. 

317, 53-72. 

Dubus, I.G., Brown, C.D., Beulke, S., 2003b. Sensitivity analyses for four pesticide leaching models. Pest Manage. 

Sci. 59, 962-982. 

Dumont, B., Basso, B., Leemans, V., Bodson, B., Destain, J.P., Destain, M.F., 2015. Systematic analysis of site-

specific yield distributions resulting from nitrogen management and climatic variability interactions. Precis. Agric. 

16, 361-384. 

EFSA (European Food Safety Authority), 2016. Guidance on Uncertainty in EFSA Scientific Assessment - 

Revised Draft for Internal Testing. EFSA J. 

E-Phy, 2016. Le catalogue des produits phytopharmaceutiques et de leurs usages, des matières fertilisantes et des 

supports de culture autorisés en France. https://ephy.anses.fr/ (Accessed 10 October 2016). 

Faivre, R., Iooss, B., Mahévas, S., Makowski, D., Monod, H. (Eds), 2013. Analyse de Sensibilité et Exploration 

de Modèles.  Application aux Sciences de la Nature et de l’Environnement. Editions Quae, Versailles. 

FOCUS, 2000. FOCUS Groundwater Scenarios in the EU Review of Active Substances. Report of the FOCUS 

Groundwater Scenarios Workgroup, EC document reference Sanco/321/2000 rev.2. 

Freissinet, C., Vauclin, M., Erlich, M., 1999. Comparison of first-order analysis and fuzzy set approach for the 

evaluation of imprecision in a pesticide groundwater pollution screening model. J. Contam. Hydrol. 37, 21-43. 

van Genuchten, M.T., Leij, F.J., Yates, S.R., 1991. The RETC Code for Quantifying Hydraulic Functions of 

Unsaturated Soils. Technical Report IAG-DW 12933934, US Salinity Laboratory, US Department of Agriculture, 

Agricultural Research Service. Robert S. Kerr Environmental Research Laboratory, Riverside, CA. 

Helton, J.C., Davis, F.J., 2003. Latin hypercube sampling and the propagation of uncertainty in analyses of 

complex systems. Reliab. Eng. Syst. Safe. 81, 23-69. 

Hossard, L., Archer, D.W., Bertrand, M., Colnenne-David, C., Debaeke, P., Ernfors, M., Jeuffroy, M.H., Munier-

Jolain, N., Nilsson, C., Sanford, G.R., Snapp, S.S., Jensen, E.S., Makowski, D., 2016. A meta-analysis of maize 

and wheat yields in low-inputs vs conventional organic systems. Agronomy J. 108, 1155-1167. 



28 
 

Jégo, G., Pattey, E., Mesbah, S.M., Liu, J., Duchesne, I., 2015 Impact of the spatial resolution of climatic data and 

soil physical properties on regional corn yield predictions using the STICS crop model. Int. J. App. Earth Obs. 

Geoinf. 41, 11-22. 

Lammoglia, S.K., Moeys, J., Barriuso, E., Larsbo, M., Marín-Benito, J.M., Justes, E., Alletto, L., Ubertosi, M., 

Nicolardot, B., Munier-Jolain, N., Mamy, L., 2017a. Sequential use of the STICS crop model and of the MACRO 

pesticide fate model to simulate pesticides leaching in cropping systems. Environ. Sci. Pollut. Res. 24, 6895-6909. 

Lammoglia, S.K., Makowski, D., Moeys, J., Barriuso, E., Justes, E., Mamy, L., 2017b. Sensitivity analysis of the 

STICS-MACRO model to identify cropping practices reducing pesticides losses. Sci. Tot. Environ. 580, 117-129 

Larsbo, M., Jarvis, N.J., 2003. MACRO 5.0. A Model of Water Flow and Solute Transport in Macroporous Soil. 

Technical description. Rep Emergo Uppsala, Sweden: Swedish University of Agricultural Sciences, 49 p. 

Larsbo, M., Jarvis, N., 2005. Simulating solute transport in a structured field soil: uncertainty in parameter 

identification and predictions J. Environ. Qual. 34, 621-634. 

Larsson, M.H., Jarvis, N.J., 2000. Quantifying interactions between compound properties and macropore flow 

effects on pesticide leaching. Pest Manage. Sci. 56, 133-141. 

Lewan, E., Kreuger, J., Jarvis, N., 2009. Implications of precipitation patterns and antecedent soil water content 

for leaching of pesticides from arable land. Agric. Water Manage. 96, 1633-1640. 

McKay, M.D., Beckman, R.J., Conover, W.J., 2000. A comparison of three methods for selecting values of input 

variables in the analysis of output from a computer code. Technometrics 42, 55-61. 

Malone, R.W., Ahuja, L.R., Ma, L., Wauchope, R.D., Ma, Q., Rojas, K.W., 2004. Application of the Root Zone 

Water Quality Model (RZWQM) to pesticide fate and transport: an overview. Pest Manage. Sci. 60, 205-221. 

Marín-Benito, J.M., Pot, V., Alletto, L., Mamy, L., Bedos, C., Barriuso, E., Benoit, P., 2014. Comparison of three 

pesticide fate models with respect to the leaching of two herbicides under field conditions in an irrigated maize 

cropping system. Sci. Tot. Environ. 499, 533-545. 

Moeys, J., Larsbo, M., Bergström, L., Brown, C.D., Coquet, Y., Jarvis, N., 2012). Functional test of pedotransfer 

functions to predict water flow and solute transport with the dual-permeability model MACRO. Hydrol. Earth 

Syst. Sci. 16, 2069-2083. 

Morris, M.D., 1991. Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161-

174. 

PPDB, 2016. The FOOTPRINT Pesticide Properties Database. University of Hertfordshire, UK. 

http://sitem.herts.ac.uk/aeru/footprint/es/index2.htm (Accessed 10 October 2016). 



29 
 

Queyrel, W., Habets, F., Blanchoud, H., Ripoche, D., Launay, M., 2016. Pesticide fate modeling in soils with the 

crop model STICS: Feasibility for assessment of agricultural practices. Sci. Tot. Environ. 542, 787-802. 

R Development Core Team, 2016. R: A language and environment for statistical computing, R Foundation for 

Statistical Computing. http://cran.r-project.org/ 

Roulier, S., Jarvis, N., 2003. Analysis of inverse procedures for estimating parameters controlling macropore flow 

and solute transport in the dual-permeability model MACRO. Vadose Zone J. 2, 349-357. 

Ruget, F., Brisson, N., Delécolle, R., Faivre, R., 2002. Sensitivity analysis of a crop simulation model, STICS, in 

order to choose the main parameters to be estimated. Agronomie 22, 133-158. 

Sohrabi, T.M., Shirmohammadi, A., Montas, H., 2002. Uncertainty in nonpoint source pollution models and 

associated risks. Environ. Forensics 3, 179-189. 

Steffens, K., Larsbo, M., Moeys, J., Jarvis, N., Lewan, E., 2013. Predicting pesticide leaching under climate 

change: Importance of model structure and parameter uncertainty. Agric. Ecosyst. Environ. 172, 24-34. 

Steffens, K., Larsbo, M., Moeys, J., Kjellström, E., Jarvis, N., Lewan, E., 2014. Modelling pesticide leaching under 

climate change: parameter vs. climate input uncertainty. Hydrol. Earth Syst. Sci. 18, 479-491. 

Steffens, K., Jarvis, N., Lewan, E., Lindström, B., Kreuger, J., Kjellström, E., Moeys, J., 2015. Direct and indirect 

effects of climate change on herbicide leaching - A regional scale assessment in Sweden. Sci. Tot. Environ. 514, 

239-249. 

Stenemo, F., Jarvis, N., 2007. Accounting for uncertainty in pedotransfer functions in vulnerability assessments 

of pesticide leaching to groundwater. Pest Manage. Sci. 63, 867-875. 

Storlie, C.B., Swiler, L.P., Helton, J.C., Sallaberry, C.J., 2009. Implementation and evaluation of nonparametric 

regression procedures for sensitivity analysis of computationally demanding models. Reliab. Eng. Syst. Safe. 94, 

1735-1763. 

Tiktak, A., de Nie, D., Piñeros Garcet, J., Jones, A., Vanclooster, M., 2004. Assessment of the pesticide leaching 

risk at the Pan-European level. The EuroPEARL approach. J. Hydrol. 289, 222-238. 

Uusitalo, L., Lehikoinen, A., Helle, I., Myrberg, K., 2015. An overview of methods to evaluate uncertainty of 

deterministic models in decision support. Environ. Model. Softw. 63, 24-31. 

Vanderborght, J., Tiktak, A., Boesten, J.J., Vereecken, H., 2011. Effect of pesticide fate parameters and their 

uncertainty on the selection of “worst-case” scenarios of pesticide leaching to groundwater. Pest Manage. Sci. 67, 

294-306. 



30 
 

Varella, H., Guérif, M., Buis, S., 2010. Global sensitivity analysis measures the quality of parameter estimation: 

The case of soil parameters and a crop model. Environ. Model. Softw. 25, 310-319. 

Wallach, D., Makowski, D., Jones, J.W., Brun, F., 2014. Working with Dynamic Crop Models: Methods, Tools, 

and Examples for Agriculture and Environment, 2nd ed. Academic Press - Elsevier. 

Wallach, D., Nissanka, S.P., Karunaratne, A.S., Weerakoon, W.M.W., Thorburn, P.J., Boote, K.J., Jones, J.W., 

2017. Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: A 

case study on rice. Europ. J. Agronomy 88, 53-62. 

 

 

 

 

 

 

 


