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Articial intelligence-based
prediction o neurocardiovascular
risk score rom retinal swept-source
optical coherence tomography–
angiography
C.Germanese1,2, A. Anwer2, P. Eid1, L.-A. Steinberg1, C. Guenancia3,4, P.-H. Gabrielle1,5,
C. Creuzot-Garcher1,5, F. Meriaudeau2 & L.Arnould1,4

The recent rise o articial intelligence represents a revolutionary way o improving current medical
practices, including cardiovascular (CV) assessment scores. Retinal vascular alterations may refect
systemic processes such as the presence oCV risk actors.The value o swept-source retinal optical
coherence tomography–angiography (SSOCT-A) imaging is signicantly enhanced by image analysis
tools that provide rapid and accurate quantication o vascular eatures.We report on the interest
o using machine-learning (ML) and deep-learning (DL) models orCV assessment romSSOCT-A
microvasculature imaging.We assessed the accuracy oML and DL algorithms in predicting the
CHA2DS2-VASc neurocardiovascular score based on SSOCT-A retinal images o patients rom the open-
source RASTA dataset.The ML and DLmodels were trained on data rom 491 patients.The MLmodels
tested here achieved good perormance with area under the curve (AUC) values ranging rom 0.71 to
0.96. According to a classication into two neurocardiovascular risk groups, the EcientNetV2-B3,
a well suited DLmodel or retinalOCT-A images, predicted risk correctly in 68% o cases, with a
mean absolute error (MAE) o approximately 0.697.Our models enable a condent prediction o
the CHA2DS2-VASc score romSSOCT-A imaging, which could be a useul tool contributing to the
assessment o neurocardiovascular proles in the uture.
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With approximately 17.9 million deaths every year1, cardiovascular diseases (CVD) are the leading cause of 
death worldwide, and the assessment of cardiovascular (CV) risk plays a major role in their prevention. 
Today, CV risk proles can be estimated with numerous validated score models such as the Framingham Risk 
Score (FRS), the American Heart Association risk score (AHA risk score), or the SCORE22–4. Nevertheless, 
these clinical scores do not take into account personalized vascular conditions, and recurrent neurovascular 
and cardiovascular events are still dicult to predict5,6. We previously demonstrated through a conventional 
regression approach in post-myocardial infarction patients in the EYE-MI study that retinal optical coherence 
tomography–angiography (OCT-A) could be an eective tool for predicting cardiovascular risk scores7. Swept-
source OCT–angiography (SS OCT-A) technology, with more thorough retinal microvasculature description and 
better resolution, could be used to rene the EYE-MI pilot study results in patients with broader phenotypes8–13. 
Moreover, the CHA2DS2-VASc score, a cardioembolic risk score14, may better reect the connection between 
the retinal, neurovascular, and cardiovascular systems. e role of advanced imaging analysis is becoming 
increasingly important in daily clinical practice and biomedical research due to the recent advancements in 
oculomics15 and other articial intelligence (AI)-based image analysis methods16. In the framework of open-
source datasets in ophthalmology17, we previously published the Retinal oct-Angiography and cardiovascular 
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STAtus (RASTA) dataset18. It combined SS OCT-A retinal imaging and CHA2DS2-VASc score calculation in 
patients with various conditions (e.g., diabetes mellitus, giant cell arthritis, dyslipidemia, and ischemic CVD) 
and accurate phenotype. Recent studies using deep-learning (DL) convolutional neural networks (CNNs) have 
associated retinal photographs with several CVD risk factors, including diabetes mellitus, blood pressure, body 
mass index (BMI), smoking, and glycated-hemoglobin level19–22. Nevertheless, the literature is sparse regarding 
the interest of SS OCT-A for articial intelligence-based prediction of the neurocardiovascular risk score.

e purpose of this study was to train and validate machine-learning- (ML) and DL-based models capable of 
predicting neurocardiovascular risk scores (CHA2DS2-VASc score) using the detection method from SS OCT-A 
acquisitions in the RASTA dataset.

Methods
Neurocardiovascular risk prole
We used the CHA2DS2-VASC score (Table  1) as the score for neurocardiovascular risk assessment. It is an 
embolic risk stratication tool originally used to assess the risk of stroke in patients with non-valvular atrial 
brillation14. It has been recently presented as an eective model for patients without atrial brillation23–29. In 
contrast to other CV risk scores, it does not need any biological sampling.

Dataset
We previously published the Retinal oct-Angiography and cardiovascular STAtus (RASTA) dataset18, which was 
acquired from February 2018 to June 2023 in the Department of Ophthalmology at the University Hospital of 
Dijon, France. e RASTA dataset was anonymized and processed in accordance with the rules established by 
the Ethics Committee of the University Hospital of Dijon. e RASTA dataset is hosted and publicly available at 
https://rasta.u-bourgogne.fr/.

We assembled a cross-sectional set of retinal SS OCT-A images consisting of en face images and angiocubes 
combined with clinical and demographic characteristics from healthy and at-risk patients with complete clinical 
CV phenotypes.

Information on data accessibility and specications is provided in Table 2. Each participant was included 
in one of two groups according to their neurocardiovascular risk category following the risk scheme used for 
RASTA (Table 3):

Low neurocardiovascular risk – CHA2DS2-VASc = [0; 1]

Intermediate–high neurocardiovascular risk – CHA2DS2-VASc = [2; 9].

For each participant, corresponding images of the SS OCT-A 6 × 6-mm acquisitions were obtained with the 
PLEX Elite 9000® device (Carl Zeiss Meditec Inc., Dublin, OH, USA). En face images (Fig. 1) were based on 
the plexuses. Moreover, quantitative variables from the 2D SS OCT-A images were available and represented 
the dierent measurable characteristics of each patient’s supercial and deep retinal vascular plexuses. ese 

Subject area Biomedical imaging, ophthalmology
More specic subject area Retinal OCT-A volume analysis for cardiovascular risk prediction

Type of data Image, CSV

How data were acquired Swept-source OCT-A
Instrument name: PLEX Elite 9000® (Carl Zeiss Meditec Inc., Dublin, OH, USA)

Data format DICOM for volumes, Bitmap for en face images

Experimental factors Pupillary dilatation with tropicamide 0.5% if signal strength < 8/10

Experimental features Macular angiography 6 × 6-mm

Main data source location University Hospital of Dijon, Dijon 21000, France
Data accessibility https://rasta.u-bourgogne.fr/

Table 2. Specications table.

 

Risk Factor Score
Congestive heart failure / Le ventricular dysfunction 1

Hypertension 1

Age ≥ 75 years 2

Diabetes mellitus 1

Stroke/TIA/TE 2

Vascular disease (prior myocardial infarction, peripheral artery disease, or aortic plaque) 1

Age 65–74 years 1
Sex category (i.e., female gender) 1

Table 1. CHA2DS2-VASc point-based scoring system.
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quantitative variables were calculated using the ARI Network segmentation and analysis platform developed by 
the manufacturer Carl Zeiss Meditec Inc.

Machine-learning design
To develop the models, we worked with raw data of 11 CV risk factors including age, gender, diabetes, smoking, 
and 15 quantitative variables obtained from en face SS OCT-A images (Fig.  2; Table  4). ese quantitative 
variables represent the dierent measurable characteristics of each patient’s supercial and deep retinal vascular 
plexuses. We used all the quantitative variables of each eye as an independent feature, and thus we nally had 30 
retinal quantitative data for each row when information for both eyes was available. ese quantitative variables 
were calculated using the ARI Network segmentation and analysis platform developed by the manufacturer Carl 
Zeiss Meditec Inc. as described above. e neurocardiovascular risk category was the target.

We built and evaluated four ML algorithms and compared their results: decision tree, random forest (RF), 
support vector machines (SVM), and logistic regression. en, given the multivariate and multidimensional 
nature of the data, we conducted a principal component analysis using Pearson’s correlation coecient to 
eliminate the eect of scale in the data, moving from a space of 41–19 dimensions for a cumulative variability 
over 95% (Fig. 3).

Machine-learning model assessment
Due to the limited and imbalanced number of images in the RASTA dataset, a normal train–test split was not 
possible. erefore, we employed the k-fold cross-validation method. We opted for a two-stage cross-validation 
procedure with k = 5 and then with k = 10 (Fig. 4).

Deep-learning network design
We employed cutting-edge DL methodologies to automate the assessment of neurocardiovascular risk 
using microvascular imaging. Our approach involved constructing a deep convolutional network with the 
EcientNetV2 architecture30 as the backbone, a convolutional neural network (CNN) architecture specically 
designed for classication tasks. EcientNetV2 employs a compound scaling strategy that simultaneously 
increased the model’s depth, width, and resolution. In our implementation, we used the EcientNetV2-B3 
backbone pre-trained on the ImageNet dataset. Input images were resized to a resolution of 300 × 300 × 3 pixels. 
e network architecture incorporated three dense layers, with a 20% dropout between each layer. e top two 
dense layers employed rectied linear unit (ReLU) activation, while the nal layer utilized SoMax activation, 
producing two outputs corresponding to the probabilities of dierent neurocardiovascular risk category. e 
network architecture is illustrated in Fig. 5. Following the initial training phase, we performed ne-tuning by 
unfreezing the last 20 layers and retraining the model. Fine-tuning involved making subtle adjustments to the 
pre-trained model’s weights or parameters using data from the target task. Due to the limited number of images 
in one of the two categories in the RASTA dataset, we employed the stratied k-fold cross-validation with k = 5 

Fig. 1. Right eye en face images of (a) supercial plexus, (b) deep plexus, and (c) choriocapillaris plexus.

 

Risk scheme Low risk [0 ;1] Intermediate-high risk [2 ;9]
RASTA (2023) One or no combination risk factor At least 1 denitive risk factor and 1 or no combination risk factor, or ≥ 2 combination risk factors

Table 3. Risk scheme used for neurocardiovascular risk stratication. Denitive risk factors: previous stroke/
TIA/TE, age > 75. Combination risk factors: heart failure/le ventricular ejection fraction ≤ 40%, hypertension, 
diabetes, vascular disease, female sex, age 65–74.
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for training a less biased model, where the ratio between the two target classes was the same in each fold as it was 
in the full dataset. Details on the network implementation are given in Table 5.

Deep-learning network implementation
e entire network was implemented in TensorFlow 2.8 using the EcientNetV2-B3 backbone from the Keras 
library. e reported metrics for each model represent the average performance across folds and are detailed 
in the “Results” section. Training involved 50 epochs with a batch size of 4, a learning rate set to 1e− 4, and the 
application of weighted sparse categorical cross entropy (CCE) loss. Following the initial training phase, the 
last 20 layers were unfrozen, and the network underwent an additional 50 epochs of ne-tuning. Since en face 
SS OCT-A images are grayscale, they were converted to RGB format by triplicating the channel, adhering to 
EcientNet’s requirement for three-channel images.

Vascular characteristics
Features
Supercial plexus Deep plexus

Fovea avascular zone

Raw length (mm)

Circularity (index)

Raw size (mm2)

Vessel density (mm− 1)

Density average Density average

Density in a circle of 3-mm diameter Density in a circle of 3-mm diameter

Density in a circle of 6-mm diameter Density in a circle of 6-mm diameter

Perfusion density 
(index)

Perfusion average Perfusion average

Perfusion in a circle of 3-mm diameter Perfusion in a circle of 3-mm diameter
Perfusion in a circle of 6-mm diameter Perfusion in a circle of 6-mm diameter

Table 4. Retinal SS OCT-A quantitative parameters used in ML models.

 

Fig. 2. Schematic illustration of machine-learning model design. (a) Angio-retina layer image shows the 
fovea avascular zone (FAZ) outline with 3 associated measures: area of the FAZ in mm2, perimeter of the 
FAZ in mm, and circularity index of the FAZ (ranging from 0 to 1). (b) and (d) show vessel density, which is 
dened as the total length of perfused vasculature per unit area in a region of measurement in mm− 1. (c) and 
(e) show perfusion density, which is dened as the total area of perfused vasculature per unit area in a region 
of measurement (ranging from 0 to 1). Neurocardiovascular risk category is the target of machine-learning 
models, it should not be considered as a feature.
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Deep-learning model assessment
For the evaluation, we used balanced accuracy as a metric for our imbalanced dataset, which is calculated as the 
arithmetic mean of sensitivity (true positive rate) and specicity (true negative rate). To assess the performance 
of the trained EcientNetV2-B3 network, we performed a comparative analysis employing a random forest (RF) 
classier based on the features extracted from the network. Predictions for each image were generated using a 
truncated version of the trained network, specically capturing the features inferred at the last dense layer with 
a kernel size of 32. ese features were used to train an RF classier.

Results
Dataset
Overall, 491 patients were registered in this study. Of the 491 patients, 225 (45.8%) patients had a low 
neurocardiovascular risk and 266 (54.2%) had an intermediate–high neurocardiovascular risk. e mean age of 
the patients was 52.4 ± 18.4 years and 51.5% were women. All the cardiovascular clinical data and quantitative SS 
OCT-A variables were signicantly dierent between the two neurocardiovascular risk categories. A comparison 
of the clinical and demographic variables is available in the supplementary material (Supplementary Table S1).

Machine-learning model results
e SVM model performed better than the others in predicting neurocardiovascular risk categories (AUC 
0.98 ± 0.03 versus 0.96 ± 0.02 and 0.91 ± 0.04 and 0.78 ± 0.12 for logistic regression, RF, and decision tree, 
respectively). e results are shown in Table 6.

Deep-learning model results
For classifying the two categories, the network was able to achieve a balanced accuracy of 68% as compared to 
61% and 54% for Random forest (RF) and Random forest-Features only (RF-FO), respectively. In evaluating 
the performance of the networks on the test set, the EcientNet model and both variants of the RF model (RF 
and RF-FO) exhibited similar results. All the models demonstrated the same mean absolute error (MAE) of 
approximately 0.697. e R2 scores for the two models were identical at − 0.9446. In terms of balanced accuracy, 
the EcientNet model outperformed the RF models, achieving a balanced accuracy of 39%, compared to 33% 
for both RF variants. Main results are shown in Table 7. e learning curves are presented in the supplementary 
material (Supplementary Fig. S1). Classication results details are shown in the supplementary material 
(Supplementary Fig. S2).

Discussion
In this study, we found good results for neurocardiovascular risk category prediction based on retinal SS 
OCT-A, with a strong predictive accuracy of up to 98% for ML models and 68% for the EcientNetV2-B3 

Fig. 3. Scree plot.
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Fig. 5. Deep-learning network based on EcientNetv2-B3 backbone.

 

Fig. 4. K-fold cross-validation.
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backbone model. To our knowledge, this is the rst study to investigate articial intelligence-based prediction 
of neurocardiovascular risk score with SS OCT-A. Our results highlight the potential value of SS OCT-A as a 
biomarker of global neurocardiovascular status.

DL methods oer signicant advantages over traditional ML methods in predicting neurocardiovascular risk 
scores from retinal SS OCT-A images. DL models, such as EcientNetV2-B3, can directly process raw images 
and automatically extract complex and relevant features, while ML models rely on pre-extracted clinical data 
and quantitative OCT-A data.

ML models, using both clinical and quantitative data, achieved notable performances as SVM reached an 
AUC of 0.98 with an accuracy of 85.1%. ese results are articially inated by the integration of clinical data. 
e inclusion of clinical data, such as age, gender, diabetes status, and other cardiovascular risk factors, gives 
these ML models an unfair advantage. ese clinical features are directly related to the CHA2DS2-VASc score, 
which means the results are inated by using data that is inherently predictive of the outcome.

EcientNetB3-V2 Random forest Random forest features only
Balanced accuracy 0.68 0.61 0.54

Accuracy 0.67 0.58 0.52
R2 score − 0.3444 − 0.7111 − 0.9556

Table 7. Performance of deep-learning-based model.

 

Decision tree Random forest SVM Logistic regression
AUC Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC Accuracy (%)

k folds 
(k = 10) 0.78 ± 0.12 77.2 ± 3.4 0.91 ± 0.04 81.2 ± 2.9 0.98 ± 0.03 85.1 ± 5.9 0.96 ± 0.02 84.9 ± 5.6

k folds (k = 5) 0.77 ± 0.06 75.8 ± 3.0 0.90 ± 0.06 80.8 ± 2.3 0.98 ± 0.02 84.2 ± 5.1 0.96 ± 0.02 84.4 ± 5.2

Table 6. Machine-learning model results. SVM support vector machines, AUC area under the curve. 
Descriptive results for models are presented as mean ± standard deviation.

 

Model used EcientNetB3-V2
Image resolution 300

Batch size 16

Epochs 100

K-folds 5

Learning rate 1.00E−03

Fine-tune epochs 50

Fine-tune learning rate 1.00E−03

Loss function Weighted categorical cross entropy

Early stopping True

Early stopping patience 25

Labeling methods One-Hot

Input scaling 0–255

Optimizer Adamv2

Activation function ReLU

Cross-validation Stratied k-folds

Train test splits 20

Pretrained weights ImageNet

Dense layers 4

Pooling Average

Dropout 20

Kernel regularizers L1_L2

Batch norm Yes

LR scheduler Yes

Input augmentation Flip, brightness (25%), saturation (25%)
Ensemble voting So

Table 5. Deep-learning network implementation details.
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In contrast, DL models in this study were trained using only SS OCT-A images without additional clinical 
data. is makes the prediction task more challenging but also more indicative of the model’s true ability to 
generalize and nd meaningful patterns in the retinal images. e DL model’s performance was signicantly 
inuenced by the optimization of several hyperparameters, which are crucial for controlling the learning process 
and ensuring eective training of the model. We chose a learning rate of 1e− 3 (Table 5), which is the step size at 
each iteration while moving toward a minimum of the loss function, because lower learning rates took a too long 
training time. e batch size of 16 (Table 5) is the number of training examples utilized in one iteration. A larger 
batch size would lead to faster training and more stable gradient estimates, but it required too much memory. 
e number of epochs of 100 determines how many times the learning algorithm will work through the entire 
training dataset. More epochs didn’t improve the model’s performance and led to overtting.

Fine-tuning, which involved adjusting the weights of the last layers of a pre-trained model, signicantly 
improved performance by adapting the model to the specic characteristics of SS OCT-A data. e ne-
tune learning rate of 1e− 3 was optimized to maximize learning while avoiding overtting. Additionally, data 
augmentation techniques, including ipping and adjusting brightness and saturation, enhanced the model’s 
robustness by helping it generalize to variations in image appearance. Further tests on more powerful computing 
machines with numerous training and dierent parameters could lead to better results.

In summary, while ML models show high performance metrics due to the bias introduced by using clinical 
data, DL methods provide a more unbiased and accurate assessment by relying solely on the image data. is 
makes DL methods more eective in analyzing complex image data and providing accurate predictions of 
neurocardiovascular risk scores.

Fundus photography (FP) was the rst imaging modality in ophthalmology to prove its value in automatic 
CV risk assessment. Most hospital departments and practitioners have FP equipment, which has led to the 
creation of many rich databases such as the UK Biobank and MESSIDOR31. ese databases, containing 
hundreds or thousands of fundus images, have been used in several studies to assess and predict CVD. Our 
results on articial intelligence-based prediction of neurocardiovascular risk score with SS OCT-A were in line 
with previous studies based on FP. Poplin et al. used FPs to demonstrate the contribution of retinal vasculature 
to the automatic detection of CVD and CVD risk factors, where AUC values of DL models were greater than 0.70 
and demonstrated their eectiveness in predicting some CVD risk factor and the occurrence of major adverse 
cardiovascular events (MACE) over a 5-year period19. Cheung et al. published their work on the assessment of 
CVD risk via automatic measurement of retinal-vessel caliber (RVC)32. ey developed and tested a DL model 
to specically measure RVC from more than 70,000 FPs. ey assessed the agreement of the RVC measurement 
between the DL model and a human expert. e DL models predicted CVD risk factors signicantly better 
than the human-based models or were at least comparable32. More recently, Zhang et al. demonstrated the 
capability of DL models to identify chronic kidney disease and diabetes mellitus using 115,344 FPs alone or in 
combination with clinical metadata (i.e., age, sex, BMI, and blood pressure), with AUCs ranging from 0.85 to 
0.93. Additionally, the models could predict glomerular ltration rates and blood glucose levels, yielding MAEs 
of 11.1–13.4 mL/min per 1.73 m2 and 0.65–1.1 mmol/L, respectively33.

However, the exploration of microvasculature at the micrometer level in various plexuses and vascular 
networks made possible by SS OCT-A could oer hope for an even more accurate and earlier assessment of CV 
risk compared to FP. Based on previous ophthalmological research, Hassan et al. conducted an evaluation using 
three-dimensional CNNs to predict the individual age and sex directly from 3D retinal OCT scans, using a large 
dataset comprising 66,767 participants from the UK Biobank dataset. Model results showed accurate predictions 
for age (MAE = 3.30 years, R2 = 0.89) and for sex (AUC = 0.86)34. In the same vein, Munk et al. focused on 
evaluating the performance of DL models in predicting patient age or sex using FPs and OCT scans. eir 
dataset comprised 135,667 FPs and 85,536 volumetric OCT scans. For sex prediction, the DL models achieved 
AUC values of 0.80 for FPs, 0.84 for OCT cross sections, and 0.90 for OCT volumes. In terms of age prediction, 
the input OCT volume models were better than OCT cross sections and better than FPs (MAE = 4.541 years, 
5.625 years, and 6.328 years, respectively)35. ese ndings showed the varying predictive capabilities between 
FPs and OCT scans, where OCT seems to yield a better prediction of CV risk factors. Considering the favorable 
measurability and the wealth of retinal information oered by OCT, it is expected that OCT-A studies could 
expand the research on the potential of CV risk assessment. Initial work was undertaken to estimate the CV risk 
score (American Hospital Association [AHA] risk score, Syntax risk, and SCORE risk score) with ML models 
based on retinal vascular quantitative parameters measured with FPs and OCT-A scans through a multimodal 
approach36. Using OCT-A data, the K-nearest neighbor (KNN) and the naïve Bayes (NB) approaches more 
accurately predicted the three CV risk scores, with prediction rates ranging from 76.09 ± 3.08 to 96.13 ± 1.08 
for KNN and 76.19 ± 5.30 to 96.23 ± 1.88 for NB. With FP-based vascular parameters, these two ML models 
also performed better than the others in CV risk assessment, with prediction rates ranging from 70.54 ± 8.56 
to 95.83 ± 1.19 for KNN and 74.36 ± 6.17 to 96.28 ± 1.21 for NB. When combining both FP and OCT-A 
quantitative data, NB was the best tted model, with an accuracy ranging from 75.64 ± 5.96 to 96.53 ± 1.2536. 
Concurrently, Zhong et al. investigated the prediction of coronary artery disease using a combination of clinical, 
electrocardiographic (ECG), and OCT-A data. e model trained on the combined clinical, ECG, and OCT-A 
data was presented as the individual prediction nomogram, exhibiting good discrimination (AUC = 0.897 [95% 
CI 0.861–0.933]). Notably, the OCT-A model outperformed the ECG model in predicting individuals with 
coronary heart disease (AUC = 0.730 [95% CI 0.673–0.788])37.

Research in CV risk assessment using SS OCT-A was held back by the lack of data. In fact, only a few datasets 
such as the OCTAGON and FOCTAIR datasets38, the Retinal OCTA SEgmentation dataset (ROSE)39, and 
OCTA-50040 were publicly available. However, none of these datasets combined the OCT-A scans with the CV 
data of the patients included. We therefore chose to use the RASTA dataset, the rst open-source dataset that 
combined clinical CV data and SS OCT-A scans. To the best of our knowledge, using this database enabled us 
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to be the rst research team to focus on predicting the neurocardiovascular risk category from SS OCT-A. is 
retinal imaging modality provides precise quantitative measurements of vascular density and blood perfusion, 
unlike FPs where assessment of vascular ow is not possible. Moreover, SS OCT-A has made it possible to 
explore the chorioretinal vasculature in much greater depth than PFs, enabling visualization of the anatomical 
vascular layers, i.e., the supercial and deep plexuses. e other major advantage is that this approach could 
monitor the evolution of lesions by allowing for repeated examinations, thereby assessing the eectiveness of 
treatments and the progression of the CVD. Although there were several ways to quantify the density of the 
retinal vasculature, the 15 quantitative datasets used to train our models could be considered a comprehensive 
representation of retinal microvasculature complexity because they included an analysis of the foveal avascular 
zone (FAZ), perfusion, and vascular density in a central area of 3 × 3 and 6 × 6 mm. In our study we found that 
the ML models performed better than the CNN model; however, our CNN model only had SS OCT-A scans as 
input, unlike the ML models that combined raw data of 11 CV risk factors. erefore, we could have obtained 
better DL results in our study if we had included other CV risk factors in the algorithm.

e models exhibited a consistent absolute prediction error (MAE = 0.697) and strong negative correlation 
(R2 = − 0.9446).

A major limitation of our study was the small sample size compared to FP-based algorithms and consisted 
solely of European individuals. In addition, there is an unbalanced sex ratio in the low and intermediate-high 
neurocardiovascular risk groups, with more women in the low-risk group and more men in the intermediate-
high risk group. However, this distribution could be representative and appears to reect real-life conditions 
regarding each person’s CHA2DS2-VASc score. e generalizability of our models beyond the RASTA dataset 
requires further validation on larger external datasets with dierent ethnic groups. Second, our dataset was 
based on a specic SS OCT-A device (PLEX Elite 9000®, Carl Zeiss Meditec Inc., Dublin, OH, USA), which could 
limit our results with other manufacturers. is is indeed a limiting factor of our algorithm, which should be 
tested on retinal images from other OCT-A devices to improve the generalizability of our model. is should be 
tested in another work with this algorithm. Furthermore, longitudinal follow-up of neurocardiovascular events 
could strengthen our results.

e ML and DL models described in this study accurately predicted the CHA2DS2-VASc score. e models 
were validated on a public dataset that registers patients with dierent CV risk factors. e models achieved 
good performance and, thanks to their SS OCT-A evaluation, may improve the management of patients referred 
to ophthalmologists. For the generalizability of our results, it is a priority to validate the models in future studies.

Data availability
e RASTA dataset is hosted and publicly available at https://rasta.u-bourgogne.fr/.
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