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Abstract

Mali is a countrywhere little information is known about the circulation of avian influenza viruses
(AIVs) in poultry. Implementing risk-based surveillance strategies would allow early detection
and rapid control ofAIVs outbreaks in the country. In this study,we implemented amulti-criteria
decision analysis (MCDA) method coupled with geographic information systems (GIS) to
identify risk areas for AIVs occurrence in domestic poultry in Mali. Five risk factors associated
with AIVs occurrence were identified from the literature, and their relative weights were
determined using the analytic hierarchy process (AHP). Spatial data were collected for each risk
factor and processed to produce risk maps for AIVs outbreaks using a weighted linear combin-
ation (WLC). We identified the southeast regions (Bamako and Sikasso) and the central region
(Mopti) as areas with the highest risk of AIVs occurrence. Conversely, northern regions were
considered low-risk areas. The risk areas agree with the location of HPAI outbreaks in Mali.
This study provides the first risk map using the GIS-MCDA approach to identify risk areas for
AIVs occurrence in Mali. It should provide a basis for designing risk-based and more cost-
effective surveillance strategies for the early detection of avian influenza outbreaks in Mali.

Introduction

Wildwaterfowl are considered the natural reservoir for avian influenza viruses (AIVs), which can
be responsible for highly contagious and severe illnesses in birds. These viruses are classified as
either high pathogenicity (HPAI) or low pathogenicity (LPAI) viruses depending on their
virulence in poultry [1]. LPAI subtypes, although less virulent in birds, may represent a gene
pool for the emergence of new genotypes of HPAI viruses by reassortment, a powerful evolu-
tionary mechanism used by influenza viruses [2–4]. Because of their important genetic diversity
and ability to evolve rapidly, AIVs represent a major concern for human and animal health
worldwide. Indeed, AIVs may cross the species barriers and infect new hosts, including humans
[5, 6]. HPAI viruses are responsible for high morbidity and mortality, especially in the poultry
industry, causing huge economic losses that can compromise food security in the South [7]. Since
its first detection in Nigeria in 2006, HPAI viruses have been responsible for large outbreaks in
several African countries over the past 15 years [8].

In West Africa, Mali first notified HPAI outbreaks to the World Organization of Animal
Health in March 2021, despite evidence of AIVs circulation being reported since 2007
[9]. These outbreaks mainly affected the commercial poultry sector and caused huge economic
losses to farmers. Although there is limited information on the epidemiology of AIVs inMali, the
country was considered to be at high risk for infection with HPAIV because it is surrounded by
countries that have experienced HPAI outbreaks, in a context where illegal trade and cross-
border movements of poultry are common [10]. Furthermore, the Inner Delta of the Niger River
(the second largest continental wetland in Africa) is located in Mali, which provides suitable
breeding and resting sites for millions of migratory birds potentially carrying AIVs [11, 12]. In
Mali, more than 90% of the domestic poultry live in traditional farming systems where biose-
curity measures are not observed [13], and the detection of animal disease outbreaks such as
HPAI relies mainly on passive surveillance. Active surveillance is very limited and depends on
external funding [14]. In such a situation, where there is a lack of reliable information on the
circulation of animal diseases, risk-based surveillance activities should facilitate early detection
and a quicker outbreak response [15]. Methods such as GIS-based multicriteria decision analysis
(GIS-MCDA) could contribute to the implementation of risk-based surveillance strategies in
Mali by helping identify areas where surveillance and control activities should be targeted and
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thus contribute to the efficient use of the limited resources available
for surveillance activities. GIS-MCDA allows the combination of
data on risk factors linked to a particular disease and spatial data to
produce a risk or suitability map for disease occurrence [16]. In
addition, this method may be appropriate in data-scarce condi-
tions, serving as an alternative to data-driven methods for risk
mapping [17]. The GIS-MCDA approach has been applied to
identify suitable areas for the occurrence of influenza A and D
viruses in Africa, Asia, and Latin America [18–20].

In the present study, we aimed to implement a GIS-based
MCDA method to identify areas at risk for AIVs occurrence in
domestic poultry in Mali. The output of this study could serve as a
basis for designing risk-based and more cost-effective surveillance
strategies for AIVs.

Materials and methods

Study framework

In this study, we performed a GIS-based MCDA approach for risk
mapping of avian influenza viruses (AIVs) occurrence in Mali.
The GIS-MCDA method was performed in five main steps:
(1) identification of risk factors related to avian influenza out-
breaks; (2) determination of the relative weight of each risk factor;
(3) collection of spatial data on risk factors, standardization, and
geoprocessing; (4) generation of final AI risk maps by the
weighted linear combination of risk factor maps and zonal stat-
istics; and (5) uncertainty, sensitivity analysis, and risk map
validation.

Avian influenza risk factors

We carried out a systematic literature review as explained elsewhere
[21]. Briefly, searches were performed in two scientific databases
(PubMed and Cab abstract) with the keywords ‘Avian influenza’
AND ‘risk factors’ AND ‘Africa’ to identify risk factors linked to the
occurrence of AIVs in poultry in Africa. Two selection criteria were
considered when selecting the risk factors: The first was their rele-
vance to the epidemiology of avian influenza in the region, that is, if
they had been repeatedly reported to be significantly associated with
the occurrence of AIVs, and the second was the possibility of
obtaining spatial data on the given risk factor. From the literature
review, we identified five main risk factors (Table 1) that are poten-
tially associated with avian influenza outbreaks in West Africa.

Expert survey and risk factors weights

An electronic questionnaire (Supplementary Table S2) developed
on Google Forms was submitted to 14 local and international
experts (academics, researchers andmembers of non‐governmental,
governmental and international organizations) who have published
or are actively working on AIVs in theWest African region. Experts
were asked to fill in a pairwise comparison matrix, where each risk
factor was compared with the others, according to its relative
importance, on a five-point scale ranging from 1/5 (“much less
important”5), through 1 (“equally important”) to 5 (“much more
important”). The experts were also asked to select from the list of
four mathematical functions (linear, quadratic, sigmoidal, and lin-
ear bidirectional) the type of relationship between each risk factor
and the occurrence of AIVs and to determine the threshold values
corresponding to ‘negligible,’ ‘very low,’ ‘low,’ ‘moderate,’ ‘high,’
‘very high’ risk. We used the analytical hierarchy process (AHP) to

assign a weight to each risk factor [22]. The consistency of each
pairwise comparison was evaluated by calculating the consistency
ratio (CR) using the following equation (1):

CR =
λmax�n
RI n�1ð Þ , (1)

where λmax is the maximal eigenvalue of the pairwise comparison
matrix, n is the number of factors, and RI is a random
index [22]. CR < 0.10 indicates that the pairwise comparisonmatrix
has an acceptable consistency and the derived weights can be used
for further analyses. However, if CR ≥ 0.10, that indicates incon-
sistent judgement, then the pairwise comparison should be
revised [22]. Thus, experts with inconsistent judgements were
asked to re-examine their pairwise comparison matrix.

Spatial data collection, standardization, and geoprocessing

Spatial data were collected for each risk factor from various sources
(Table 2) and processed to produce standardized raster layers
(Supplementary Figure S1–S5) with cell values ranging from 0 (neg-
ligible risk) to 5 (very high risk). Poultry density was extracted from
spatial data layers from the Gridded Livestock of the World in the
unit of number of birds/km2 [23]. Distance to poultry markets,
commercial poultry farms, roads, and water bodies was calculated
using their geographical centroid and transformed into a

Table 1. Risk factors associated with avian influenza outbreaks

Risk factors Hypothesis/Explanation References

Poultry density AIVs are transmitted through direct
contact between infected and
susceptible birds, therefore high
poultry density is expected to
increase the risk of Avian Influenza
outbreaks.

[26, 27]

Proximity to
poultry markets

Live bird markets represent a place
where domestic poultry from
various origins, breeds, and ages
are brought together for purchase
and their proximity is therefore
considered a risk factor for Avian
influenza outbreaks.

[28, 37]

Proximity to
commercial
poultry farms

Proximity to commercial poultry farms
may involve not only the mixing
with other birds but also the
potential exchange of equipment
such as egg crates between farmers.
Therefore, proximity to infected
commercial poultry farms is
expected to increase the risk of
Avian Influenza outbreaks.

[29]

Proximity to roads Proximity to major roads was
associated with AI outbreaks. The
movement of domestic poultry and
their products along major road
networks could contribute to the
spread of AIVs.

[38, 39]

Proximity to
waters areas

Proximity to water bodies is
associated with an increased risk of
avian influenza outbreaks by
favouring contact between
domestic poultry and wild birds,
which are considered to be AIVs
reservoirs.

[11, 12]
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geographical layer in kilometres units with Euclidean distance,
assigning greater risk to areas close to the centroids (Table 2).
Finally, standardised risk factor maps were calculated using fuzzy
linear and sigmoidal membership functions on a scale of 0–5
(unsuitable to perfectly suitable). All spatial data were processed
and transformed using ArcGIS 10.2 (ESRI, Redlands, CA, USA).
After the geoprocessing step, we obtained for each risk factor a
standardized raster layer with a resolution of 1,000 × 1,000 m.

Generation of the avian influenza risk maps

An avian influenza (AI) risk map was generated with the raster
calculator tool of the ArcGIS 10.4.1 (ESRI, 2017) software by
performing a weighted linear combination (WLC) of the standard-
ized spatial layers of risk factors as shown in equation (2):

R=
Xn

ij = 1

Wi × Fij

� �
, (2)

where R indicates the risk index estimate for each raster cell, n is the
number of risk factors,Wi is the weight for risk factor I, and Fij is the
value of risk factor i for raster cell j.

The AI risk map was finally presented on a graduated blue-
green-yellow-orange-red scale, ranging from 0 to 5. We have also
calculated the average risk of AI outbreaks for each municipality by
performing zonal statistics on the final AI outbreaks risk map using
ArcGIS 10.4.1 (ESRI, 2017).

Uncertainty, sensitivity analysis and risk map validation

A sensitivity analysis was conducted using a method previously
described [24] to assess the robustness of theAI riskmap to changes
in the relative weights assigned by experts to each risk factor.
Briefly, a total of 10 scenarios were constructed by increasing and
decreasing the weights of each risk factor by a total of 25% of their
initial value. The weights of the other risk factors were adjusted so

that the sum of all the weights was equal to one. For each scenario, a
new risk map was generated, and the average risk value was
calculated for all pixels. We used non-parametric Spearman cor-
relation coefficients (Rho) to compare the final AI riskmapwith the
outputs obtained in each of the 10 scenarios. A change of <10% in
the correlation coefficients indicated evidence of the robustness of
the model to changes in the weights of risk factors [24]. In addition,
to evaluate the contribution of each risk factor to the variability of
the final risk estimate, a multiple regression model without inter-
cept was fitted using the average risk index from the output maps of
the 10 scenarios as the dependent variable and the risk factor
weights as predictors [20]. The contribution of factor i to the
variation in the risk index was the standardized coefficient estimate
associated with i divided by the sum of the absolute value of the
standardized coefficients of all the risk factors. Thus, higher coef-
ficients indicate a greater influence of the risk factor on the final risk
estimate. Moreover, an uncertainty map was produced by calculat-
ing the standard deviation of the different risk maps resulting from
the changes in weights [20].

The sensitivity analyses were conducted using the statistical
software RStudio version 2022.12.0 + 353 running on R ver-
sion 4.2.2 (R Development Core Team, 2021) and QGIS 3.24
(QGIS Development Team, 2022). The MCDA model was valid-
ated by overlaying the reported outbreak locations from the
EMPRES-i database on the generated AI risk map. Complete risk
map validation was not possible due to the lack of field data
regarding the occurrence of AIV in Mali, nevertheless, the risk
map was compared with the location of the few HPAI outbreaks
already reported in Mali.

Results

Risk factors weights

The relative weights of the risk factors associated with AI outbreaks
in Mali are presented in Table 3.

Table 2. Standardisation and reclassification of geographical layers

Risk factors Data source GIS processing Scaling function

Poultry density [23]
https://www.geo-wiki.org/

Calculate poultry density
(nb animal/km2)
Standardisation (extent, pixel size)
Reclassification with fuzzy linear membership

function

Positive linear relationship
Reclassification units
> 5,000 poultry/km2: Very high risk (5)
500–5,000 poultry/km2: High risk (4)
200–500 poultry/km2: Moderate risk (3)
100–200 poultry/km2: low risk (2)
50–100 poultry/km2: Very low risk (1)
0–50 poultry/km2: Negligible risk (0)

Proximity to
poultry
markets

[28] Euclidean distance (km) to the feature of interest
(Poultry markets, commercial poultry farms, road,
and water areas)

Standardisation (extent, pixel size)
Reclassification with fuzzy sigmoidal membership

function at a scale of 0–5 (unsuitable to perfectly
suitable).

Sigmodal, monotonically decreasing relationship with
highest risk within 0–5 km from poultry market,
commercial poultry farms, road, and water areas
afterward AIV risk decreased with negligible risk after
10 km.

Reclassification units
< 2 km: Very high risk (5)
2–4 km: High risk (4)
4–6 km: Moderate risk (3)
6–8 km: low risk (2)
8–10 km: Very low risk (1)
> 10 km: Negligible risk (0)

Proximity to
commercial
poultry farms

[10]

Proximity to
roads

[40]
https://www.globio.info/

global-patterns-of-
current-and-future-
road-infrastructure

Proximity to
water areas

DIVA - GIS
https://www.diva-gis.org/

datadown
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The result of the AHP application showed that experts (9 had
fully replied to the questionnaire) were consistent in their judge-
ment as the consistency ratio (CR) of all risk factors was less than 0.1
(Supplementary Table S1). The mean consistency ratio among
experts was 0.051 (range: 0.03–0.07; n = 9). According to the
AHP results, poultry density was determined as themost important
risk factor for AI outbreaks in Mali. Proximity to poultry markets
was identified as the next most important risk factor, followed by in
decreasing order, proximity to commercial poultry farms, proxim-
ity to water areas, and proximity to roads (Table 3).

Avian influenza risk maps

In Figure 1(a), the risk of AI occurrence in domestic poultry inMali
was displayed on a continuous scale ranging from 0 (low risk, areas
indicated with blue colour) to 5 (very high risk, areas indicated with
red colour). Figure 1(b) represents the average risk of avian

influenza outbreaks for municipalities. Areas with the highest risk
for AI occurrence were located in the central (Mopti) and southeast
regions (Bamako, Sikasso). Areas with moderate risk of AI occur-
rence included the southwest region (Kayes), neighbouring Senegal.
In contrast, northern regions of Mali, including Tombouctou, Gao,
and Kidal, were considered low-risk areas for AI occurrence.

Uncertainty, sensitivity analysis and risk map validation

The results of the ten scenarios (Figure 2) performed in the sensi-
tivity analysis were significantly correlated (Rho more than 0.99
and p < 0.001) with the final AI risk map. Therefore, the sensitivity
analysis demonstrated that the model was robust, as changes in the
relative weights of AI outbreak risk factors did not substantially
modify the size and location of the areas determined as low,
moderate, and high-risk areas for AIVs occurrence in Mali. The
changes in the risk index of AIVs occurrence in domestic poultry in
Mali were mainly explained by the weights of two risk factors
(Figure 3). Indeed, proximity to water areas and proximity to roads
were the most sensitive parameters, contributing to more than 60%
of the model output variance. In contrast, the weights of proximity
to poultry markets, proximity to commercial poultry farms, and
poultry density were considered less sensitive. The maximum
standard deviation of the uncertainty map (Figure 4) was less
than 0.03, confirming that the predicted risk areas for AI outbreaks
in Mali are robust, meaning that they remain stable when the
weights of the risk factors are varied. The results highlighted a
spatial heterogeneity of uncertainty, with higher uncertainty in
areas of high risk for AI outbreaks.

Figure 1. Map showing the risk of AIVs in domestic poultry in Mali on a continuous scale from low to high risk as defined by multi-criteria decision analysis. (A) Avian influenza risk
map (B) Average risk per commune with the location of the seven avian influenza outbreaks in Mali.

Table 3. Weights attributed by the experts

Risk factors Relative weights (%)

Poultry density 31.33

Proximity to poultry markets 23.07

Proximity to commercial poultry farms 25.62

Proximity to water areas 11.33

Proximity to roads 8.65
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A visual comparison of AI risk maps with the seven previous
HPAI outbreak locations in Mali from EMPRES-i revealed that
they all occurred in two municipalities deemed very high-risk areas
for AI occurrence by our model (Figure 1(b)). Bamako and Mopti
are also three areas identified as high-risk where influenza virus
circulation has recently been reported [25].

Discussion

This study presents the first risk maps for AIVs occurrence in
domestic poultry in Mali. Areas with the highest risk for AI out-
breaks were identified in Bamako District and Sikasso Region. The
high density of domestic poultry and the high number of poultry
markets and commercial poultry farms in those two regions could
explain these results. Indeed, high poultry density and poultry
markets have already been associated with an increased risk of AI

occurrence [26–29]. In addition, commercial poultry farms are
located mainly on the outskirts of major cities such as Bamako
and Sikasso, with possible contact with backyard poultry and wild
birds potentially infected by AIV. Interestingly, these high-risk
areas for AIV occurrence overlap the locations of previous HPAI
outbreaks reported in the country (EMPRES-i). Other regions of
interest for AI occurrence in Mali include the central regions of
Mali, particularly Mopti, which showed areas at high risk for AIV
occurrence. A possible explanation for this might be the presence of
the inner delta of the Niger River, which provides breeding and
resting sites for millions of wild and migratory birds that are
considered potential reservoirs for AIVs [11, 30].

The northern regions of Mali are extremely arid and character-
ized by low poultry density, a very limited number of poultry
markets, and commercial poultry farms [13]. These factors may
explain why the northern regions were determined by our model as
at low risk of AI occurrence. However, the potential risk of
AIV introduction through these areas via poultry movements
should be considered since AI outbreaks are frequently reported
from neighbouring Niger, which has not been taken into account
by our model [8].

In this study, experts identified poultry density as the most
important risk factor for AIV outbreaks in Mali. Several studies
have reported an association between increasing poultry density
and an increased risk of AIV outbreaks [27, 31]. Poultry density is
associated with a higher contact rate between infected and suscep-
tible birds and therefore a higher risk of spread. In addition, over
90% of domestic poultry in Mali are reared in traditional systems
with limited biosecurity measures, which may explain why poultry
density can represent a major risk factor for AIV occurrence.
Notably, our results were not consistent with a previous study in
Indonesia where poultry density was negatively correlated with
AIV outbreaks [32]. However, this was probably because the high-
est poultry densities were found in areas with industrial farms with
good management practices and strict biosecurity measures. The
sensitivity analysis showed that proximity to water bodies and
proximity to roads were the most sensitive factors, whose variation
has the highest impact on the variability of the risk index. This
finding implies that special attention should be paid to the accuracy
and timeliness of these two factors when collecting primary spatial

Figure 2. Spearman correlation coefficients (Rho) between raster cells of the avian influenza riskmap and the ten scenarios in the sensitivity analysis. Dens, poultry density; Farms,
poultry farms; Market, poultry markets; Road, proximity to roads; Water, proximity to water; [+25] and [-25] represent the increase and decrease in the relative weight of each risk
factor, respectively.

Figure 3. Contribution of risk factor weights to model output variance.
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data in order not to significantly bias the risk assessment of AIV
occurrence in Mali.

Several common limitations inherent to the GIS-MCDA
approach have been described by different authors [17, 18,
20]. One of the main limitations of the present study resides in the
selection of risk factors associated with AIVs occurrence. The risk
factors integrated into the model were only those identified in the
scientific literature to be associated with AI outbreaks and for which
spatial data were available. Other risk factors such as poultry move-
ments, seasons, husbandry practices, and wild bird distribution may
play an important role in AIVs occurrence and were not included in
our model due to a lack of available spatial data or unsuitability for
GIS-MCDA [11, 33]. Particularly with regard to the risk factors
associated with movement, network analysis, such as poultry trade
flows, could be used as a complementary method to address the lack
of data [34]. However, the model presented here is flexible and could
be easily updated if data for other relevant factors for AIVs occur-
rence in Mali become available. Another limitation of the GIS-
MCDAmethod is related to the quality of spatial data. In the present
study, poultry density represents the most important risk factor. The
raster layer available for poultry density in Mali was generated
in 2014, 8 years before the study period, but it is unlikely that the
densitymaphas significantly evolved since then: the areas considered
to have a high density of poultry in 2019 [35] were the same as those
identified in the 2014 raster layer. More updated data would increase
the quality of the resulting AI outbreak risk map in Mali.

A third limitation of the GIS-MCDA is the subjectivity that
could be related to the weights assigned to risk factors. In the

present study, the weights of risk factors were estimated using AIVs
expert opinion elicitation. Due to the potential subjectivity that
could be linked to the weights of risk factors, an extensive sensitivity
analysis was conducted to evaluate the impact that variations in
weights have on the model output. Our model is considered robust
as the changes in weights did not greatly modify the resulting risk
map. Although there is no specification about the number of
experts to consult when eliciting health problems [36], only nine
experts fully replied to the questionnaire. However, the judgements
of all the experts were consistent (Supplementary Table S1). Unfor-
tunately, a full validation of the model could not be performed.
Although the visual overlay of the risk map with the areas where
AIVs circulation has been reported is consistent, a quantitative
validation using the ROC method could not be performed. In fact,
quantitative validation of the model’s predictive capacity would
require surveillance data from a larger number of areas identified as
high risk, but also from areas identified as low risk, which are not
currently available for Mali.. The validation of knowledge-driven
models such as GIS-MCDA may be difficult, particularly in data-
scarce settings. However, the MCDA approach has been validated
in several studies [19, 20] and had even more predictive capacity
than statistical models in certain situations [31]. In addition, data
on AIV circulation from future studies and surveillance datasets
could be easily integrated into themodel for quantitative validation,
even though collecting surveillance data in low-risk areas may
remain challenging. Despite the drawbacks of the GIS-MCDA
approach, its outputs could be particularly useful for veterinary
services in implementing risk-based surveillance strategies and

Figure 4. Uncertainty map (standard deviation of the risk maps for AI outbreaks in domestic poultry in Mali).
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control programs in Mali or in other settings with very limited
resources. In this perspective, GIS-MCDA can contribute to iden-
tifying risk areas for AI outbreaks, setting surveillance priorities,
and efficiently allocating resources for the early detection and
control of AI outbreaks. However, when using the GIS-MCDA
approach to guide risk-based surveillance, careful consideration
should be given to the sensitivity and robustness of the model,
and AI outbreak prevention and control measures should be
designed according to local conditions, such as husbandry prac-
tices, spatial distribution of local poultry farms, live bird trade, and
organization of poultry markets. In addition, as more quantitative
data on AI risk factors becomes available, the risk map and the
relative weights of each risk factor should be re-evaluated to
improve the accuracy of risk modelling. In conclusion, this study
provides a cost-effective tool to guide future surveillance activities
in Mali and also presents a methodological approach that could be
implemented in other regions similar toMali, particularly in Africa,
to prevent and mitigate the occurrence of AIVs.
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