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Background
Viral genomic analyses of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) have provided 
insight into viral spread on both local and global scales 
and helped to inform infection control measures [1–6]. 
For instance, genomic analysis has been used to iden-
tify that Brazil shifted from being a net importer to an 
exporter of SARS-CoV-2 lineages over the course of 
2020 [5], and to reconstruct patterns of within-country 
viral movements in France during the country’s first two 
Coronavirus disease 2019 (COVID-19) pandemic waves 
[7]. Using viral genomic data allows for epidemiologi-
cal insight that cannot be captured from case data alone, 
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Abstract
Background Genomic epidemiology has helped reconstruct the global and regional movement of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is still a lack of understanding of SARS-CoV-2 spread 
in some of the world’s least developed countries (LDCs).

Methods To begin to address this disparity, we studied the transmission dynamics of the virus in Bangladesh during 
the country’s first COVID-19 wave by analysing case reports and whole-genome sequences from all eight divisions of 
the country.

Results We detected > 50 virus introductions to the country during the period, including during a period of national 
lockdown. Additionally, through discrete phylogeographic analyses, we identified that geographical distance and 
population -density and/or -size influenced virus spatial dispersal in Bangladesh.

Conclusions Overall, this study expands our knowledge of SARS-CoV-2 genomic epidemiology in Bangladesh, 
shedding light on crucial transmission characteristics within the country, while also acknowledging resemblances and 
differences to patterns observed in other nations.
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including the inference of transmission dynamics prior to 
the first recorded sample or during periods with limited 
disease surveillance.

Despite often having high age-specific infection fatal-
ity rates (IFRs) [8], limited genomic studies of SARS-
CoV-2 transmission dynamics have been conducted in 
the world’s least developed countries (LDCs) [8–10]. 
LDCs are low/middle-income countries (LMICs) that 
the United Nations (UN) classifies as possessing partic-
ularly high levels of poverty, human resource weakness, 
and economic vulnerability [10, 11]. Instead, most stud-
ies focus on findings from high income countries (HICs), 
particularly in Western Europe and North America, likely 
reflecting a greater ability to invest in both sequence gen-
eration and research efforts [8, 9, 12]. This is problematic 
as findings from HICs may not be readily applicable to 
LDCs. LDCs often face unique challenges in controlling 
the virus, including limited public health resources, weak 
healthcare systems, and large sections of their popula-
tions highly susceptible to external economic pressures 
[8, 9, 13]. The indiscriminate application of control mea-
sures that are effective in high-income countries (HICs) 
may lead to unintended consequences in LDCs, particu-
larly in settings where enforcement is challenging [13]. 
For example, stay-at-home orders have at times led to 
mass economic migration from cities, resulting in virus 
exports to larger geographic areas [14]. Identifying fac-
tors that influence transmission dynamics in LDCs allows 
for better tailoring of control measures to local epide-
miological contexts, thereby increasing their chances of 
success [13, 15].

The limited number of genomic epidemiological analy-
ses in LDCs is exemplified in Bangladesh, where, despite 
some insights, many aspects of SARS-CoV-2 spread 
remain poorly understood. Cowley et al., (2021) com-
pared observed mobility pattern data with time-scaled 
viral phylogenies to suggest that mass migration out of 
Dhaka, the capital of Bangladesh, may have driven early 
viral spread across the country [14]. However, in contrast 
to many HICs, the potential association between spatial 
and demographic factors and viral dispersal patterns has 
not been quantified [14]. Likewise, while studies reported 
that SARS-CoV-2 may have appeared in Bangladesh 
weeks before the first case report [14] and was likely 
introduced multiple times from several countries [16–
18], the number of viral lineage imports to and exports 
from Bangladesh have not been estimated.

Bangladesh is the most densely populated country in 
the world that is not a city-state (165 million inhabitants 
living at over 1000 people/km2), and one of several LDCs 
in South Asia [14, 19–23]. The first case of SARS-CoV-2 
in Bangladesh was confirmed on March 8th, 2020 [19, 
24]. In response to rising cases, a nationwide lockdown 
(known as a ‘National General Holiday’) was introduced 

on the 26th of March and lasted until the 30th of May. 
Restrictions and screening procedures were implemented 
at educational institutions, workplaces and interna-
tional airports [23, 25]. Infections nevertheless increased 
steeply in April, with nearly 313,000 confirmed cases 
reported by 31st August 2020 (a total of 4,281 deaths) 
[18]. Following the end of the national lockdown, a sub-
sequent zone-coded lockdown was used whereby move-
ment within and between certain high-incidence areas 
was restricted [23, 25–27].

This study aims to explore the spread of SARS-CoV-2 
into and within Bangladesh during the first wave of the 
COVID-19 pandemic. We generated 175 SARS-CoV-2 
whole-genome sequences from cases confirmed by 
molecular testing. These were combined with 140 addi-
tional sequences corresponding to confirmed cases 
occurring in Bangladesh during the study period to 
inform a phylodynamic analysis. We assessed the fre-
quency and size of SARS-CoV-2 lineage imports to 
Bangladesh. We also identified drivers of viral dispersal 
among regions within the country, using a subset of 194 
sequences from the countries’ two largest lineages.

Methods
Sample collection
Samples were chosen for sequencing from residual ano-
nymised diagnostic samples collected from patients 
attending hospitals or health institutes in different dis-
tricts between 26th April − 31st August 2020 that were 
received by the National Reference Laboratory for 
Avian Influenza, Bangladesh Livestock Research Insti-
tute (BLRI) and that had tested positive by Real-time 
reverse transcription polymerase chain reaction (rRT-
PCR). There was no patient or public involvement in the 
design of this study. Samples were nasopharyngeal or 
oropharyngeal swabs or both and were collected along 
the clinical criteria according to the National Guide-
lines on Clinical Management of Coronavirus Disease 
2019 (COVID-19) published by the Directorate General 
of Health Services (DGHS), Bangladesh. A structured 
data collection questionnaire (Figure S1) was collected 
alongside all samples, detailing each patient’s geographic 
origin, clinical symptoms, travel history, and probable 
viral source. rRT-PCR for SARS-CoV-2 detection was 
performed using fluorescent probes and the result was 
considered positive when the cycle threshold (Ct) val-
ues of both the ORF1ab and N genes were < 32 and < 35, 
as measured by ROX [28] and FAM [29] dyes [30–32]. 
We attempted to choose samples proportionally to con-
firmed cases per district (see Figure S2 for a compari-
son of sequences to confirmed cases per district), whilst 
also still including a high percentage of samples from 
likely under-sampled regions. We preferentially selected 
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samples for which information on travel history (includ-
ing confirmation of absence of travel) was present.

Sequencing
We sequenced 175 whole SARS-CoV-2 genomes from 
samples using a Nanopore GridION and the nCoV-2019 
sequencing protocol v3 (LoCost) V.3 incorporating the 
ARTIC multiplex-PCR sequencing pipeline (as described 
in [33]). We combined newly generated sequences with 
140 Bangladeshi sequences accessed (July 2022) via the 
GISAID [34] EpiCOV database (www.gisaid.org) col-
lected from patients during the same sampling period. 
These included: (i) sequences already used in published 
papers (n = 139) and (ii) unpublished sequences where 
submitting laboratories granted us permission for their 
inclusion (n = 1). All SARS-CoV-2 sequences were aligned 
using Llama (Local Lineage and Monophyly Assessment) 
[35] v0.1 with default parameters. Using AliView [36] 
v1.28 we confirmed that there were no sequences from 
the alignment that either were duplicated, short (< 70% 
of the total equence length), or indicative of containing 
sequencing or assembly errors.

Epidemiological data
We obtained COVID-19 confirmed case data between 
17th April − 31st August 2020 from the Institute of Epi-
demiology Disease Control and Research (IEDCR) 
“COVID-19 Dynamic Dashboard for Bangladesh” [37]. 
Aggregated daily case counts were available for each of 
Bangladesh’s eight divisions (Chattogram, Dhaka, Sylhet, 
Khulna, Barishal, Rajshahi, Rangpur, Mymensingh). For 
the national-level data, days in which data was missing 
from one or more divisions were excluded (n = 10) from 
analyses.

Epidemiological analyses
We applied methods implemented in EpiFilter [38] to 
estimate the median and 95% equal-tailed Bayesian cred-
ible intervals of the effective reproduction number at 
time t, (R(t)), in each division between 17th April 2020 
and 31st August 2020. As detailed in [38], this method 
reduces the mean squared error in R(t) inference by 
applying optimal recursive smoothing. We used the 
SARS-CoV-2 serial interval distribution detailed in Fer-
guson et al. (2020) as the generation time distribution 
[39]. We also use a weekly averaging filter to minimise 
the impacts of inconsistent reporting on R(t) inference.

Transmission lineage analyses
We first assembled a global alignment by sampling SARS-
CoV-2 genome sequences evenly for each week and 
country (oldest sequence: 2019-12-24, newest sequence: 
2020-08-31). Initially, sequence data was downloaded 
from GISAID (https://www.gisaid.org) EpiCov database 

as part of the COG-UK analytical pipeline  (   h t  t p s  : / / g  e n  
o m e  b i o  l o g y  . b  i o m  e d c  e n t r  a l  . c o m / a r t i c l e s /       h t t p s : / / d o i . o r g 
/ 1 0 . 1 1 8 6 / s 1 3 0 5 9 - 0 2 1 - 0 2 3 9 5 - y     ) on the 21st April 2021. 
Only samples with > = 90% coverage, a successful pango-
lin lineage assignment, and a sample date prior to Sep-
tember 1st, 2020, were included in downstream analysis 
(n = 207,471). 670 samples from Bangladesh were then 
removed from the data set (n = 206,801 remaining) which 
was then downsampled to 5,000 background samples by 
hierarchical subsampling so that, as much as possible, 
samples would be evenly distributed through time, then 
continent, then country. The 670 Bangladeshi samples 
from GISAID were added to this background along with 
the 175 newly generated Bangladeshi sequences with cov-
erage > = 90%. Next, temporal outliers, defined as samples 
that fell beyond 4 interquartile ranges of the expected 
divergence given were identified and removed (n = 41, 
all from the set of 5,000 sequence background samples) 
using TreeTime [40] and a fixed clock rate of 0.00075 
substitutions/site/year. The remaining 5,804 samples 
were used in downstream analysis. We then used Thor-
neyBEAST (https:/ /beast. communi ty/t horney_beast) to 
estimate a posterior molecular clock tree using a pipeline 
similar to that of du Plessis et al., (2021) [41], Raghwani 
et al., (2022) [4] and Gutierrez et al., (2021) [42]. This 
employed a strict molecular clock model [43] (0.00075 
substitutions/site/year), and a Skygrid coalescent tree 
prior [44]. For the starting tree, we used a maximum-like-
lihood tree produced with IQ-TREE [45] under a Jukes-
Cantor substitution model, using Wuhan/WH04/2020 
as an outgroup. During the Markov chain Monte Carlo 
(MCMC), we constrained our tree search to sample only 
node height and resolutions of polytomies present in the 
starting tree. We completed 5 chains of 200 million steps 
with sampling every 1.8 million steps, removing the first 
10% of steps as burn-in. The resulting sample of 500 trees 
from the posterior were used to generate a maximum 
clade credibility (MCC) tree. We confirmed that the 
Effective Sample Size (ESS) of all parameters was > 200 
using Tracer [46] v1.7.1.

We then conducted a discrete trait analysis (DTA) 
with these 500 empirical trees in BEAST [47] to estimate 
ancestral node locations (Bangladesh or non-Bangla-
desh). We used a robust counting approach [48] to evalu-
ate the expected number of location state transitions into 
and out of Bangladesh across a posterior sample of 2000 
trees.

Finally, we used the location-annotated MCC tree to 
identify transmission lineages in Bangladesh, following 
previously described methods [41]. Briefly, nodes with a 
posterior probability  > 0.5 inferred to be located in Ban-
gladesh are considered “Bangladeshi nodes”. A depth-
first search initiated at a random Bangladeshi node is 
run until complete or until a non-Bangladeshi node is 

http://www.gisaid.org
https://www.gisaid.org
https://genomebiology.biomedcentral.com/articles/
https://genomebiology.biomedcentral.com/articles/
https://doi.org/10.1186/s13059-021-02395-y
https://doi.org/10.1186/s13059-021-02395-y
https://beast.community/thorney_beast
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encountered, with encountered nodes labelled as belong-
ing to the same transmission lineage. A new starting 
node is chosen until every Bangladeshi node is visited, 
and hence all Bangladeshi tips have been assigned a lin-
eage or classified as a singleton. For each Bangladeshi 
lineage, we estimated time to the most recent common 
ancestor (TMRCA).

Discrete trait analysis with generalized linear model
To investigate how viral dispersal was influenced by spa-
tial and demographic factors in Bangladesh we focused 
on the two largest transmission lineages identified in the 
global dataset (Material and Methods section "Trans-
mission lineage analyses") Only those whole-genome 
sequences with known sampling districts were used 
(n = 142/307 for lineage 2 and n = 52/97 for lineage 8, 
remaining total with sampling districts = 194) (Tables 
S1-S3). To facilitate effective discrete phylogeography 
analyses, we reduced the original 28 districts (second 
administrative level), covering six out of the eight Bangla-
deshi divisions (first administrative level) into a smaller 
set of discrete locations. In brief, we employed k-means 
clustering based on Euclidean distance, as implemented 
in the ‘stats’ package in R [49] v4.1.2, to group these 
sequences into eight geographic regions, each represent-
ing a grouping of several districts. All sequences were 
assigned to their respective district centroid coordinates 
for this purpose. We assembled data on chosen predic-
tors for each of these eight geographical groups of dis-
tricts: population size and density, the ratio between the 
number of cases and population size, and geographic 
distance (ellipsoid distance between grouping centroids) 
(see Tables S4-S5 for details). Whilst we did not expect 
a strong temporal signal given the low mutation rate of 
SARS-CoV-2 and the short timescale of our study (e.g 
[14, 50]), we used TempEst [51] v1.5.3 to check that 
the temporal signal in each lineage alignment was not 
incompatible with using fixed substitution rates based 
on the literature and to check for outlier sequences (Fig-
ure S3). We used a DTA model implemented in BEAST 
[47] v1.10.4 to reconstruct virus lineage movements 
between the eight pre-defined geographic groupings. A 
strict molecular clock model with a fixed rate (0.001 sub-
stitutions/site/year) and an SRD06 substitutional model 
[52] was shared between both transmission lineages to 
improve convergence, with a separate exponential growth 
coalescent tree prior that allows for different timings of 
lineage growth, and default BEAST [47] v1.10.4 priors for 
the other parameters. We used a faster clock rate (0.001 
substitutions/site/year) in these shorter timescale phy-
logeographic analyses, compared to the previous global 
transmission lineages analyses (0.00075 substitutions/
site/year), to account for the existence of slightly deleteri-
ous mutations circulating in the Bangladesh transmission 

lineages that had not been removed by purifying selec-
tion [53]. We used separate generalised-linear models 
(GLMs) to determine which covariate(s) (Table S4-S5) 
best predicted the frequency of viral lineage movements 
between locations for each lineage. The migration rates 
in the DTA model are parameterised as a GLM using 
covariates as coefficients of the GLM. DTA-GLM analy-
ses that included either population density or population 
size predictors were run separately because of the multi-
collinearity between these predictors. For each analysis, 
we executed two chains of 150 million steps logged every 
15,000 steps, removing the first 10% of steps as burn-in. 
We used Tracer [46] v1.7.1 to confirm that the ESS was 
> 200 for all parameters. The support of the Bayes Factor 
(BF) for transmission between discrete traits was inter-
preted as described previously in [54], with BF > 100 ‘very 
strong support’, and BF > 10 indicating ‘strong support’.

Results
Epidemiological findings
COVID-19 confirmed cases increased towards the end 
of the national lockdown and continued rising during the 
subsequent zone-coded lockdown, peaking at the start 
of July 2020 (Fig.  1). Reported case numbers dropped 
sharply during Eid al-Adha, which is one of the most 
important Muslim festivals and marked by a period of 
public holiday in Bangladesh [55] (31st July 2020–1st 
August 2020) (Fig.  1). This is consistent with reduced 
reporting and testing in other countries in periods sur-
rounding important religious events [56].

We plotted daily COVID-19 confirmed case counts 
in Bangladesh’s eight divisions between 17th April 2020 
and 31st August 2020. Case counts in each division 
were similar to the pattern observed at the country level 
(Figs. 1 and 2A). It is possible that rising cases could be 
somewhat driven by increased testing capacity over time 
[14]. In particular, during the first months of the pan-
demic, residents in Dhaka, the country’s largest and most 
populated city, had easier access to SARS-CoV-2 testing 
compared to other regions in Bangladesh [14, 57]. Conse-
quently, the Dhaka division reported the majority (50.5%) 
of confirmed SARS-CoV-2 cases in the country (Fig. 2A) 
[14, 57]. Spikes in reported cases during the first wave 
of the pandemic were observed in some other divisions, 
e.g., in Rangpur in the start of July 2020 (Fig. 2A).

Division-specific effective reproduction numbers R(t) 
showed similar temporal trends in most Bangladeshi 
divisions (Fig.  2B). R(t) typically fell in the first half of 
the national lockdown, but then peaked above 1 near the 
middle or end of May, concurrent with both the religious 
festival of Eid al-Fitr and the end of the national lock-
down. R(t) then slowly decreased and fluctuated around 
1 by the start of July (Fig.  2B). Division-specific spikes 
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and troughs in R(t) were also observed, such as a reduc-
tion of R(t) below 1 in mid-June in Mymensingh (Fig. 2B).

Transmission lineage findings
We estimated the number of SARS-CoV-2 lineage impor-
tations over time to Bangladesh. The estimated number 
of viral lineage movements into the country (n = 111, 
95% HPD: 99–121) was approximately 4 times higher 
than the number of viral lineage movements from Ban-
gladesh to other countries globally (n = 26, 95% HPD: 
16–38) (Fig. 3A), indicating that Bangladesh was mainly 
an importer of virus lineages during the first wave.

We detected 56 distinct Bangladesh transmission 
lineages (i.e., lineages spreading within Bangladesh, 
represented by > 1 genome), and 51 singletons (singu-
lar Bangladesh genomes representing lineage imports 
originating from non-Bangladesh regions, yet without 
evidence of autochthonous transmission) (Figure S4). 
Twelve lineages contained > 10 sequences, and two lin-
eages contained > 100 genomes. Several lineages (n = 16, 
28.6%), including the two largest lineages, had an esti-
mated TMRCA that fell either prior to or within the 
following week of the start of the national lockdown on 
the 26th March (Fig.  3B & S4) [25]. Multiple lineages, 
however, had TMRCAs overlapping with the period 
of nationwide lockdown (Fig.  3C & S4). Finally, there 
was a strong negative exponential relationship between 
the estimated TMRCA and transmission lineage size 
(Fig.  3C). Larger transmission lineages in Bangladesh 

were generally associated with longer sampling durations 
(Fig. 3D).

Drivers of virus spread within Bangladesh
We used DTA models coupled with GLMs to identify sig-
nificant predictors of virus lineage dissemination among 
eight geographical groups each containing districts from 
multiple Bangladeshi divisions (Figs.  4A and 5), using 
only those sequences from the two largest Bangladesh 
transmission lineages (Figs. 3 and 5). We fitted two mod-
els with either population size or population density as 
the demographic predictor (covariate values shown in 
Table S5 & Figure S5). We observed consistent direction-
ality and effect sizes for two population metrics in each 
of their respective models, but notable differences were 
found in the BF support and inclusion probabilities. In 
the model including population density as a predictor 
(Fig.  4B), there was strong evidence (BF > 10, following: 
[54]) that virus lineages were more likely to move from 
areas with high population density. We also found very 
strong support (BF > 100) for virus movement between 
geographically close locations and very strong support 
(BF > 100) towards areas with a high number of con-
firmed cases per capita. In the model including popula-
tion size as predictor (Fig. 4C), there was strong support 
for virus spread occurring more commonly to and from 
areas with high population sizes, and for virus movement 
towards locations with a high number of confirmed cases 

Fig. 1 Daily COVID-19 confirmed case counts in Bangladesh, 2020. Grey highlighted region indicates the timing of a national lockdown. The x-axis ticks 
correspond to the start of the named month
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Fig. 2 Grey-highlighted regions indicate a national lockdown. (A) Daily COVID-19 confirmed cases in each division. (B) Effective reproduction number 
(R(t)) by division. Median Rt estimates are shown by black lines, and 95% Bayesian credible intervals by coloured ribbons
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per capita. However, distance was not identified as a sig-
nificant predictor (BF < 1) (See Fig. 4C).

Discussion
Genomic epidemiology has played a crucial role in 
understanding the global and regional movement of 
SARS-CoV-2 [1–6]. However, research efforts have dis-
proportionately neglected studying virus spread within 
the world’s least developed countries. To contribute to 
addressing this disparity, we use a combination of epi-
demiological and phylodynamic analyses to investigate 
the transmission dynamics of SARS-CoV-2 in Bangla-
desh during the country’s initial wave of COVID-19. We 
determined that R(t) showed a declining trend during the 
start of the national lockdown but rose slightly towards 
the end of the national lockdown in late May 2020, 

which was perhaps driven by activity surrounding Eid al-
Fitr. Subsequently, R(t) slowly stabilised and fluctuated 
around ~ 1 in all divisions. Our study revealed that cases 
in Bangladesh were initiated by more than 50 instances 
of virus introduction into the country, with multiple 
lineages maintained even during the period of national 
lockdown. Finally, we identified using discrete phylogeo-
graphic analyses that patterns of virus dispersal may have 
been shaped by population density and/or size, as well as 
geographical proximity, although the latter was not con-
sistently important across all analyses.

The detection of over 50 virus introductions during 
Bangladesh’s initial COVID-19 wave, and of multiple 
persistent transmission lineages during the lockdown, 
contrasts with studies from Hong Kong [58] and New 
Zealand [59], where virus cases were linked to repeated 

Fig. 3 SARS-CoV-2 transmission lineage characteristics in Bangladesh. (A) Number of location state transitions between the phylogenetic traits Bangla-
desh/Global (imports into Bangladesh = blue, exports from Bangladesh = red), as detected via the robust counting approach. Posterior distributions are 
truncated at their 95% highest posterior distribution (HPD) interval limits and median estimates are shown using horizontal lines. (B) Duration and timing 
of the largest Bangladesh transmission lineages (> 10 genomes). Each row represents a transmission lineage, and red dots indicate genome sampling 
times. Boxes and labels on the right axis show the sampling duration (see Figure S3 for more details on sampling duration per lineage), and number of 
sampled genomes (n). Asterisks show the median estimated time to most recent common ancestor (TMRCA) for each lineage, with the 95% HPD as a yel-
low bar (C) Relationship between transmission lineage size and TMRCA, with a dashed line indicating the slope of a linear regression. The Pearson correla-
tion coefficient, 95% confidence interval, and p-value are shown. (D) Partition of Bangladesh genomes into cells representing transmission lineages and 
singletons, each coloured by estimated duration (time between the lineage’s oldest and most recent genomes). Cell size is proportional to lineage size
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individual introductions rather than persistently pres-
ent lineages. Both our study and the Hong Kong study 
were based on similar pipelines adapted from du Plessis 
et al. (2021) [41], and therefore the observed difference is 
likely not caused by different study designs. Instead, the 
distinction likely reflects a greater inability to adequately 
maintain social distancing in Bangladesh’s high-density 
urban areas and the relatively greater capacity of these 
other countries to control local transmission through 
measures such as community surveillance and contact 
tracing [12, 44]. Additionally, New Zealand and Hong 
Kong adopted stringent inbound travel regulations and 
testing measures [58, 59]. In contrast, Bangladesh had 
limited thermal scanners at Dhaka international air-
ports, and reported low quarantine compliance [19, 60]. 

These differences may have played a further role in the 
observed variations in SARS-CoV-2 lineage dynamics 
between locations.

In congruence with previous studies in South Africa 
[6] and Italy [61], we found that the estimated number 
of virus importations into the country considerably out-
weighed exports. The return of a large number of Ban-
gladeshi nationals to the country during the early stages 
of the pandemic may have allowed for extensive lineage 
importation to the country from a wide range of geo-
graphical locations [14, 16–18, 62]. Notably, over 10 mil-
lion Bangladeshi citizens live abroad, and the number 
of migrant labourers returning to the country was 8 
times higher in 2020 than in previous years [18, 63, 64]. 
Introductions may have been seeded via international 

Fig. 4 Factors associated with SARS-CoV-2 spread. A) Map of Bangladesh showing the eight geographical groups of districts used as discrete traits in 
the DTA-GLM. Region centroids are marked by red dots. B and C) Predictors of SARS-CoV-2 spread based on models with either population density (B) 
or population size (C) included as predictors. Bar and line colours indicate different covariates, with origin and destination predictor of a covariate given 
the same colour within each plot. Inclusion probability is the posterior expectation that the indicator variable is associated with each predictor E(δ) and 
suggests that the predictor is associated with different rates of viral diffusion. Bayes Factor (BF) support values for each covariate are indicated by black 
text annotations. The coefficient (β|δ = 1) represents the contribution of each predictor on a log scale when the predictor is included in the model, with 
the 95% credible interval of the GLM coefficients (β) represented by horizontal lines
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airports [14, 16–18, 60], as well as through cross-border 
human mobility with neighbouring countries (e.g., India 
[65–67]). The latter has been an important pathway for 
the introduction of SARS-CoV-2 lineages to other LDCs 
(e.g., Burkina Faso [68] and Rwanda [69]). However, as 
the number and origin of introductions and exports 
estimated from genomic data are dependent on sample 
size [41], our analyses may be biased towards capturing 
imports rather than exports, given relatively less intense 
sampling in Bangladesh compared to many other regions 
globally.

Viral lineages moved more frequently from locations 
with higher to locations with lower population density or 
total population size. This finding may reflect the spread 
of viral lineages across the country during the early 
stages of the pandemic being driven by mass migration 
out of major cities/urban hotspots with relatively higher 
case rates to rural areas, following the announcement or 

extension of the national lockdown, as previously sug-
gested by several publications that reference news reports 
(e.g [19, 70]) and a comparative analyses of mobility pat-
terns with genomic data [14]. The considerable number 
of commuters from peripheral rural locations into urban 
areas may also have contributed to virus spread following 
the ease of the national lockdown [14, 71–73]. This pat-
tern of wide-scale movement from urban areas driving 
early spread of the virus has previously been identified 
using genomic methods in both HICs (e.g., France [7]) 
and regions of lower-middle-income countries (LMICs) 
(e.g., Gujarat, India [4]). As such, in conjunction with this 
previous research, our study’s findings may further sup-
port the notion that population size/density and mass 
human movements were generally important drivers of 
within-country spread during this stage of the pandemic, 
regardless of country wealth [74].

Fig. 5 MCC phylogenies of the two largest lineages detected. (A) Lineage 2, and (B) Lineage 8. Branch lengths represent time, as shown on the axis. Tips 
are coloured by the sampling geographic region used in the DTA-GLM analyses, as shown in the inset map. Black bars indicate the 95% highest posterior 
density (HPD) interval for node ages
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In one of our discrete phylogeographic analyses, we 
identified that viral movement occurred preferentially 
between more proximate geographic groupings of dis-
tricts in Bangladesh. This suggests that certain lockdown 
measures (e.g., travel advisories, railway closures, domes-
tic flight suspensions [23, 25–27]), likely had a more 
substantial impact on restricting long-distance human 
mobility and virus spread, compared to movement and 
viral dispersal between closer or neighbouring divisions. 
Distance has also been identified as a predictor of SARS-
CoV-2 spread in several other countries, including Israel 
and Brazil [75, 76]. That said, the presence of strong evi-
dence (using BF support) for distance depended here on 
whether human population density or size was consid-
ered, with only strong evidence detected when the popu-
lation density predictor was also included in the model. 
This could indicate that distance had a relatively weak 
effect on viral transmission dispersal between regions 
in the country, perhaps because Bangladesh is relatively 
small and its population is highly mobile [72].

Our study has several limitations. Firstly, only a very 
small fraction of the total confirmed SARS-CoV-2 cases 
could be sequenced due to resource constraints. Greater 
sampling and sequencing of cases would have allowed 
us to analyse the virus dispersal patterns in Bangladesh 
at higher resolution. Second, the limited genomic sur-
veillance in certain locations outside of Dhaka where 
many cases were confirmed, particularly the absence of 
sequences from Chattogram, the country’s second-largest 
city, indicates that our analyses may have underestimated 
the extent and frequency of virus movements within Ban-
gladesh. As such, the outputs of our DTA-GLM models 
may have not fully captured the strength or impact that 
certain demographic predictors had on within-country 
viral dispersal [14]. We attempted to mitigate this limita-
tion by choosing samples for sequencing roughly propor-
tionally to the confirmed cases per Bangladeshi district 
while retaining most samples from any particularly under 
sampled locations. However, for several regions, very 
few samples were available and case reporting is likely 
to be inherently spatially biased. Third, due to the short 
time-period of our study, we were unable to investigate 
changes in the drivers of viral spread during the study 
period. The dynamics of transmission and the sources 
of infection may have altered over time, especially in 
response to mobility restrictions and interventions such 
as border closures. Furthermore, the geographic origin 
of each sequence was determined based on individuals 
voluntarily disclosing their present place of residence, 
which can be prone to inaccuracies. Likewise, missing 
location metadata meant we had to reduce the num-
ber of sequences from each lineage to only sequences 
with known division when performing the DTA-GLM 

phylogeographic analyses, which may have reduced the 
possible statistical power of the analyses.

Conclusions
In conclusion, this study on SARS-CoV-2 genomic epi-
demiology during the first wave in Bangladesh uncovers 
distinct and common virus transmission patterns in com-
parison to other countries of various income levels. These 
findings highlight the significance of genomic epide-
miological analyses in resource-constrained regions like 
Bangladesh in potentially helping to inform the design of 
more specific and accurate evidence-based interventions 
aimed at reducing the import and within-country spread 
of viral outbreaks. Addressing the limitations in genomic 
surveillance in Bangladesh is crucial for improving the 
capacity to respond to future viral outbreaks.
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