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We present a numerical investigation of the coalescence of a drop with a pool of the same liquid. The
simulations were carried out with both viscous Newtonian and viscoelastic fluids, based on an axisymmetric
high density ratio lattice Boltzmann method with a diffuse interface coupled with the Oldroyd-B Model.
Particular attention was paid to the widening dynamics of the liquid bridge between the drop and the pool,
and to the velocity fields within both the drop and liquid bulk. The results were compared with experimental
data obtained using a high-speed camera and a micro-Particle Image Velocimetry (µ-PIV) and displayed
satisfactory agreement. In particular, the simulated temporary evolution of the rescaled coalescing width of
the liquid bridge in function of the normalized time compares favorably with the experimental results for
both the inertially limited viscous and the inertial regimes for short and long time.

I. INTRODUCTION

Drop coalescence is of both academic and industrial
interest and plays a major role in numerous applications
including emulsions, foams, oil recovery, mass transfer
and reaction between liquids as well as falling raindrops
in a pool1. From the physical point of view, a drop
may bounce, coalesce or splash at the liquid interface
according to its initial approaching velocity2,3 when im-
pinging with a bath of the same liquid. The coalescence
of a drop into a pool of liquid can be either instanta-
neous or delayed4, complete or partial5 and affected by
various factors including the fluid density6, surface ten-
sion gradient7, thermal effect4, ambient pressure8 or local
Marangoni flow9.

In recent years, experimental investigation on the very
initial drop coalescence have been performed, usually be
means of visualization with a high-speed camera from
side view or both side and bottom view10–13. Whatever
the coalescence configuration between two drops, or be-
tween a drop and a planar liquid surface of the same
nature, three regimes were identified through the rela-
tionship between dimensionless coalescence width and
normalized time: linear in the inertially limited viscous
(ILV) regime; logarithmic correction in the transient vis-
cous regime; and finally square root in the inertial regime.
It is worth noting that the visualization, based on high-
speed camera with typically minimum interval about
0.01ms, is still far from sufficient to study the dynamics
of very initial contact within typical length below 100 µm.
Some experiments have been attempted using AC14 or
DC15 electrical circuits with electrolyte drops and ultra-
fast acquisition system to reduce the measurement scale,

a)Electronic mail: xavier.frank@inrae.fr
b)Electronic mail: Huai-Zhi.Li@univ-lorraine.fr

both temporal and spatial. However, these techniques
are mainly indirect measurements and validated numer-
ical approach remains an extremely interesting alterna-
tive to gain information on very small spatio-temporary
scales inaccessible by current experimental techniques.

From a practical point of view, liquids in industrial
problems and applications involving drop coalescence,
such as emulsion stability, enhanced oil recovery and ink
printing as well as paint or polymeric coating, are usu-
ally non-Newtonian in nature. The drop coalescence and
spreading on a surface determine often the quality of fi-
nal manufactured products. The rheological properties,
especially viscoelastic aspect, begin to be considered in
experimental works15. The numerical simulation, in par-
ticular by means of the lattice Boltzmann (LB) method,
remains still scarce for such complex media.

Some numerical experiments have been carried out
over the past years on splashing, in particular some of
them realized with axisymmetric geometry16–19. The
coupling with a viscosity model is a new challenging area.
Early LB approaches to viscoelastic fluids were based on
Maxwell or Jeffreys models20–22 and most of the recent
works make use of a 2D Oldroyd-B model23–25. Some
axisymmetric numerical experiments with the Oldroyd-
B model26,27 have been made but outside the framework
of a LB approach. Recently, some LB works begin to
consider the initial stage of coalescence28–31.

This work presents a multiphase axisymmetrical lat-
tice Boltzmann approach with high liquid/gas density
ratio to investigate numerically the fast coalescence of
a drop with a liquid pool of same nature. We also
added an Oldroyd-B model for the viscoelasticity in re-
lation with our experimental works involving viscoelastic
non-Newtonian fluids15, in particular polyethylene oxide
(PEO) and polyacrylamide (PAAm) solutions in water.

Numerical simulations are compared with the exper-
imental results regarding both the flow fields and the
evolution of the width W of the liquid bridge between
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the drop and liquid surface that is created during the
coalescence. A typical example of the visualization by a
high-speed camera is illustrated in Figs. 1(a) (multimedia
available online) and 1(b) (multimedia available online)
with non-Newtonian and Newtonian fluids respectively.

FIG. 1. Our previous experimental results of the initial
coalescence15: (a) Viscoelastic non-Newtonian 0.5wt% Poly-
acrylamide (PAAm) solution with 10wt% NaCl, with an ini-
tial velocity of v0 = 0.29mm.s−1 (multimedia available on-
line), (b) Water 5wt% NaCl with the same initial velocity
(multimedia available online).

The paper is organized as follows. Firstly, we are pre-
senting the theoretical aspect of the model used. Then,
are detailed the numerical scheme and the associated
boundary conditions with special care to the axisymme-
try. Finally, the numerical results of the liquid bridge
evolution are compared with the experimental visualiza-
tion by a high-speed camera. Furthermore, the velocity
fields issued from the numerical simulations are validated
by the experimental measurements thanks to a micro-
Particle Image Velocimetry (µ-PIV) device.

II. GOVERNING EQUATIONS

A. Macroscopic Equations

To avoid to define boundary conditions at the inter-
faces between phases, we will rely here on a diffuse in-
terface model within the framework of the Navier-Stokes
(NS) equation,

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ ρν (∇ · ∇)u+ F (1)

F = Fs + Foldroyd (2)

where u is the velocity field, p the pressure field, ρ the
density field, Fs and Foldroyd are forces related to inter-
facial tension and to viscoelasticity respectively. As the
fluid is assumed incompressible in effective flow condi-
tions, the mass conservation law leads naturally to

∇ · u = 0 (3)

The distribution of the phases is described using a
scalar field φ, which obeys the Cahn-Hillard equation

∂φ

∂t
+ u · ∇φ = ∇ · (M · ∇µ) (4)

where M > 0 is the mobility and µ the chemical poten-
tial. To recover the density field ρ and the kinematic
viscosity ν we use the linear relationships

ρ = ρlφ+ ρg(1− φ) (5)

ν = νlφ+ νg(1− φ), (6)

where the indices l and g denote the liquid and gas phases
respectively. The value of φ is 0 for the gas phase and 1
for the liquid phase. The interface is located at φ = 0.5.

The Oldroyd-B model32,33 is employed here to describe
the viscoelasticity of non-Newtonian fluids encountered
in our experiments with PEO and PAAm solutions. The
velocity field u and the conformation tensor A are in-
volved in a non linear coupling such as

∂A

∂t
+ (u · ∇)A = − 1

λ
(A− I) +A · ∇u+ (∇u)T ·A (7)

where I is the unity tensor.
The viscoelastic force is computed from A with the

following expression

Foldroyd = ∇ ·
(

ηp
λ
(A− I)

)

(8)

where the viscosity ηp and the relaxation time λ are the
material parameters describing polymer solutions.

B. Numerical approach

1. Lattice Boltzmann Method

The numerical scheme proposed here is similar to the
model developed by Sun et al.18 based on the approach
of He et al.34 as well as Lee and Lin.35 to manage high
fluid density ratio up to 1000. The addition of exter-
nal forces comes from the work of Lee and Fischer et
al.36. The modification into an axisymmetric geometry
was made for a monophase system by Halliday et al .37.
Then Premnath et al.38 were the first to choose an ax-
isymmetric model for multiphase flows. Recently Huang
et al.39 proposed a mass-conserving model by adding an
equation to keep the same density ratio over the time.
Some improvements have been made recently by Fakarhi
et al.40 and Chen et al.41 through the implementation of
the Cahn-Hillard equation with a new equilibrium distri-
bution function.
At the initial time, the targeted system is axisymmet-

ric. Given the viscosity of the fluids and the size of the
drops, this symmetry is preserved until the end of the
coalescence. Consequently, the flow can be correctly de-
scribed by a 2D model, with the appropriate corrective
terms.
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For the multiphase Lattice Boltzmann model, we use
a D2Q9 lattice with e0 = (0, 0), e1 = (1, 0), e2 = (0, 1),
e3 = (−1, 0), e4 = (0,−1),e5 = (1, 1), e6 = (−1, 1), e7 =
(−1,−1), e8 = (1,−1), shown in Fig. 2 and the weight
associated ω0 = 4/9, ω1,4 = 1/9 and ω5,8 = 1/36. The
ei vectors and all the quantities in the numerical model
are expressed in LB units. Space and time steps are
δx = 1 and δt = 1, respectively. To compare numerical
results with experimental ones, we will rely exclusively
on the relevant dimensionless numbers that characterize
the flow.

FIG. 2. D2Q9 lattice.

For the convenience, the relative axisymmetric coor-
dinates (r, z) are written as (y, x). The model relies on
a pre-stream-collide/collide/stream steps scheme. Con-
cretely, equilibrium distribution functions are modified
with initial equilibrium functions defined as follows

geqi (x, t) = ωi

[

p+ c2sρ

(

eiαuα
c2s

+
eiαeiβuαuβ

2c4s
− uαuα

2c2s

)]

(9a)

f eqi (x, t) = ωiφ

[

1 +
eiαuα
c2s

+
eiαeiβuαuβ

2c4s
− uαuα

2c2s

]

(9b)
and the new equilibrium functions are

geqi (x, t) = geqi (x, t)− δt

2
(eiα − uα)

[

∂CDα ρc2s
(

Γi(u)− Γ(0)
)

−
(

φ∂CDα µ− Fα
)

Γi(u)− c2sωi
uy
y

]

(10a)

f
eq

i (x, t) = f eqi (x, t)− δt

2
(eiα − uα)

[

∂CDα φ

− φ

ρc2s

(

∂CDα p+ φ∂CDα µ

)

Γi(u)− ωi
φuy
y

]

.

(10b)

where

Γi(u) = ωi

[

1 +
eiαuα
c2s

+
eiαeiβuαuβ

2c4s
− uαuα

2c2s

]

(11)

The time evolution of f i(x, t) and gi(x, t) is governed
by

gi(x+ eiδt, t+ δt) = gi(x, t)−
1

τg + 0.5

(gi(x, t)− geqi (x, t)) + δt(eiα − uα)

[

∂MD
α ρc2s

(

Γi(u)− Γ(0)
)

−
(

φ∂MD
α µ− Fα

)

Γi(u)− c2sωi
uy
y

]

(12a)

f i(x+ eiδt, t+ δt) = fi(x, t)−
1

τf + 0.5
(f i(x, t)− f

eq

i (x, t))

+δt(eiα − uα)

[

∂MD
α φ

− φ

ρc2s

(

∂MD
α p+ φ∂MD

α µ

)

Γi(u)− ωi
φuy
y

]

+
M

2
∆µΓi(u)

(12b)

where Fα is the α component of the total force F =
Fs + Foldroyd.
The exponents CD and MD represent the two differ-

ent kinds of derivative used in this model: the central
derivative and the mixed derivative respectively36. For
the discretization of the central derivative we have

δt · ei∇CDψ|x =
1

2
[ψ(x+ eiδt)− ψ(x− eiδt)] (13)

∇CDψ|x =
1

c2sδt

∑

i ̸=0

ωiei(δtei · ∇CD)ψ|x (14)

and the mixed derivative takes the form

δt · ei∇MDψ|x =
1

4
[−ψ(x+ 2eiδt) + 5ψ(x+ eiδt)

+3ψ(x)− ψ(x− eiδt)] (15)

∇MDψ|x =
1

c2sδt

∑

i ̸=0

ωiei(δtei · ∇MD)ψ|x (16)

where ψ is an arbitrary scalar field.
The next gradients are determined using the central

derivative by default except in Eq. (12)
The Laplacian term in Cartesian coordinates is deter-

mined using the following approximation16,36

δ2ψ|x =
2

c2sδx

∑

i

ωi

(

ψ(x+ eα∆t)− ψ(x)

)

(17)
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To compute the Laplacian in cylindrical coordinates we

need to add the term: 1
y
δyψ
y so we have

∇2ψ|x = δ2ψ|x +
1

y
δyψ (18)

The surface tension Fs is calculated through the chemical
potential µ

Fs = −φ · ∇µ (19)

where

µ = 4βφ(φ− 1)(φ− 0.5)− κ∇2φ (20)

The parameters in Eq. 20 can be related to the surface
tension σ and the interface thickness ι as β = 12σ

ι and

κ = 3
2σι.

The macroscopic fields are computed as follows

φ =
∑

i

f i − φ
uy
2y

(21)

ρc2su =
∑

i

giei +
∆t

2
c2sF (22)

p =
∑

i

gi +
∆t

2
uα∂αρc

2
s −

1

2
c2sρ

uy
y
∆t (23)

where the density field ρ is estimated by Eq. (6).
The relaxation time τg is related to the fluid viscosity

ν = c2s(τg − 1/2), where cs = c
√

1/3 is the lattice speed
of sound, with c = δx/δt and where δx and δt are the
space and time step of the lattice, respectively. Finally,
we choose τf = τg.

2. Oldroyd-B model

To describe the viscoelastic behaviour, we made previ-
ously use of a Maxwell model of 6th order for the LB sim-
ulation of a rising bubble in non-Newtonian fluids22. In
the present work, we chose the Oldroyd-B model to com-
pute the temporal evolution of the conformation tensor
A. To do so, we rely on a modified advection-diffusion LB
scheme based on the D2Q5 lattice23, where ξ0 = (0, 0),
ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (−1, 0), ξ4 = (0,−1), as
shown in Fig. 3. The weight of the directions are ω0 = 0
and ω1,4 = 1/4.

We define the distribution functions hiαβ which obey
the following equations involving each component Aαβ of
the conformation tensor A

hiαβ(x+ ξiδt, t+ δt) = hiαβ(x, t)

− 1

τh

(

hiαβ(x, t)− heqiαβ(Aαβ ,u)

)

+

(

1− 1

2τh

)

Gαβ
Aαβ

heqiαβ(Aαβ ,u)

(24)

FIG. 3. D2Q5 lattice.

where the source term G is

G = − 1

λ
(A− I) +A · (∇CD

u) + (∇CD
u)T ·A (25)

and the equilibrium functions are

heqiαβ = ωiAαβ

(

1 +
ξi · u
c2l

)

(26)

The components of the conformation tensor are then
computed as follows

Aαβ =
∑

i

hiαβ +
Gαβ
2

(27)

The relaxation time τh is related to a diffusivity ζ =
c2s(τh − 1/2). This approach introduces diffusive terms
into the equation of state. These terms stabilize the sim-
ulations but introduce errors. Following Malaspinas et

al.23, we fixed a diffusivity/viscosity ratio ζ/ηp ∼ 10−6

to reach a suitable compromise between stability and nu-
merical error.
This LB approach to the Oldroyd-B model has been

validated for three benchmark problems23: 3D Tay-
lor–Green vortex, compared with a high accuracy pseudo
spectral Fourier approach; 2D simplified mill of four rolls,
compared with analytical approximations; and 2D steady
Poiseuille flow, compared with a classical analytical so-
lution.

III. NUMERICAL SIMULATION AND EXPERIMENTAL

APPROACH

The simulation system is discretized on a regular grid
of resolution 800× 400. To avoid the singularity related
to the factor

uy

y , the grid starts at the position δx/2 in
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the y direction42. Due to the symmetry, mirror boundary
conditions are imposed on the axis, i.e. g2 = g4, g6 = g7,
g5 = g8 and f2 = f4, f6 = f7, f5 = f8. Half-bounce
back boundary conditions are imposed everywhere else.
These boundaries are applied after the streaming step
(see Sun et al.18 for more details).

Fig. 4 is a schematic representation of the initial state
of the simulated system, a drop just above a planar sur-
face of the same liquid. The liquid pool is a layer of depth
L and the drop is a disk of a diameter Dmax and center
x
D = (L + LG +Dmax/2, 0), where LG is the size of an

initial gap between the liquid surface and the bottom of
the drop.

L

L

L

Dmax

LG

x1

x2

gg� �, ll� �,

ll� �,

FIG. 4. Schematic representation of the initial state at the
beginning of the simulation. Color indicates the index field
φ. The liquid (φ = 1) appears in red and the gas (φ = 0)
appears in blue.

The initial drop diameter is Dmax = 300, the pool
depth is L = 400 and the size of the gap is LG = 15.
The main difference between the simulations and the ex-
periments is due to the method used to trigger the co-
alescence. In the experiments, an initial velocity is im-
posed to the pendant drop as the fluid is slowly injected
through the nozzle by a micropump. On the contrary, in
numerical simulations, the coalescence triggers sponta-
neously. The initial velocity in experiments is chosen to

be as small as possible, and once coalescence is triggered,
this difference has no impact on subsequent phenomena.
The initial index field is set to be

φ(x) = f (x1 − L) + f

(

∥x− x
D∥ − Dmax

2

)

f (a) =
1

2

(

1− tanh
a

ι

)

(28)

where the interface thickness is ι = 4. The density ratio
is ρl/ρg = 1000 and the viscosity ratio is νl/νg = 300.

We made use of three distinct techniques to investi-
gate experimentally the fast coalescence at small spatio-
temporary scales15:

• a home-made direct current (DC) electrical circuit
based on an improved Howland current source at
the early coalescence stage by relating the electrical
conductance to the coalescing section;

• a high-speed camera Phantom V711 (Vision Re-
search, USA) equipped with a macro lens (EF
100mm f/2.8, Canon, Japan) from the side view for
the superimposed transition with the above electri-
cal system and beyond;

• a home-developed high-speed micro-Particle Image
Velocimetry (µ-PIV) technique to follow the flow
field during the coalescence both in the drop and
the liquid surface.

For the µ-PIV technique, a small amount of silver
coated hollow glass spheres (S-HGS-10, Dantec Dynam-
ics, Denmark) with an average diameter of 10 µm or
fluorescence particles (MF-RhB-Partikel-G020, Dantec
Dynamics, Denmark) with a diameter of 1-20 µm were
added in aqueous Newtonian and non-Newtonian liquids.
Two lasers (LaserMax Inc., USA) of 1 mW were placed
in the opposite direction to excite seeding particles in
the laser sheet located inside the pendant drop and liq-
uid pool. The images were captured by the high-speed
camera Phantom V711 coupled with a zoom lens (MP-E
65mm f/2.8, Canon, Japan) and velocities were computed
up to 4000 flow fields/s.
Three different liquids were employed in the experi-

ments, including distilled water, 1wt% polyethylene oxide
(PEO) with molecular weights of 5×106g.mol−1 in water,
0.5wt% polyacrylamide (PAAm) with molecular weight
of 1.3 × 107g.mol−1 in water. To strengthen the liquid
electrical conductivity, 5wt% or 10wt% NaCl was added
in the solutions. The rheological properties of PEO and
PAAm solutions were characterized by a rheometer (AR-
G2, TA Instruments, USA) and displayed viscoelastic
and shear-thinning behavior. According to the relaxation
characterization on the rheometer and within the shear
rate range corresponding to the coalescence, the Deborah
number De varies from 3.9 to 19.3 for the PEO solution
and from 4.5 to 24.1 for the PAAm solution respectively.
The concentration of these polymers in water was in the
semi-diluted regime.
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The air trapping occurs usually for the case of drop or
solid impact on a liquid surface. In our experiments, the
approaching velocity of a pendant drop towards the pla-
nar liquid pool was varied from 0.06 to 0.29 mm.s−1 and
no difference was effectively observed for the coalescence
in this range, especially for the air trapping phenomenon.
In this work, the maximum approaching velocity of 0.29
mm.s−1 without effect on coalescence was used to com-
pare with the LB simulation as shown in Fig. 1 and
multimedia Fig. 1a & multimedia Fig. 1b. Compared
to the drop or solid impact which is much more rapid so
that the air film between the drop or solid and the liquid
pool cannot be evacuated in time. In our experiments,
this phenomenon is avoided voluntarily to not add com-
plexity to the coalescence. The ultra-fast monitoring of
DC electric signals confirms clearly this evidence as the
presence of air film does n’t allow the measurements of
coalescing width.

In the case of Oldroyd-B fluids for the numerical simu-
lation, the non-Newtonian viscoelasticity/Newtonian vis-
cosity ratio is ηp/ηl = 1000. In this study, we compare
the numerical simulations with our previous experimental
results15 in two cases: viscous Newtonian fluid and vis-
coelastic fluid. The relevant dimensionless numbers are
the Ohnesorge number Oh = ηl/

√
ρlDmaxσ, which re-

lates the viscous force to inertia and surface tension, the
Bond numberBo = ∆ρgW 2/σ, which compares the grav-
ity to surface tension and the Deborah number De = γ̇λ,
where γ̇ is the shear rate. The numerical De varies
around 20 in our simulations. During the time interval of
the simulation, the highest value of Bond number Bomax

is reached when W = Dmax. As Bomax = 0.56, the grav-
ity does not play a crucial role, especially during the first
steps of the coalescence. The viscoelastic properties of
fluids are varied through the relaxation parameter λ in
the Odroyld-B model. We choose several values ranging
from λ = 1 × 104 to λ = 5 × 104. This corresponds to
the domain for the Deborah number De from 4.0 to 20.0,
then covers the experimentally investigated range. It is
worth noting the numerical results remain unchanged for
the simulated Deborah number De range, as detailed in
the following results.

IV. RESULTS AND DISCUSSION

In this study, the origin of time t = 0 is fixed at the first
contact between the drop and the liquid surface, when the
liquid bridge appears. As the coalescence triggers spon-
taneously, this starting point has to be detected. Given
the symmetry of the system, the contact necessarily oc-
curs on the axis. Let’s consider a segment [AB] between
the bottom of the bath (x = 0 and y = 0) and a point
below the top of the drop (the center of the initial drop,
for example). As explained in part IIA, the gas/liquid
interface is located on points where φ = 0.5. Straight-
forwardly, if min[AB](φ) < 0.5, the liquid bridge does not
exist and if min[AB](φ) ≥ 0.5, liquid bridge does exist.

We detect the first contact and fix the origin of the time
using the transition between these two situations (Fig.
5). The initial position of the contact is xc = (xc1, 0).

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

x1 / L

Initial state

After contact

�

pool drop

FIG. 5. Value of φ along the symmetry axis at two distinct
times: the initialization of the simulation and just after the
contact between the drop and the liquid surface (t = 0). The
locations on the x1/L interval of pool and drop, respectively
are shown to guide the eye. Inset: snapshot of the φ field at
the date t = 0. The liquid (φ = 1) appears in red and the gas
(φ = 0) appears in blue.

In the following, we use a dimensionless time

t∗ = t/ti

ti =

√

ρlDmax
3/σ (29)

where ti is the inertial time15.
As soon as the drop comes into contact with the bath,

a liquid bridge forms and begins to expand [Fig. 6 (mul-
timedia available online)]. This observation is in good
agreement with the experimental findings [Figs. 1(a)
(multimedia available online) and 1(b) (multimedia avail-
able online)].
Figure 7 shows two successive snapshots of the veloc-

ity field in an Oldroyd-B fluid, predicted by LB simu-
lations. In the first step of coalescence, the flow in the
liquid bridge is purely radial (Fig. 7a). Fig. 8 displays a
comparison between the experimental velocity field cap-
tured by µ-PIV15 and the one from LB simulation. The
initial approaching velocity for the experiments was 0.29
mm.s−1 with the scale of the velocity vector 0.2mm. For
the numerical simulation, the scale is set to be 3, 6×10−3

lattice units. The recirculation in the liquid bridge pre-
dicted by the LB simulation compares favourably with
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Snapshots of the liquid bridge simulated by the
Oldroyd-B fluid with λ = 1 × 104 and De = 4.0 (multime-
dia available online). (a) t∗ = 0, (b) t∗ = 1.35 × 10−4, (c)
t∗ = 9.75× 10−4, (d) t∗ = 2.40× 10−3, (e) t∗ = 6.13× 10−3,
(f) t∗ = 9.70× 10−3

the experimental measurements obtained by the µ-PIV
technique. With increasing t∗ (Fig. 7b), a slight dif-
ference can be observed regarding the flow fields around
the central axis between the LB simulation and the ex-
perimental measurements. The motion is ascending just
around the axe for the LB simulation, while the µ-PIV re-
sults reveal a downstream in whole the drop. This can be
explained by the continuous feeding of a liquid flowrate
in the coalescence experiments. On the other hand, an
isolated drop without feeding is simulated by the LB ap-
proach.

The width W of the bridge is computed as follows.
Let’s consider the collinear line with e2 and starting from
x
c. The position of the interface on this line is x

i =
(xc1,W/2), where W is the width of the bridge. Then, we
can deduce the normalized width Φ following

Φ =
W

Dmax
(30)

Figure 9 shows the evolution of Φ as a function of
t∗. Numerical results are compared with the experimen-
tal data, obtained with water, 1wt% Polyethylene oxides
(PEO) solution and 0.5wt% Polyacrylamide (PAAm) so-
lution respectively. The rheological properties of these
fluids can be found in our previous work15. The normal-
ized width Φ(t∗) is satisfactorily simulated over a wide
range of time t∗. For t∗ ranging from 3×10−5 to 5×10−3,
a good agreement between the numerical results and ex-
perimental data can be observed. In both approaches,
the normalized width Φ(t∗) obeys a power law of t∗1 in

FIG. 7. Velocity field and drop interface from LB simulation.
Oldroyd-B fluid with λ = 1 × 104 and De = 4.0. (a) t∗ =
6.13× 10−3, (b) t∗ = 1.05× 10−1.

(a) (b)

FIG. 8. Comparison of the velocity fields between the ex-
periments by µ-PIV technique and LB numerical simulation.
(a) 0.5wt% PAAm (b) Oldroyd-B fluid with λ = 5× 104 and
De = 20.0

.

the so-called inertially limited viscous regime. The sim-
ulated bridge’s size Φ in function of t∗1/2 compares well
with the experimental observation for longer time t∗ in
the inertial regime.

In the case of the most viscoelastic fluid with λ =
5× 104 and De = 20.0 corresponding to the PAAm solu-
tion in our experiments, the simulated width is overesti-
mated but still obeys a satisfactory evolution dynamics
compared to the experiments. Fig. (9) also shows that
the relaxation parameter λ affects slightly the evolution
of the bridge size. The same effect can be spotted in the
experimental results. The rheological model of Oldroyd-
B used in this work is better justified compared to the
Maxwell model of 6th order adopted in our group in the
past to simulate a rising bubble in non-Newtonian flu-
ids. It is also worth noting that whatever the model
used to describe the viscoelasticity of fluids, Maxwell or
Oldroyd-B, the smallest time scale notably accessible on
a rheometer of order of 100 ms is largely greater than the

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
3
8
2
3
3



8

10-3

10-2

10-1

100

10-5 10-4 10-3 10-2 10-1

t*

t*1/2

Φ

t*

Water

1.0wt%PEO

0.5wt%PAAm

LB: newtonian

LB: OB λ=1x104

LB: OB λ=5x104

FIG. 9. Evolution of the dimensionless width Φ of the liquid
bridge as a function of the normalized time t∗. Experimental
data obtained with various fluids and numerical results from
various rheological models. The black continuous line shows
a power law with an exponent 1 and 1/2, used to guide the
eye.

entire duration of the coalescence, typically less than 50
ms. This explains partly the relatively limited effect of
the viscoelastic models employed here in the LB approach
or other other numerical schemes in the literature.

From a physical point of view, for the PAAm solutions
having the highest molecular weight among the fluids
used here, the radius of gyration measured by the multi-
angle light scattering (MALS, Wyatt Technology, USA)
is Rg = 101.70 nm, then well below the smallest mon-
itored scale by the electrical device and the high-speed
camera that is superior to 7.4 µm. The numerical de-
tails described either the current LB or other approaches
cannot address successfully such a spatial scale yet.

V. CONCLUSION

We carried out numerical lattice Boltzmann simula-
tion on the initial coalescence of a drop with a pool of
the same liquid. Both Newtonian and viscoelastic fluids
were investigated by relying on an axisymmetric multi-
phase LB approach with high density ratio coupled with
an Oldroyd-B model. Just after the initial contact, a
liquid bridge formed between the drop and the pool.
The subsequent dynamics was then governed by the fast
widening of this bridge. Firstly, we observed that the pre-
dicted flow fields exhibit a recirculating pattern similar
to that captured experimentally with the help of µ-PIV.

Then, we studied the temporary evolution of the width of
the liquid bridge, gathered in dimensionless form by the
initial drop diameter and the inertial time, respectively.
In both Newtonian and viscoelastic fluids, the rescaled
width Φ of the bridge evolved linearly with the normal-
ized time t∗ during the first step of the coalescence in
the inertially limited viscous regime, followed by a power
law Φ vs. t∗1/2 in the inertial regime for longer time. A
satisfactory agreement is observed between the numeri-
cal simulations and the experimental results. However,
further investigation is still required to develop reliable
rheological models for the numerical simulation of ex-
tremely small spatial and temporary scales.
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