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Abstract 

Background 

To study communities of micro-organisms taxonomically and functionally, metagenomic analyses 

are now often used. If there is no reference gene catalogue, a de novo approach is required. 

Because genomes are easier to interpret than contigs, the recovery of metagenome-assembled 

genomes (MAGs) by binning of contigs from metagenomic data has recently become a common 

task for microbial studies. However, during this process, there is a significant loss of information 

between the assembly and the binning of contigs. This is why it is important to produce taxonomic 

and functional matrices for all contigs and not just those included in correct bins. In addition, 

Pacbio HiFi reads (long and of good quality) are now a possible, albeit more expensive, alternative 

to short Illumina reads. We therefore developed a workflow that is easy to install with 

dependencies fixed using singularity images and easy to use on a computing cluster, that is 

capable of analyzing either short or long reads, and that should allow analysis at the contig and/or 

bin level, depending on the user's choice. 
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Following is a presentation of metagWGS, a fully automated workflow for metagenomic data 

analysis. It uses a new tool for refining bins (called Binette) that we will demonstrate is more 

efficient than competing tools. 

Methods 

metagWGS is a Nextflow workflow distributed with two singularity images and complete 

documentation to facilitate its installation and use. 

Because the main original features of metagWGS concern binning (short and long reads) and the 

analysis of HiFi reads, we compared metagWGS with the MAG construction workflow proposed 

by PacBio to a public dataset used by Pacbio to promote its workflow. 

Results 

metagWGS differs from existing workflows by (i) offering flexible approaches for the assembly; 

(ii) supporting short reads (Illumina) or PacBio HiFi reads; (iii) combining multiple binning 

algorithms with a new bin refinement tool, referred to as “Binette”, to achieve high-quality genome 

bins; and (iv) providing taxonomic and functional annotation for all genes, all contigs built and 

bins.  

metagWGS produces more medium (708) and high-quality (255) bins on 11 public metagenomic 

samples from human gut data than the Pacbio HiFi dedicated workflow, referred to as the HiFi-

MAGS-pipeline (659 medium quality bins and 231 high quality bins), primarily due to the better 

performance of Binette. 

Introduction  

Metagenomic analyses provide access to the taxonomic and functional diversity of the 

communities studied. In addition, depending on the dataset, it is possible to reconstitute the 

genomes of the species that are easiest to assemble. A number of approaches exist, including 

those dealing solely with reads, those focusing on contigs and those analyzing MAGs alone. For 

the most extensively studied environments, an approach using a homology search on a reference 

catalogue is effective, but when little is known about the ecosystem, it is worth implementing a de 

novo strategy. 

For our analyses of as yet little-studied communities, we chose to obtain as much information as 

possible, which meant first constructing taxonomic and functional abundance matrices from as 

many contigs as possible, then trying to group the contigs that could be grouped into bins, and 

subsequently obtaining the MAGs (metagenome-assembled genomes) and their abundance in 

each sample. We also wanted to be able to install and run a single tool for all the necessary steps, 

i.e., cleaning, checking data quality, assembly, mapping, taxonomic and functional annotation of 

contigs, quantification of their abundance, construction of the functional abundance matrix (the 

catalogue of genes with their abundance in the samples), binning, dereplication of the bins and 

their annotation and, finally, building the MAG abundance matrices.  
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Current tools are designed to reconstruct and analyze MAGs and do not output taxonomic and 

functional profiles for all the contigs (MAG (Krakau et al., 2022), MetaWRAP (Uritskiy,  DiRuggiero 

& Taylor, 2018), Veba (Espinoza & Dupont, 2022), Atlas (Kieser et al., 2020)). Anvi’o is capable 

of generating these profiles but is designed to allow interactive work in a Web browser, and the 

necessary tools are not integrated in a pre-configured workflow for launching the entire analysis 

in one command on a computing cluster. 

 

That is why we present metagWGS, a workflow implemented in Nextflow DSL2 (Di Tommaso et 

al., 2017) that is able to analyze whole shotgun sequence metagenomic data. Its main original 

features are: (i) it is able to deal with Illumina short reads or PacBio HiFi reads; (ii) it is 

comprehensive as it analyzes contigs, genes and MAGs (metagenome-assembled genomes). In 

particular it produces a taxonomic abundance table from the contigs and from the MAGs. A list of 

non-binned contigs is provided; (iii) it also produces a functional abundance table from the 

catalogue of genes found in the contigs; (iv) it includes an improved algorithm for automatic bin 

refinement, Binette (J. Mainguy, C. Hoede, 2024) available here: https://github.com/genotoul-

bioinfo/Binette. metagWGS is publicly-available at: https://forgemia.inra.fr/genotoul-

bioinfo/metagwgs with complete documentation. The pipeline strikes a balance between providing 

flexibility for users to customize their analyses (e.g., choice of parameters, steps to be executed) 

and maintaining accessibility for the user, thereby capable of addressing a broad spectrum of 

biological questions in shotgun metagenomic studies. We also provide user support and plan to 

offer training courses.  

Because the main original features of metagWGS concern binning (short and long reads) and the 

analysis of HiFi reads, we compared metagWGS with the MAG construction workflow proposed 

by PacBio, referred to as the HiFi-MAGS-pipeline, using a public dataset composed of 11 public 

metagenomic samples from human gut. 

Materials and methods 

Datasets 

We compared binning step results between metagWGS and the HiFi-MAGS-pipeline provided 

by PacBio (https://github.com/PacificBiosciences/pb-metagenomics-

tools/blob/master/docs/Tutorial-HiFi-MAG-Pipeline.md) using 11 public metagenomic samples 

from human gut, a publicly-available HiFi dataset from the ncbi project ID : PRJNA754443 (Run 

IDs :SRR15489010, SRR15489009, SRR15489020, SRR15489019, SRR15489018, 

SRR15489017, SRR15489016, SRR15489015, SRR15489014, SRR15489013 and 

SRR15489011). The objectives of the project that generated these data were to evaluate short-

read and long-read sequencing approaches for metabarcoding or whole genome metagenomic 

analysis to maximize the utility of clinical microbiome data (Gehrig et al., 2022). We used only 

shotgun data for our comparison. 

 

We compared the binning refinement tools Binette, DAS Tool, and the metaWRAP bin 

refinement module using the simulated mouse gut metagenome data 
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(https://doi.org/10.4126/FRL01-006421672), which was released in preparation for the second 

round of the CAMI II challenges (Meyer et al., 2022). This challenge allows the evaluation of 

metagenomic tools on realistic and complex datasets with long- and short-read sequences, 

created computationally. 

Description of the workflow 

metagWGS is split into eight different steps that correspond to different parts of the bioinformatics 

analysis. Many of these steps are optional and their necessity depends on the desired analysis. 

Step 1 is the cleaning step that trims adapter sequences and deletes low-quality reads with 

Cutadapt v4.2 (Martin, 2011) and Sickle v1.33 (Joshi et al., 2011), suppresses host contaminants 

with BWA-MEM2 v2.2.1 (Vasimuddin et al., 2019) or Minimap2 v2.24 (Li, 2018) and Samtools 

v1.15.1 (Danecek et al., 2021), controls the quality of raw and cleaned data (FastQC v0.11.9), 

and makes a taxonomic classification of cleaned reads with Kaiju MEM v1.9.2 (Menzel et al., 

2016), kronaTools v2.8.1 (Ondov et al., 2011), plot_kaiju_stat.py and merge_kaiju_results.py. 

plot_kaiju_stat.py and merge_kaiju_results.py are in-house python scripts. Plot_kaiju_stat.py 

produces an html page with the match length distribution plots and merge_kaiju_results.py merge 

kaiju results by taxon level for all samples. The aim of this analysis of reads by kaiju is to highlight 

any contamination of the data by rapid analysis. By default, the database used is refseq_bacteria 

to make it computationally reasonable. 

Step 2 is the assembly step. Short reads can be assembled by metaSpades v3.15.5 (Prjibelski et 

al., 2020) or megahit v1.2.9 (Li et al., 2015; Li et al., 2016). The default is metaSpades. HiFi reads 

can be assembled by Hifiasm-meta v0.3 (Feng et al., 2022) or metaFlye v2.9.1 (Kolmogorov et 

al., 2020). The default is Hifiasm-meta. Users can choose between them in the configuration file 

(nextflow.config) or via a workflow option. Short reads are aligned against contigs with BWA-

MEM2, and duplicated reads are removed by samtools. HiFi reads are aligned by Minimap2. In 

both cases, samtools is used to compute alignment statistics and coverage for each nucleotide 

of contigs. By filling in the "group" field in the sample sheet given as the workflow input, it is 

possible to request co-assembly of all or just some of the samples. We recommend using megahit 

to co-assemble a large quantity of samples in short reads. If the assembly is complicated and 

requires, for example, in silico normalization of the reads, metagWGS can take assemblies 

previously made outside the workflow as input. 

Step 3 allows the assembly to be filtered on the normalized (by library size) count of the reads 

mapped on the contigs by an in-house script: Filter_contig_per_cpm.py. The threshold for minimal 

counts per millions of reads can be configured by a dedicated parameter. This step can be 

skipped. In this step, the final assembly quality is evaluated by metaQUAST v5.2.0 (Mikheenko 

et al., 2016). 

Step 4 consists of the structural annotation of the contigs, CDS are annotated by Prodigal v2.6.3, 

rRNA by Barrnap v0.9, tRNA by tRNAscan-SE v2.0.11 (Chan et al., 2021). The three annotations 

are merged in one GFF file per sample by an in-house script: merge_annotations.py. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2024. ; https://doi.org/10.1101/2024.09.13.612854doi: bioRxiv preprint 

https://doi.org/10.4126/FRL01-006421672
https://github.com/najoshi/sickle
https://doi.org/10.1101/2024.09.13.612854
http://creativecommons.org/licenses/by-nc/4.0/


5 

Step 5 prepares taxonomic annotation of genes by aligning the protein sequence of genes against 

a protein database with DIAMOND v2.0.15 (Buchfink, Reuter & Drost, 2021). The recommended 

protein bank is nr from ncbi. 

Step 6 makes a sample and global clustering of genes with cd-hit-est v4.8.1 (Li & Godzik, 2006; 

Fu et al., 2012), and an in-house script (cd_hit_produce_table_clstr.py) produces a table of the 

genes making up each cluster. Reads mapped on annotations are quantified by featureCounts 

and an in-house script, referred to as Quantification_clusters.py, adds up the number of reads of 

the genes making up each cluster and writes a file containing a correspondence table between 

global cluster id and gene id. Genes are functionally annotated by eggNOG-mapper v2.1.9 

(Cantalapiedra et al., 2021; Huerta-Cepas et al., 2019) and two in-house scripts: 

merge_abundance_and_functional_annotations.py and 

quantification_by_functional_annotation.py compile functional annotation of each representative 

cluster, quantification for each sample of all genes in each cluster and the best DIAMOND hit. 

Step 7 taxonomically affiliates the genes by using DIAMOND against protein database results (nr 

by default) and a LCA (Low Common Ancestor) algorithm implemented in aln2taxaffi.py (in-house 

script). In this script, we parse DIAMOND output and keep hits with the best score for each gene 

(query) (score = query_coverage/100 x percent_identity/100) if and only if query_coverage >= 

70% and percent_identity >= 60%. We retrieve taxon ID for each accession number 

corresponding to best hits. For each best hit (it is possible to have multiple best hits), we 

associated a weight by taxonomy ranks. weight = (score - RANKS_TO_MIN_SCORE[rank]) / (1.0 

- RANKS_TO_MIN_SCORE[rank]); weight = max(weight, 0.0). RANKS_TO_MIN_SCORE = 

{'superkingdom': 0.4, 'phylum': 0.5, 'class': 0.6, 'order': 0.7, 'family': 0.8, 'genus': 0.9, 'species': 

0.95}. For each taxonomy rank, the script sums weights and computes the best_taxid_score/sum 

of weight; if the result is > 0.9, we keep this taxonomy consensus; otherwise, we write that we 

were unable to find a taxonomy consensus for this gene in the gene taxonomic affiliation file. We 

use the same algorithm to find the consensus taxonomy for each contig based on the best 

DIAMOND hits of the genes annotated on the contigs. We provide a file with the taxonomy at 

each rank and the associated score to help users to understand the final choice. By using the 

mapping results, we quantify taxonomic abundance, write a matrix of relative abundance for each 

sample and provide various plots like krona and histogram of relative abundance for each 

taxonomic level. 

Step 8 is the final step. Users can choose between three mapping strategies to compute co-

abundances for the binning of contigs (Individual, group or all). Individual: only reads of the sample 

are mapped on corresponding assembly; group: reads of a sample group (defined in sample 

sheet) are mapped against all assemblies of this group; all: all reads from all samples are mapped 

against all assemblies. BWA-MEM2 is used to map short reads, minimap2 for HiFi reads. Binning 

is done using three tools: MetaBat2 v2.15 (Kang et al., 2019), MaxBin2 v2.2.7 (Wu et al., 2016) 

and CONCOCT v1.1.0 (Alneberg et al., 2014) and refined by Binette v1.0.1 (Mainguy & Hoede, 

2024). For HiFi reads, we also use the circular contigs as bins. If several bins have at least one 

contig in common, Binette generates new hybrid bins based on the intersection, the difference 

and union of bins to expand the range of possible bins, and then compares the quality of each 
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hybrid bin by checkM2 v1.0.1 (Chklovski, Parks, Woodcroft., 2023) to choose the best one. Bins 

obtained for each sample are then dereplicated by dRep v3.0.0 (Olm et al. 2017), and MAGs 

(metagenome-assembled genomes) are evaluated by checkM2. The resulting bins are 

taxonomically affiliated by GTDB-tk v2.1 (Chaumeil et al., 2022). Finally we compute and provide 

a matrix of abundance for bins.  

All steps are launched one after another by default. The user can choose to stop at a step or 

skip a step with dedicated parameters. 

Finally, a multiQC v1.14 (Ewels et al., 2016) report is produced that brings together numerous 

statistics and graphs from the different steps. A file with the versions of the databases and 

software used is also provided to the user. 

Implementation and reproducibility 

We used Nextflow DSL 2 to allow job management and error recovery. metagWGS comes with 

two singularity images that contain all the dependencies. We provide sources and complete 

documentation through the GitLab repository (https://forgemia.inra.fr/genotoul-

bioinfo/metagwgs). We use and provide functional tests in the GitLab repository 

(https://forgemia.inra.fr/genotoul-bioinfo/metagwgs-test-datasets), input and expected output 

datasets. MetagWGS is developed with python 3.10.8. 

Comparative analysis of binning results from HiFi-MAGS-Pipeline 

and metagWGS 

 

To make this comparison, we ran version 2.4.2 of metagWGS (doi: 10.5281/zenodo.10007876) 

without filtering human reads, with hifiasm v0.13-r308 as the  assembler, without filtering contigs 

on their reads depth and with cross-mapping for the binning. We then retrieved the assemblies 

produced for each sample and used them as input to the PacBio HiFi-MAGS-pipeline 2.0.2. We 

used default parameters for the HiFi-MAGS-pipeline except for --environment=human_gut and 

bin quality filters min_completeness: 50, max_contamination: 10, max_contigs: 200, and the 

same GTDB is used for GTDB-tk for both analyses in order to be able to compare the number of 

bins produced between the two workflows. Both workflows were launched on a cluster  (with 

Slurm as the scheduler) whose nodes have the following specifications: Bullx R424-E4 processor: 

Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz; 64 threads by node; 512GB RAM by node; with 

Linux 64 bits based on CentOS 7 distribution and Interconnexion Infiniband (FDR); the number of 

cores used depends on the configuration files present in the workflow source. 

 

Binning benchmark on simulated dataset 
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We compared Binette v1.0.0 with two other bin refinement tools, metaWRAP bin refinement tool 

v1.3.1 and DAS Tool v1.1.7 using the simulated mouse gut metagenome data released in 

preparation for the second round of CAMI II challenges (Meyer et al., 2022). To make the 

comparison, we followed the step included in this nature protocol describing the binning 

benchmark (Meyer et al., 2021).  

As input of the bin refinement tools, we used the results produced from the cross-sample gold-

standard assembly with the binners MaxBin v.2.2.7, MetaBAT v.2.12.1 and CONCOCT v.1.0.0 

available in the CAMI tool result repositories on Zenodo (https://zenodo.org/communities/cami). 

The three bin refinement tools were run using ten CPUs on the same node of the computing 

cluster described above.  

Binning results from the individual binners (MaxBin 2, MetaBAT 2 and CONCOCT) and refinement 

tools (Binette, metaWRAP and DAS Tool) were evaluated using AMBER v2.0.4 (Meyer et al., 

2018), which generated binning quality metrics based on the ground truth of the simulated data. 

Main metrics are purity, completeness and the F1 score (the F1 score summarizes average bin 

purity and genome completeness). 

 

 

Results 

 

Pipeline overview 

metagWGS is a highly modular workflow consisting of eight steps (Fig. 1). It is possible to stop at 

the desired steps or skip certain steps. Some tool calls are also optional inside each step. 
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Fig. 1: Workflow summary diagram. The green path corresponds to the short reads, the 

magenta one to the HiFi reads. 

 

To use metagWGS, it is necessary to provide the metagenomic whole genome shotgun data you 

want to analyze (Illumina HiSeq3000, NovaSeq sequencing, 2*150bp or PacBio HiFi reads). If it 

is necessary to assemble data outside metagWGS, you can also provide the assembly as input. 

Input files and groups (if you want to perform co-assembly or cross alignment for binning) are 

specified in a sample sheet. All parameters are described in the usage documentation available 

in the gitlab repository of the workflow. You can also specify a path to databases or all other 

parameters in config files. We provide files “nextflow.config” and “genotoul.config” for you to work 

from in the gitlab repository. The “base.config” file also available in the repository provides a list 

of typical resource reservations on which to base a standard metagenomics project on our cluster 

for all steps of the workflow. 

metagWGS generates a large number of outputs organized by stage and described in detail in 

the output documentation provided in the gitlab repository. 

At the end of the workflow, it provides an html report from MultiQC in which you will find some 

interesting plots like, for example, Supplementary Fig. 1 that highlights the contig size for each 

sample, Supplementary Fig. 2 that represents bins quality for each sample, and Supplementary 

Fig. 3 showing the quality of dereplicated bins in terms of completeness and contamination. 

Comparison with other popular metagenomic WF 

We developed metagWGS because very few workflows (Anvi’o only) make it possible to follow 

all levels of analysis (reads, contigs, functions and MAGs). By enabling users to produce 

taxonomic and functional matrices for all contigs, our workflow allows for thorough verification at 

each analysis step independently. In particular, several workflows are unable to output the 

functions carried by all the contigs, particularly those that are not binned, or their taxonomic 

affiliation (see Supplementary Table 1 for details). MAG (Krakau et al., 2022) from nf-core 

produces and annotates MAGs but does not produce contig outputs. In addition, it does not 

annotate rRNAs or tRNAs, which are measures of metagenomic assembly quality for the ENA 

(European Nucleotide Archive). metaWRAP is no longer maintained and like the MAG pipeline, it 

focuses on bins and does not annotate contigs that do not belong to any bin. The HiFi-MAGS-

pipeline is dedicated to HiFi reads and performs only the binning step. VEBA (Espinoza & Dupont, 

2022) is interesting because it can analyze eukaryotic, prokaryotic and viral genomes, whereas 

metagWGS is optimized for bacteria. However, according to the documentation, VEBA does not 

annotate taxonomically or functionally non-binned contigs either. 

 

Atlas (Kieser et al., 2020) produces the functional gene catalogues from all the contigs and the 

MAG, with taxonomic affiliation, functional annotation and quantification. However, it seems that 

it does not make the taxonomic affiliation of all the contigs but only of the bins. 

The Anvi'o software ecosystem (Eren, Kiefl & Shaiber, 2021) is designed to allow interactive work 

in a Web browser. As a result, it may be difficult to run certain resource-intensive steps on a laptop 

or, on the contrary, to run the visualization part on a computing cluster. Moreover, there is no pre-

configured workflow for launching the entire analysis in sequence, from reads to MAGs, via 
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contigs and gene catalogues, even if the tools are all there individually. However, Anvi’o is very 

useful for manually refining bins via its graphical interface. 

Finally, while MAG and Atlas can perform hybrid assembly with both short reads and long reads 

from Oxford Nanopore Technologies, they cannot natively assemble PacBio HiFi reads. The only 

workflow that can natively assemble PacBio HiFi reads is metagWGS (Supplementary Table 1). 

Using metagWGS on HiFi reads; comparison with HiFi-MAGS-

pipeline results 

 

We used 11 public metagenomic samples from human gut data sequenced with PacBio Sequel 

II (HiFi reads) as input to metagWGS 2.4.2 (accession numbers are given in the Material and 

Methods section). 

We obtained very good assemblies with N50 between 92.2 Kpb and 529.8 Kpb. Assembly length 

ranged between 142.8 Mpb and 442.7 Mpb, and the percentage of mapped reads on the 

assemblies for each sample was between 95.2% and 97.8% (see Supplementary Table 2 for 

details and Supplementary Fig. 1 to visualize the distribution of contig sizes from the metagWGS’s 

multiQC report). 

We used these assemblies as input for the PacBio HiFi-MAGS-pipeline 2.0.2 and compared the 

results with metagWGS 2.4.2 results concerning MAGs. 

The first thing we observed was that the default resource reservation settings (that, unfortunately, 

users use as their first option) for the HiFi-MAGS-pipeline are too large. For example, for semibin2 

analysis, we used only 2.80% of the 96GB of allocated memory. To reduce waiting times and to 

avoid penalizing other users, it is therefore crucial to reserve resources as close as possible to 

requirements by configuring the resources in the workflow configuration file. 

On the dataset used here and with default resource reservation settings, metagWGS used 4307 

CPU hours (the equivalent of 179 days), and lasted 3.5 days in user time for the entire workflow 

from step 1 (cleaning reads) to step 8 (binning) on our computing infrastructure. The binning step 

alone took 24 hours and 17 minutes in user time (and around 415 CPU hours). For the binning 

alone, the PacBio workflow also took 24 hours on the same infrastructure in user time with default 

resource reservation, but 44 hours in CPU time. 

The HiFi-MAGS-pipeline then produces a set of bins for each sample. On the contrary, 

metagWGS uses dRep (Olm et al. 2017) to produce a final set of bins with the best bins when 

they are shared by several samples at the “species” level (95% Average Nucleotide Identity (ANI) 

by default; this value can be changed). 

In our experience, nearly 50% of contigs are not used in any bins, even when the assembly is of 

good quality. For example, for these high-quality assemblies, we obtain between 63.5% and 

34.3% of the cumulative length of assemblies contained in unbinned contigs (see Supplementary 

Fig. 2). That is why metagWGS lists unbinned contigs, unlike the HiFi-MAGS-pipeline. 

metagWGS builds more medium-quality bins with completeness > 50% and contamination < 10% 

than the HiFi-MAGS-pipeline for eight of the 11 samples. For all samples, MetagWGS builds as 

many or more high-quality bins (completeness > 90% and contamination < 5%) than the HiFi-

MAGS-pipeline (see Table 1). 
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Table 1: Number of bins produced by metaGWGS and the HiFi-MAGS-pipeline for 11 public 

samples from a publicly available HiFi dataset. Number of medium-quality bins for each 

sample (with more than 50% completeness and less than 10% contamination) by the two 

workflows and number of high-quality bins produced for each sample with more than 90% 

completeness and less than 5% contamination by the two workflows. These numbers are 

produced from the output of each of the two software packages, and are therefore obtained with 

checkM2. For each bin qualification, the highest number is colored in yellow; the lowest is dark 

purple. When the two numbers are the same, values are colored in light purple. 

 Mediumquality bins High-quality bins 

sample metagWGS HiFi-MAGS-

pipeline 

metagWGS HiFi-MAGS-

pipeline 

humanGut_1 
(SRR15489020) 

46 50 20 20 

humanGut_2 
(SRR15489019) 

53 53 19 17 

humanGut_3 
(SRR15489018) 

105 93 45 43 

humanGut_4 
(SRR15489017) 

90 89 25 19 

humanGut_5 
(SRR15489016) 

30 28 6 5 

humanGut_6 
(SRR15489015) 

65 50 21 17 

humanGut_7 
(SRR15489014) 

38 34 18 15 

humanGut_8 
(SRR15489013) 

43 38 15 14 

humanGut_9 
(SRR15489011) 

79 68 24 23 

humanGut_10 
(SRR15489010) 

84 80 29 25 
 

humanGut_11 
(SRR15489009) 

75 76 33 33 

Total 708 659 255 231 

 

From all these 708 bins, metagWGS obtains 246 MAGs dereplicated by dRep to 95% ANI (see 

Supplementary Table 3). The HiFi-MAGS-pipeline does not dereplicate bins to build a unique set 

of MAGs for all samples. 
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Since Binette uses checkM2 to optimize bin construction, it is preferable to use another tool to 

assess the quality of the output bins. We therefore produced the same table as Table 1, using 

checkM1 (Parks et al., 2014) to evaluate the quality of the bins obtained by each of the two 

workflows (see Supplementary Table 4). The difference is smaller, but still to the advantage of 

metagWGS (263 high-quality bins vs. 240). 

 

Benchmark of Binette with DAS Tool and metaWRAP bin 

refinement tool 

To further investigate the binning step, we compared three tools: (i) Binette v1.0.0; (ii) the 

metaWRAP bin refinement tool v1.3.1; and (iii) DAS Tool v1.1.7. These comparisons were based 

on the results from three individual binners: MaxBin v2.2.7, MetaBAT v2.12.1, and CONCOCT 

v1.0.0, using simulated mouse gut metagenome data from the second round of the CAMI II 

challenge. 

 

Although CONCOCT has the highest average completeness (84.7%), this advantage is offset by 

very low average purity (59.5%) (Supplementary Table 5). Metabat2, on the other hand, has the 

lowest average completeness (56.1) and the lowest F1 score (0.694). Maxbin2 has the best 

accuracy at the sample level (73.3) but has intermediate value for all the other metrics. 

metaWRAP has the best purity for this dataset (99.3%) but also has the second lowest 

completeness (58.3%). The DAS Tool performs well on all metrics but is not the best on any of 

them. Binette, on the other hand, has the best F1 score (0.789) (Supplementary Table 5). 

 

In the context of recovering high-quality genomes (completeness > 90% and contamination < 

10%), metaWRAP and Binette outperformed the DAS Tool, recovering 361 and 382, respectively, 

compared to DAS Tool's 354 high-quality genomes. Notably, individual binning tools (CONCOCT, 

Metabat 2 and Maxbin 2 had a lower ability to recover high-quality genomes compared to the 

refinement tools (DAS Tool, Binette and MetaWRAP) (Fig. 2). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2024. ; https://doi.org/10.1101/2024.09.13.612854doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.13.612854
http://creativecommons.org/licenses/by-nc/4.0/


12 

 
Fig. 2: Evaluation of different binning strategies on simulated mouse gut metagenome data 

from the CAMI II challenges. The bar plot displays the count of high-quality bins with 

contamination < 10% and completeness > 70% and > 90%. DAS Tool, metaWRAP and Binette 

results were generated based on bins from Concoct, MetaBAT 2, and MaxBin 2. 

 

Binette (Mainguy & Hoede, 2024) is an improved implementation of metaWRAP (Uritskiy,  

DiRuggiero & Taylor, 2018) refinement bin steps. From the input bin sets, metaWRAP generates 

new hybrid bins based solely on the intersection of bins. In contrast, Binette takes a more 

comprehensive approach, incorporating the difference and union of bins to expand the range of 

possible bins (see Fig. 1 of Mainguy & Hoede, 2024). 

Binette and metaWRAP show comparable performance in recovering high-quality genomes for 

this dataset, but the average completeness of bins for metaWRAP is the second lowest in our 

comparison (58.3%), whereas it is 68.6% for Binette. Indeed, Binette offers a good compromise 

summarized by the F1 score (0.789) and the 382 high-quality genomes produced. In terms of 

execution time, Binette (3 hours and 7 minutes) is about 17 times faster than metaWRAP (2 days, 

3 hours and 28 minutes) on this dataset. In comparison, the DAS Tool, which is slightly faster 

than Binette (1 hour and 10 minutes), also has a good F1 score of 0.771. However, it produces 

fewer high-quality genomes (353) than Binette (382). 

 

Discussion 

Computation time 

Although the HiFi-MAGS-pipeline outperformed metagWGS in two samples, overall metagWGS 

succeeded in constructing 708 medium-quality MAGs on this dataset compared with 659 for the 

HiFi-MAGS-pipeline, i.e., 7% more. 
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metagWGS uses cross-alignment (i.e., it aligns the reads of all the samples on all the assemblies), 

which significantly improves binning but consumes CPU time. Consequently, on the dataset used 

here, metagWGS used 4307 CPU hours (the equivalent of 179 days), but lasted 3.5 days in user 

time for the entire workflow from step 1 to step 8 on our computing infrastructure thanks to our 

parallelization and resource reservation strategy (by default throughout the workflow). The binning 

step alone took 24 hours and 17 minutes in user time (and around 415 CPU hours). 

For the binning alone, the PacBio workflow also took 24 hours on the same infrastructure in user 

time with default resource reservation, but 44 hours in CPU time. The ratio of CPU time to user 

time could certainly be improved in the Hifi-MAG-pipeline by improving parallelization and 

adapting the quantity of reserved resources. 

MetagWGS uses three binning tools (MetaBAT 2, MaxBin 2 and Concoct), whereas the Pacbio 

pipeline uses only two (metabat2 and semibin2). Using several binning tools means you can 

benefit from the advantages of each of them. Further testing of combinations of binning tools to 

improve performance without increasing resource consumption too much would be interesting.  

 

Comparison of Binette with the DAS Tool and metaWRAP bin refinement tool 

The Hifi-MAG-pipeline uses the DAS Tool (Sieber et al., 2018) to refine bins, whereas metagWGS 

uses Binette. The main difference between those refinement tools is that the DAS Tool, unlike 

Binette, does not build new hybrid bins between bins with common contigs before calculating their 

quality score. This probably explains why the Hifi-MAG-pipeline produces less high- and medium-

quality bins than Binette. Indeed, Binette expands the range of possible bins by building hybrid 

bins. 

 

We have compared bin refinement tools and the bin sets used as inputs to highlight the added 

value of bin refinement tools, and compared Binette, DAS Tool and MetaWRAP. Notably, we have 

shown that individual binning tools had a lower ability to recover high-quality genomes compared 

to the refinement tools (Fig. 2). These results highlight the importance of using refinement tools 

to improve overall binning results.  

 

Concerning the comparison between the three bin refinement tools, Binette offers a good 

compromise summarized by the best F1 score (0.789) and the 382 high-quality genomes 

produced. MetaWRAP shows relatively good performance in recovering high-quality genomes, 

has the best average purity, but its average completeness of bins is the second lowest for this 

dataset. In terms of execution time, Binette was about 17 times faster than metaWRAP. This huge 

difference can be attributed to Binette's use of CheckM2, which is faster than CheckM1 (as 

demonstrated in Chlovski et al., 2023) used by metaWRAP. Additionally, while metaWRAP runs 

CheckM repeatedly on each intermediate bin set, Binette uses CheckM2 in a more optimized way, 

running the most time-consuming component, the DIAMOND part, only once. In comparison, The 

DAS Tool, which is slightly faster than Binette, also has a good F1 score of 0.771. However, it 

produces fewer high-quality genomes than Binette (Supplementary Table 5 and Fig. 2).. 

 

 

“Completion aware” strategy vs. “circular aware” strategy 
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metagWGS uses the circular contigs as bin sets defined by metaFlye or hifiasm. The Hifi-MAG-

pipeline, on the other hand, uses all contigs longer than 500,000 bps as bin sets. If they do not 

pass the bin quality criteria (> 93% complete), they are then passed on as input, like other contigs, 

to the binning tools. The previous strategy of the Hifi-MAG-pipeline was based on a “circular 

aware” strategy and only one binner: MetaBAT 2. The current version uses two binner tools. The 

novel strategy yields a greater quantity of high-quality bins than the preceding strategy. This is 

probably due to the fact that the new strategy employs two binning tools and combines their 

respective results. Indeed, with their new strategy, if a contig with more than 500,000 bps passes 

the quality criteria (93% of completion), it is considered complete, even if another small contig 

could complete the MAG. 

 

Conclusion 

 

metagWGS is the only workflow currently available that provides both the taxonomic affiliation of 

MAGs, the taxonomic affiliation of all contigs (even those that are not binned) and the functional 

annotation and taxonomic affiliation of genes. 

It is also the only complete workflow for analyzing metagenomic sequencing data in PacBio HiFi. 

It produces more medium- and high-quality bins than the Pacbio HiFi dedicated binning workflow. 

Indeed, it uses Binette, which performs better (produces more high-quality bins) than the DAS 

Tool and the metaWRAP bin_refinement step. 

Our ambition is to further develop metagWGS by integrating new tools and strategies, and to keep 

it up to date with the state of the art.  

We plan to investigate co-binning and the tools for using it (semibin2, Vamb - Nissen et al. 2021, 

etc.). Co-binning serves as an alternative to cross-alignment, where reads are aligned on the 

concatenation of all assemblies. The amount of alignment is the same and the alignment is less 

parallelized in the case of co-binning, which is not advantageous in the case of execution on a 

cluster. However, it is the genome that is bigger, so the aligners perform better in the case of co-

binning. In addition, the co-binning approach poses problems with the redundancy of 

concatenated assemblies, although it remains an interesting approach that we would like to test, 

compare and implement if it is relevant. Co-assembly binning is an excellent alternative to 

decrease this redundancy but it is not always possible. Indeed, when the samples are numerous, 

highly diverse and very deeply sequenced, the assemblers run into difficulties and require 

excessive amounts of resources to co-assemble them. 

 

For better consideration of viruses and small eukaryotes, we also plan to first classify contigs 

between eukaryotic, prokaryotic and viral contigs and then adapt the tools for structural and 

functional annotation of genes, select adapted binners, and adapt the tools for taxonomic 

affiliation and quality assessment of bins/MAGs. 

More generally, we plan to continue improving the workflow to make it even faster and less 

resource-intensive without compromising the quality of the results. 

The workflow is available under the GNU GPL license in the following GitLab repository: 

https://forgemia.inra.fr/genotoul-bioinfo/metagwgs. It comes with full documentation, 
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configuration files that you may need to adapt to your infrastructure, and two singularity images 

to facilitate quick deployment. 
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SUPPLEMENTARY DATA 

 

 

 

Supplementary Table 1:  

The main features of seven metagenomic workflows, both functional and technical. 

 

 

Supplementary Table 2:  

Metrics of assemblies, annotation and reads assigned to genes obtained by metagWGS 

v2.4.2 from the 11 metagenomic samples sequenced with PacBio Sequel II (HiFi reads). 

From left to right: sample name, median read length (after cleaning step), number of HiFi reads 

in millions, N50 of the assembly, total assembly length, % reads mapped on the assembly, 

number of contigs, number of CDS annotated, % reads assigned to a gene by featurecount, 

number of reads assigned to a gene in millions. To obtain these metrics, MetagWGS uses: 

Quast v5.2.0,minimap2 v2.24 and samtools v1.15 and featureCounts v2.0.3. 
 

 

 

Supplementary Fig. 1: Number of contigs found for each assembly for 11 HiFi public 

samples from human gut, broken down by length. The assemblies are made by metagWGS 

v2.4.2 with hifiasm v0.13-r308, the metrics are calculated with Quast v5.2.0, and the graph itself 

is generated by MultiQC v.1.14. The samples are represented on the y-axis, and the number of 

contigs is represented on the x-axis according to their size. 

 
 

Supplementary Fig. 2: Cumulative length of sequences for bins of 11 HiFi public samples 

from the human gut by quality category according to MIMAG (minimum information 

about a metagenome-assembled genome) standards. "High-quality" refers to genomes with 

Completeness > 90% and Contamination < 5%. "Medium-quality" for genomes with 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2024. ; https://doi.org/10.1101/2024.09.13.612854doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.13.612854
http://creativecommons.org/licenses/by-nc/4.0/


16 

Completeness > 50% and Contamination < 10%. "Low-quality" for genomes with Completeness 

< 50%. "High-contamination refers to genomes with Contamination > 10%. Completeness refers 

to the proportion of presence of universal single-copy “marker” genes within a genome. Single-

copy marker genes present multiple times within a recovered genome is used to estimate 

potential Contamination. Bins are made by metagWGS v2.4.2, more precisely with Concoct 

v1.1.0, Metabat v2:2.15, Maxbin v2.2.7, Binette v0.1.5. Bin quality is computed by checkM2 in 

Binette. 

The "not-binned" part refers to the cumulative length of assemblies contained in unbinned 

contigs. The x-axis corresponds to the percentage of the total length of the assembly; the y-axis 

indicates the samples. 
 

 

Supplementary Fig. 3: Quality of dereplicated bins generated from the 11 HiFi public 

samples from the human gut in terms of completeness and contamination calculated by 

Checkm2. The points are colored according to their quality, according to the MIMAG (minimum 

information about a metagenome-assembled genome) standards. Genomes with the best 

quality (100% completeness and 0% contamination) are located in the lower right corner of the 

graph. "High-quality" refers to genomes with Completeness > 90% and Contamination < 5%. 

"Medium-quality" for genomes with Completeness > 50% and Contamination < 10%. "Low-

quality" for genomes with Completeness < 50%. "High-contamination refers to genomes with 

Contamination > 10%. Completeness refers to the proportion of presence of universal single-

copy “marker” genes within a genome. Single-copy marker genes present multiple times within 

a recovered genome is used to estimate potential Contamination. Bins are made by metagWGS 

v2.4.2, more precisely with Concoct v1.1.0, Metabat v2:2.15, Maxbin v2.2.7, Binette v0.1.5 and 

dereplicated with dRep v3.0.0. Bin quality is computed by checkM2 in Binette. 
 

 

Supplementary Table 3:  

Metrics for the 246 MAGs dereplicated to 95% ANI obtained by metagWGS v2.4.2 (with 

dRep 3.0.0) from the bins for each of the 11 HiFi public samples from the human gut. 

From left to right: genome identification and taxonomic affiliation by GTDBtk v2.1.1, 

completeness and contamination computed by checkM2, genome length, genome N50 and 

number of reads mapped on contigs making up the MAG, and average depth of alignment of 

reads on the contigs making up the MAG (by minimap2 v2.24 and samtools v1.15.1). 

 

Supplementary Table 4: Number of bins produced by the two workflows metagWGS 

v2.4.2 and Hifi-MAG-pipeline for the 11 HiFi public samples from the human gut. Number 

of medium-quality bins for each sample (with more than 50% completeness and less than 10% 

contamination) by the two workflows and number of high-quality bins produced for each sample 

with more than 90% completeness and less than 5% contamination by the two workflows. Bins 

were evaluated by checkM v1.2.2. The highest number is on a yellow square; the lowest on a 

dark purple square. When the two numbers are the same, the squares are light purple. 

            

Supplementary Table 5:  
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Comparison of binning results using the simulated mouse gut metagenome data 

released in preparation for the second round of CAMI II challenges. To make the 

comparison, we followed the step in this nature protocol describing the binning benchmark 

(Meyer et al., 2021; Meyer et al., 2022). We compared individual binning (Concoct, MaxBin and 

MetaBAT) and refinement tools (DAS Tool, metaWRAP and Binette). The metrics presented in 

this table were produced by AMBER v2.0.4. The best result of each metric is indicated in bold. 
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